用户名: 密码: 验证码:
西北典型荒漠植物根系形态结构和功能及抗旱生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根系是植物吸收水分和养分的器官,提供地上部分光合作用的物质基础。不同生境条件下根系在形态特征、空间分布和构型上有较大的差异,研究不同生境条件下根系形态结构、养分特征及其抗旱生理特性,对揭示根系结构和功能对环境因子变异的响应机制以及对环境的生理适应策略具有重要意义。
     在我国西北干旱半干旱区,以典型荒漠植物红砂和白刺为研究对象,按自然降水梯度在一个较大的自然地域上,采用壕沟法和根系跟踪相结合的方法对红砂和白刺根系进行了整株挖掘。测定了2种荒漠植物根系形态指标和构型参数,并绘制根系分布图;同时采集不同生境条件下2种荒漠植物完整的细根根系,并采用Pregitzer细根分级法对其进行了分级,用细根分析软件(Win-RHIZO2008a)测定了各序级细根形态特征参数,并对各序级细根的养分特征(C、N含量)进行了测定,比较了不同生境条件下2种荒漠植物根系形态特征和构型以及细根的序级结构和功能差异,揭示了2种荒漠植物根系形态特征和构型对环境变化的响应与适应机制,阐明了细根形态结构和功能随序级的变化规律。同时结合控制条件下人工模拟水分梯度实验,测定了不同土壤水分条件下红砂根系的生理参数,比较了典型荒漠植物红砂根系形态结构和功能对水分变化的响应差异,进一步探明了红砂根系形态特征和功能对水分变化的适应机制及抗旱生理机制。结果表明:
     1.自然条件下2种荒漠植物随降水的减少干旱胁迫程度的增加其主根生长均受到了抑制,但物种不同又有所差异,其中红砂主根生长抑制明显。在西北干旱半干旱区,2种荒漠植物主要通过侧根的形态改变来适应胁迫环境,其中在半干旱区的黄土丘陵沟壑区2种荒漠植物主要是通过侧根的分支增多、侧根数目和总侧根长的增加来适应胁迫环境,而在干旱的河西走廊风沙区2种荒漠植物主要是通过延长侧根的平均连接长度来适应逆境环境,表明2种荒漠植物具有明显的形态可塑性。
     2.自然条件下2种荒漠植物根系的拓扑指数均较小,根系分支模式均近似为叉状分支结构。红砂和白刺根系具有较好的分形特征,其分形维数分别为(1.18±0.04)和(1.36±0.06);分形维数、分形丰度与根系平均连接长度均呈显著正相关。2种荒漠植物根系的平均连接长度均较大,以扩大植物的有效营养空间,从而适应干旱贫瘠的土壤环境。2种荒漠植物根系分支前的横截面积等于根系分支后的横截面积之和,验证了Leonardoda Vinci法则。其中根系拓扑指数、根系连接数量、逐步分支率和根系直径等4个根系构型参数能很好地表征2种荒漠植物根系构型特征。
     3.不同生境条件下红砂根系的拓扑指数均较小,根系分支模式接近叉状分支模式,但在干旱的河西走廊风沙区和戈壁区红砂根系拓扑指数均逐渐增加,表明干旱有使红砂根系分支由叉状分支模式向鱼尾分支模式变化的趋势。干旱的河西走廊风沙区和戈壁区红砂根系分形维数均较小,分别为1.1778、1.1169;而半干旱的黄土丘陵沟壑区分形维数相对较大,为1.3104,且干旱的河西走廊红砂根系总分支率均比半干旱的黄土丘陵沟壑区要小,表明在半干旱的黄土丘陵沟壑区红砂根系分支能力相对较强,随着干旱的增加其分支能力有所减弱。不同生境条件下红砂根系的连接长度都较大,但生境不同却表现出明显差异,其中武威民勤干旱风沙区根系平均连接长度最长。可见,红砂为适应干旱的环境通过减少根系次级分支和根系的重叠、增加根系连接长度,使其根系的分支模式向鱼尾分支模式发展以降低根系内部对营养物质的竞争,提高根系贫瘠土壤水分和养分的吸收效率,保证其正常生长的有效营养空间,从而适应干旱瘠薄的土壤环境。
     4.自然条件下2种荒漠植物细根的形态结构具有明显的差异,但均以1级侧根数目为最多,占所有序级根数的比例也最大,回归分析表明2种荒漠植物各级细根数量与序级之间均呈现出较好的指数关系。2种荒漠植物随着序级的升高,细根直径、根长均增加,而比根长、组织密度则降低,细根直径和根长随序级的升高呈有规律的变化,均可用指数函数很好的表征;而比根长和组织密度随序级的变化则可用二次函数表征。2种荒漠植物随着根序的上升,C含量和C/N比逐渐增加,而N含量逐渐降低,且2种荒漠植物1级根C、N含量与2、3级根之间差异显著,表明末端根系(1级根)因呼吸作用强主要承担水分和养分的吸收功能,而相对较高级根序细根,因木质化程度较高主要担负运输功能,并贮存碳水化合物。
     5.人工模拟水分梯度下红砂幼苗根系具有明显的形态可塑性,随土壤水分胁迫程度和根序的不同而各异。首先随着土壤水分胁迫程度的增加红砂幼苗主根的伸长生长受到抑制,但促进了各级侧根的伸长生长并导致了根系总长度的增加;土壤水分胁迫使红砂幼苗根系直径变细、根体积减少,比表面积和比根长增加,且主要是通过低级根系(1级根和2级根)来实现的,表明在土壤水分胁迫下红砂主要是通过低级侧根伸长,根表面积增加,根体积和根直径减少等形态特征的改变来适应逆境环境。然而,随着根序的变化红砂幼苗根系具有明显的形态可塑性,随根序的升高各土壤水分条件下红砂幼苗根长、比根长均显著减少,相反,直径和体积却随根序的升高而显著增加;总根表面积和比表面积随根序的变化略有不同,表现为随根序的升高呈先增加后减少的变化趋势,但较低级根(1级和2级)比表面积占总比表面积的比例较大,表明红砂细根内部具有高度的形态异质性。
     6.人工模拟水分梯度下红砂幼苗细根的养分特征也随土壤水分胁迫程度和根序的不同而各异,全C含量均随土壤水分胁迫程度的增加而呈减少的变化趋势,而N含量随土壤水分胁迫程度的增加呈现出先减少后增加的趋势;表明在中度土壤水分胁迫条件下红砂细根呼吸作用有所降低。各土壤水分条件下红砂细根全C含量和C/N比随着根序上升而逐渐增加,而细根全N含量呈现出随着根序上升而逐渐降低,表明较低级根序具有较强的呼吸作用与代谢活性。在土壤水分胁迫条件下红砂幼苗根系总生物量和各级侧根生物量均有所增加,且侧根对总根系生物量的增加的贡献最大。然而,在土壤水分胁迫条件下,红砂地上部分生长受到了抑制,特别是叶片开始脱落其生物量降低最大,因而增大了根冠比。土壤水分胁迫程度的增加显著降低了红砂幼苗的蒸腾耗水量,但提高了其水分利用效率。
     7.土壤水分胁迫对红砂幼苗根系并未形成伤害,随土壤水分胁迫增加红砂幼苗根系活力呈增加趋势,与对照相比,中度土壤水分胁迫和重度土壤水分胁迫根系活力分别提高了12.89%、17.42%,表明在土壤水分胁迫条件下,红砂幼苗仍能保持较高的根系TTC还原力,在逆境环境中为地上部分提供生长所需的养分和水分,保证其正常生长。随土壤水分胁迫的增加根系SOD活性和POD活性有所降低,但差异不显著,然而CAT活性、脯氨酸含量随土壤水分胁迫程度的增强而增加,表明红砂幼苗根系在土壤水分胁迫条件下主要通过增加CAT活性来减轻干旱胁迫中膜脂过氧化作用,清除细胞内过多的H2O2,使其维持在低水平上,保护膜的结构,同时通过增加脯氨酸含量来增强渗透调节能力,表现出更强的抗旱性。在土壤水分胁迫条件下红砂幼苗仍保持较低的MDA含量,表明其细胞膜的并没有出现膜脂过氧化。可见,在土壤水分胁迫下红砂幼苗主要通过能维持较高根系活力、CAT活性、脯氨酸含量以及保持较低的MAD含量来适应土壤干旱胁迫,表现出较强的抗旱特性,这也是红砂能在干旱半干旱区能大量生存和分布的主要原因。
The root system is the vegetative organ from which the plants absorb water and nutrition;moreover, it offers the partial material base for photosynthesis. The root system’smorphological characteristics, spatial distribution and architecture show a great difference indifferent habitats conditions. The study of morphology structure, nutrition characteristics andphysiological characteristics against drought of root system in different habitats conditionsplay a significant role in understanding the root morphological structure and functions inresponding mechanism to environmental factors and the strategy of physiological adaptationwithin the different environments.
     Based on the typical desert plants Reaumuria soongorica and Nitraria tangutorun in aridand semi-arid regions of northwestern China, according to the precipitation gradient, themethod which combined trenching with root-tracking method were used to mine thewhole-plant roots in this research, and its morphological characteristics and architectureparameters were measured, and its root distribution was drew. At the same time, fine rootsunder different habitats were collected and classificated according to the Pregitzer,sclassification method, and then the root analysis software was used to measure themorphology parameters, and the nutrient characteristics(the content of C、N)of the fine rootwas measured. Under different habitats, morphological characteristics and architectureparameters of two desert plants were discussed, and the response mechanism of them toenvironmental variations was revealed, fine root architecture and morphology and functionalcharacteristics were also clarified. Combined with the water gradient experiment of artificialcontrol conditions, the morphology and function of R. soongorica root were compared underdifferent soil moisture conditions. We further prove the response strategy of the morphologycharacteristics and functions of R. soongorica root to soil moisture variations.
     1. The taproot growth of the two types of desert plants was restrained with the decrease inprecipitation and increase in drought stress. However, there were some discrepancies amongdifferent species, among which the taproot growth of R.soongorica is evidently restrained.These two types of desert plants can adapt the environmental stress through the morphologicalchange in arid and semi-arid regions in Northwest, China. These two types of desert plants inloess hilly and gully region can adapt the environmental stress through the increase of lateralbranches, the increase of the number of lateral branches and the total root length. Nevertheless, these two types of desert plants in sandy area of Hexi Corridor can adapt the bioticenvironment mainly through prolong the average connecting length which demonstrate theobvious morphological plasticity of the two types of desert plants.
     2. The root topological indices of the two desert plants were small, and the root branchingpatterns were herringbone-like. The roots of the two desert plants had obvious fractalcharacteristics, with the fractal dimension of R.soongorica and N.tangutorum being (1.18±0.04) and (1.3±0.06), respectively. The root fractal dimension and fractal abundance weresignificantly positively correlated with the root average link length. The root average linklengths of the two plants were long,which enlarged the plants’ effective nutrition space,andthus, made the plants adapt to the dry and infertile soil environment. The sums of the rootcross-sectional areas before and after the root bifurcation of the two desert plants were equal,which verified the principle of Leonardo da Vinci. A total of17parameters of rootarchitecture were analyzed by the principal component analysis. The parameters of roottopological structure,numbers of root links,stepwise branching ratio,and root diameter couldwell present the root architecture characteristics of the two desert plants.
     3. Topological indices of R.soongorica root system are small at all the habitats, and rootbranching pattern tends to be dichotomous. The topological indices of R.soongorica rootsystem gradually increase in the Minqin windblown sand region and the Zhangye Gobi regionin Hexi Corridor, which indicates that drought makes root branching pattern tend to beherringbone-like. Fractal dimension values of R.soongorica root system all are small in theMinqin windblown sand region and the Zhangye Gobi region in Hexi Corridor and the valuesare1.1778and1.1169, respectively. While the fractal dimension values are relative large inJiuzhoutai semi-arid hilly and gully region of the Loess Plateau and the values is11.3104.Total branching ratios of the R.soongorica root system in arid region of Hexi Corridor aresmaller than that in the Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau. Itshows that the root branching ability in the semi-arid region is stronger, and it decreases atsome degree with drought increase. The root link lengths of R.soongorica root system arelong at all the habitats, but there are significant differences between the different habitats. Theroot link length at the Minqin windblown sand region is the longest. It is concluded thatR.soongorica adapts to arid environment by decreasing root branching, decreasing rootoverlap and increasing the root link length, which makes its root branching pattern tend to beherringbone-like to reduce compete degree in root internal environment for nutrients and toenhance root absorption rate to nutrients, and ensure the effective nutrition space, thus it can absorb enough water and nutrients in resource-poor settings to ensure its normal physiologicalrequirements.
     4. The morphology structure of fine root of two desert plants had an obvious differenceunder the natural condition, but the first order lateral root had high proportion in all the rootorders. Regression analysis showed that there was an exponential relationship between all fineroots of every order and the order for two desert plants. With increasing root order, thediameter and length of fine roots of two desert plants increased, whereas the specific rootlength (SRL) and tissue density decreased. The diameter and root length of fine roots indicateda regular change with increasing of root order, and had a good character with exponentialfunctions, while the change of the specific root length and tissue density could be depicted asthe quadratic function. With increasing root order, the C content and C/N of two desert plantsincreased gradually, whereas the N concent decreased. Moreover, C content and N concenthad significant differences between the first order and order of2ndand3rd. This showed thatfirst order roots mainly undertook the function of absorbing nutrient and water due to theirhigh respiration, while higher order of fine roots played an important role in nutrient andwater transportation and carbohydrate storage owing to the high degree of lignifications.
     5. The morphological characteristics of R.soongorica seedling roots demonstrated greatvariations under different water gradient and root order. The growth of taproot was inhibitedwith the increase of stress of soil water, but the total length of lateral roots increasedobviously under higher water stress. The diameters and volumes of root also influenced by thedegree of water stress, and specific surface area and specific root length increased with theincrease of water stress, especially for the roots of order1and order2, this results indicatedgreater lateral root length, root surface area, root volumes, and smaller root diameters appearto be important indicators of morphological adaptation of root system in an extreme soilcondition. The morphological characteristics of R.soongorica seedling roots also weredifferent with the change of root orders, and the root length and specific root length decreasedwith increase of root orders, however, the root with higher order has greater root diameter andvolume. The total root surface area and specific surface area showed a more complexvariability under different root orders, and increased in lower order root, followed by adecrease in higher order root. These phenomena indicated the highly morphological variationof fine root system of R. soongorica, and the high development of lateral root with lowerorder was an important strategy in response to the water stress conditions.
     6. The nutrient characters of fine roots of R. soongorica seedling changed with the different degree of drought stress and root order. The total carbon content decreased with theincrease of soil water stress, but the total nitrogen content firstly decreased and then increasedwith the increase of soil water stress. This showed that respiration of fine roots ofR.soongorica seedling was restrained under different soil water stress condition. Under samesoil water stress condition, the total carbon content and C/N of fine roots of R.soongoricaseedling gradually increased with the increase of root order, but the total nitrogen contentgradually decreased with the increase of root order. This showed that the low roots havestronger respiration and metabolic activity. Under different soil water stress condition, thetotal fine roots and lateral root biomass of R.soongorica seedling were all increased, andlateral root made the greatest contribution to the increase of the total roots biomass, however,under soil water stress condition, the growth of aerial parts of R.soongorica seedling wasrestrained, especially, abscission of the leaves caused the decrease of aerial parts biomass. Sothe root shoot ratio was increased. With the increasing of soil water stress, water consumptionof R.soongorica seedling deceased, but water use efficiency was improved.
     7. Soil water stress has not done hurt to the root of R.soongorica seedling to some extent,and the root activity of R.soongorica seedling increased with the increase of soil water stress.In compared with the control, the root activities under middle and severe water stress wereincreased by12.89%and17.42%, respectively. This showed, under soil water stresscondition, that the root of R.soongorica seedling still had relatively high TTC deoxidizingability which provides water and nutrients for the growth of the aerial portion to ensure thenormal growth of plant in the hostile environment. SOD and POD activity of roots issomewhat reduced with the increase of soil water stress, but the differences were notsignificant, however, CAT activity and proline content increased with the increase of soilwater stress. This showed, under soil water stress condition, that the root of R.soongoricaseedling mainly decreased lipid peroxidation and clear intracellular excess H2O2by increasingCAT activity to make it maintain at a low level, in order to protect the construction of the cellmembrane under soil water stress, in the meantime, increased ability of osmotic regulation byincreasing proline content, the higher drought resistance ability was represented. R.soongoricaseedling still remained low MDA content under soil water stress condition, and this showedits membranes did not produce lipid peroxidation. So, under soil water stress condition,R.soongorica seedling mainly adapt to soil drought stress by maintaining high root activity,CAT activity and proline content and remaining low MDA content, the high droughtresistance ability was represented. This is main reason why R.soongorica can largely exist anddistribute on arid or semi-arid.
引文
[1] Aber JD, Melillo JM, Nadelhoffer KJ. Fine root turnover in forest ecosystems in relation to quality andform of nitrogen availability: a comparison of two methods[J]. Oecologia,1985,66:317–321.
    [2] Atsumi J, Yamauchi A, Kono Y. Fractal analysis of plant root systems [J]. Annals of Botany,1989,64:499–503.
    [3] Bai YF, Wu JG, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradienton the Mongolia plateau[J]. Ecology,2008,89:2140–2153.
    [4] Bauder JW. Alfalfa water use and production on dry land and irrigated sandy loam[J]. AgronomyJournal,1978,70:75–99.
    [5] Bauhus J, Khanna PK, Menden N. Aboveground and belowground interactions in mixed plantations ofEucalyptus globulus and Acacia mearnsii[J]. Canadian Journal of Forest Research,2000,30:1886–1894.
    [6] Berntson G M. The Characterization of topology: a comparison of four topological indices for rootedbinary trees [J]. Journal of Theoretical Biology,1995,177:271–281.
    [7] Berntson G M. Topological scaling and plant root system architecture: developmental and functionalhierarchies [J]. New Phytologist,1997,135:621–634.
    [8] Blum A, Sullivan C Y. The effect of plant size on wheat response to agents of drought stressⅠ. Rootdrying[J]. Australian Journal of Plant Physiology,1997,24:35–41.
    [9] Borchert R, Slade NA. Bifurcation ratios and the adaptive geometry of trees[J]. Botanical Gazette,1981,142:394–401.
    [10] Bouma T J, Nielsen K L, Vanhal J, et al. Root system topology and diameter distribution of speciesfrom habitats differing in inundation frequency[J]. Functional Ecology,2001,15:360–369.
    [11] Chapin FS, Ruess RW. The roots ofthe matter[J]. Nature,200l,411:749–752.
    [12] Chen YN, Pang ZH, Chen YP, et al. Response of riparian vegetation to water-table changes in thelower reaches of Tarim River, Xinjiang Uygur, China [J]. Hydrogeology Journal,2008,16:1371–1379.
    [13] Coleman M. Spatial and temporal patterns of root distribution in developing stands of four woody cropspecies grown with drip irrigation and fertilization [J]. Plant and Soil,2007,299:195–213.
    [14] Cortina J, Green JJ, Baddeley JA, et al. Root morphology and water transport of Pistacia lentiscusseedlings under contrasting water supply: a test of the pipe stem theory [J]. Environmental andExperimental Botany,2008,62:343–350.
    [15] Dannowski M, Block A. Fractal geometry and root system structures of heterogeneous plantcommunities[J]. Plant and Soil,2005,272:6176.
    [16] Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in dryingsoil[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55–76.
    [17] Desikan R, Cheung M K, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signaling instomatal guard cells[J]. Journal of Experimental Otany,2004,55:205–212.
    [18] Dixon RK, Brown S, et a1. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185–190.
    [19] Dorlodot S D, Forster B, Pages L, et a1. Root system architecture: opportunities and constrains forgenetic improvement of crops[J]. Trends in Plant Science,2007,12:474–481.
    [20] Eduardo S, Harry OL, Pekka N. A fractal root model applied for estimating the root biomass andarchitecture in two tropical legume tree species[J]. Annals of Forest Science,2004,61:337-345.
    [21] Eissenstat DM, Yanai RD. The Ecology of Root Life Span[J].In:Advance in Eeological Researeh,1997,27:1–60.
    [22] Eissenstat DM. On the relationship between specific root length and the rate of root proliferation:afield study using citrus rootstoeks[J].NewPhytologist,1991,118:63–68.
    [23] Esau K. Plant Anatomy. John Wiley, New York,1964.
    [24] Ettema CH, Wardle DA. Spatial soil ecology[J]. Trends in Ecology and Evolution,2002,17:177–183.
    [25] Fernández RJ, Wang MB, Reynolds JF. Do morphological changes mediate plant responses to waterstress? Asteady-state experiment with two C4grasses [J]. New Phytologist,2002,155:79–88.
    [26] Fitter AH, Sticklabd TR. Architectural analysis of plant root systems2. Influence of nutrient supply onarchitectural contrasting plant species [J]. New Phytologist,1991,118:383–389.
    [27] Fitter AH, Stickland TR, Harvey ML, et al. Architectural analysis of plant root systems1.Architectural correlates of exploitation efficiency [J]. New Phytologist,1991,118:375–382.
    [28] Fitter AH. An architectural approach to the comparative ecology of plant root systems [J]. NewPhytologist,1987,106:61–77.
    [29] Fitter AH. Morphometric analysis of root systems: application of the technique and influence of soilfertility on root system development in two herbaceous species[J]. Plant, Cell and Environment,1982,5:313-322.
    [30] Fitter AH. The topology and geometry of plant root systems: influence of watering rate on root systemtopology in Trifolium pratense [J]. Annals of Botany,1986,58:91-101.
    [31] Fitter AH. Architecture and biomass allocation as components of the plastic response of root systemsto soil heterogeneity. In: Caldwell MM, Pearcy RW eds.Exploitation of Environmental Heterogeneityby Plants. Academic Press, San Diego, USA.1994,305–323.
    [32] Fitter AH. Functional significance of root morphology and root system architecture. In: Fitter AH,Atinson D, Read DJ, Usher MB eds. Ecological Interaction in Soil Plant Microbes and Animals.Special Bulletin Number4of British Ecological Society[J]. Blackwell Scientific Publication, Oxford,1985,87–106.
    [33] Fravolini A, Hultine KR, Brugnoli E, et al. Precipitation pulse use by an invasive woody legume: therole of soil texture and pulse size[J]. Oecologia,2005,144:618–627.
    [34] Glimsk r A. Estimates of root system topology of five plant species grown at steady-state nutrition[J].Plant and Soil,2000,227:249256.
    [35] Griffiths H, Parry M A J. Plant responses to water stress[J]. Annals of Botany,2002,89:801–802.
    [36] Grimes DW, Wiley PL, Sheesley WR. Alfalfa yield and plant water relations with variable irrigation[J].Crop Science,1992,32:1381–1387.
    [37] Guo DL, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbonsource-sink manipulations in a longleaf pine forest [J]. Oecologia,2004,140:450–457.
    [38] Guo DL, Li H, Mitchell RJ, et al. Heterogeneity by root branch order: exploring the discrepancy inroot longevity and turnover estimates between minirhizotron and C isotope methods[J]. NewPhytologist,2008a,177:443–456.
    [39] Guo DL, Xia M, Wei X, et al. Anatomical traits associated with absorption and my-corrhizalcolonization are linked to branch order in twenty-three Chinese temperate tree species[J]. NewPhytologist,2008b,180:673–683.
    [40] He WM, Zhang XS. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrientshortages in the semi-arid Mu Us Sandland in China [J]. Journal of Arid Environments,2003,53:307–316.
    [41] Heisler-White JL, Knapp AK, Kelly EF. Increasing precipitation event size increases aboveground netprimary productivity in a semi-arid grassland[J]. Oecologia,2008,158:129–140.
    [42] Hendficks JJ, Aber JD, Nadelhoffer KJ, et a1. Nitrogen controls on fine root substrate quality intemperate forest ecosystems[J]. Ecosystems,2000,3:57-69.
    [43] Hendrick RL, Pregitzer KS. Patterns of fine root mortality in two sugar maple forests[J]. Nature,1993,361:59–61.
    [44] Hishi T. Heterogeneity of individual roots within the fine root architecture: causal links betweenphysiological and ecosystem functions[J]. Journal of Forest Research,2007,12:126–133.
    [45] Hodge A. Plastic plants and patchy soils[J]. Journal of Experimental Botany,2006,57:401–411.
    [46] Huang G, Zhao X Y, Zhao H L, et al. Linking root morphology,longevity and function to root branchorder: a case study in three shrubs[J]. Plant Soil,2010,336:197–208.
    [47] Huey RB, Gilchrist GW, CarlsonM L, et al. Rapid evolution of a geographic cline in size in anintroduced fly[J]. Science,2000,287:308–309.
    [48] Hund A, Ruta N, Liedgens M. Rooting depth and water use efficiency of tropical maize in bred lines,differing in drought to lerance[J]. Plant and Soil,2009,318:311–325.
    [49] Jackson RB, Caldwell MM. The scale of nutrient heterogeneity around individual plants and itsquantification with geostatistics[J]. Ecology,1993,74:612–614.
    [50] Jongrungklang N, Toomsan B, Vorasoot N, et al. Rooting traits of peanut genotypes with differentyield responses to pre-flowering drought stress[J]. Field Crops Research,2011,120:262-270.
    [51] Joslin JD, Henderson GS. Organic matter and nutrients associated with fine root turnover in a whiteoak stand [J]. Forest Science,1987,33:330–346.
    [52] Kai LN, Carter R M, Douglas B, et al. Fractal geometry of root systems: Field observations ofcontrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorusregimes [J]. Plant and Soil,1999,206:18l–190.
    [53] Kelly, J.M., Scarbrough, J.D., and Mays, P.A..Hardwood seedling root and nutrient parameters for amodel of nutrient uptake[J]. Journal of Environmental Quality,2001,30:427–439.
    [54] Ketipearachchi KW, Tatsumi J. Local fractal dimension and multifractal analysis of the root system oflegumes [J]. Plant Production Science,2000,3:287295.
    [55] Knapp AK, Briggs JM, Koelliker JK. Frequency and extent of water limitation to primary productionin a mesic temperate grassland[J]. Ecosystems,2001,4:19–28.
    [56] Kume T, Sekiya N, Yano K. Heterogeneity in spatial P-distribution and foraging capability byZeamays: effect of patch size and barriers to restrict root proliferation within a patch [J]. Annals ofBotany,2006,98:1271–1277.
    [57] López-Bucio J, Cruz-Ramírez A, Herrera-Estrella H. The role of nutrient availability in regulating rootarchitecture [J].Current Opinion in Plant Biology,2003,6:280–287.
    [58] Lynch J. Root architecture and plant productivity [J]. Plant Physiology,1995,109:7–13.
    [59] MacFall JS, Johnson GA, Kramer PJ. Comparative water up-take by roots of different ages inseedlings of loblolly pine (Pinus taeda L.)[J]. New Phytologist,1991,119:551–560.
    [60] Makita N, Hirano Y, Dannoura M, et al. Fine root morphological traits determine variation in rootrespiration of Quercus serrata[J]. Tree Physiology,2009,29:579–585.
    [61] Martínez-Sánchez JJ, Ferrandis P, Trabaud L, et al. Comparative root system structure of post-firePinus halepensis Mill. and Cistus monspeliensis L. saplings[J]. Plant Ecology,2003,168:309320.
    [62] MatamalaR, Gonzalez-MelerMA, et a1. Impacts of fine root turn over on forest NPP and soil Csequestration potential[J]. Science,2003,302:1385-1387.
    [63] Menconi M, Sgherri CLM, Pinzino C, et al. Activated oxygen production and detoxification in wheatplants subjected to a water deficit programme[J]. Journal of Experimental Botany,1995,46:1123–1130.
    [64] Nadelhoffer KJ, Aber JD, Melillo JM. Fine roots, net primary production, and soil nitrogen availability:a new hypothesis[J]. Ecology,1985,63:1481–1490.
    [65] Nadelhoffer KJ. The potential effects of nitrogen deposition on fine root production in forestecosystems[J]. New Phytologist,2000,147:13l-l39.
    [66] Oppelt AL, Kurth W, Dzierzonb H, et al. Structure and fractal dimensions of root systems of fourco-occurring fruit tree species from Botswana [J]. Annals of Forest Science,2000,57:463-475.
    [67] Oppelt AL, Kurth W, Godbold D L. Contrasting rooting patterns of some arid-zone fruit tree speciesfrom Botswana-II. Coarse root distribution [J]. Agro forestry Systems,2005,64:13-24.
    [68] Oppelt AL, Kurth W, Godbold D L. Topology, scaling relations and Leonardo’s rule in root systemsfrom African tree species[J]. Tree Physiology,2001,21:117-128.
    [69] Ostertag R. Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiianmontane forests[J]. Ecology,2001,82:485-499.
    [70] Otman MJ, Tickes BR, Roth RL. Alfalfa yield and stand response to irrigation termination in an acidenvironment[J]. Agronomy Journal1996,88:44–48.
    [71] Pausas JG, Austin MP. Patterns of plant species richness in relation to different environments: anappraisal[J]. Journal of Vegetation Science,2001,12:153–166.
    [72] Persson HA. Root dynamics in a young Scots pine stand in central Sweden[J]. Oikos,1978,30,508–519.
    [73] Pettigrew W T.Physiological consequences of moisture deficit stress in cotton[J]. Crop Science,2004,44:1265–1272.
    [74] Pierret A, Doussan C, Capowiez Y, et al. Root functional architecture: A framework for modeling theinterplay between roots and soil[J]. Vadose Zone Jouranl,2007,6:269–281.
    [75] Potters G, Pasternak TP, Guisez Y, et al. Stress-induced morphogenic responses: growing out oftrouble[J]? Trends in Plant Science,2007,12:98–105.
    [76] Pregitzer KS, Deforest JL, Burton AJ, et al. Fine root architecture of nine North American trees[J].Ecological Monographs,2002,72:293309.
    [77] Pregitzer KS, Kubiske ME, YuCK,et al. Relationships among root braneh order,carbon,and nitrogen infour temperate species[J]. Oecologia,1997,111:302-308.
    [78] Pregitzer KS, Uskowski MJ, Burton AJ, et al.Variation in Sugar Maple root respiration with rootdiameter and soil depth[J].TreePhysiology.1998,18:665–670.
    [79] Quijano-Guerta C, Kirk GJD, Portugal A M, et al. Tolerance of rice germplasm to zinc deficiency [J].Field Crops Research,2002,76:123130.
    [80] Ruess RW, Hendrick RL, et a1. Coupling fine root dynamics with ecosystem carbon cycling in blackspruce forests of interior Alaska[J]. Ecological Monographs,2003,73:643-662.
    [81] Saeed IAM, ElNadi AH. Irrigation effects on the growth, yield and water use efficiency of alfalfa[J].Irrigation,1997,17:63-68.
    [82] Schulze E D, Mooney H A, Sala O E, et al. Rooting depth, water availability, and vegetation coveralong an aridity gradient in Patagonia [J]. Oecologia,1996,108:503–511
    [83] Schwinning S, Sala OE, Loik ME, et al. Thresholds, memory, and seasonality: understanding pulsedynamics in arid/semi-arid ecosystems[J]. Oecologia,2004,141:191–193.
    [84] Selsted MB, vander Linden L, Ibrom A, et al, Pedersen JK, Mikkelsen TN, Pileggard K, Beier C,Ambus P. Soil respiration is stimulated by elevated CO2and reduced by summer drought: three yearsof measurements in a multifactor ecosystem manipulation experiment in a temperate heathland(CLIMAITE)[J]. Global Change Biology,2012,18:1216–1230.
    [85] Shan LS, Zhang XM, Wang YK, et al. Influence of moisture on the growth and biomass allocation inHaloxylon ammodendron and Tamaracks ramosissima seeding in the shelterbelt along the TarimDesert Highway, Xinjiang, China[J]. Chinese Science Bulletin,2008,53:93–101.
    [86] Spek LY, Van Noordwijk M. Proximal root diameter as predictor of total root size for fractal branchingmodels. II. Numerical model[J]. Plant and Soil,1994,164:119-127.
    [87] Sponseller RA. Precipitation pulses and soil CO2flux in a Sonoran Desert ecosystem[J]. GlobalChange Biology,2007,13:426–436.
    [88] Steingraeber DA, Waller DM. Non-stationary of tree branching patterns and bifurcation ratios[J].Proceedings of Royal of Society B,1986,228:187–194.
    [89] Strahler A N. Hypsometric (area altitude) analysis of erosional topology [J]. Geological Society ofAmerica Bulletin,1952,63(11):1117–1142.
    [90] Swemmer AM, Knapp AK, Snyman HA. Intra-seasonal precipitation patterns and above-groundproductivity in three perennial grasslands[J]. Journal of Ecology,2007,95:780–788.
    [91] Tatsumi J. Fractal geometry in root systems: quantitative evaluation of distribution pattern[J]. JapaneseJournal of Crop Science,1995,64:50–57.
    [92] Tsakaldimi M, Tsitsoni T, Ganatsas P, et al. A comparison of root architecture and shoot morphologybetween naturally regenerated and container-grown seedlings of Quercusilex [J]. Plant and Soil,2009,324:103–113.
    [93] Van Noordwijk M, Purnomosidhi P. Root architecture in relation to tree-crop-soil interactions andshoot pruning in agroforestry[J]. Agroforestry Systems,1995,30:161–173.
    [94] Wang H, Siopongco J, Wade L J, et a1. Fractal analysis on root systems of rice plants in response todrought stress[J]. Environmental and Experimental Botany,2009,65:338–344.
    [95] Wang ZQ, Guo DL, Wang XR, et al. Fine root architecture, morphology, and biomass of differentbranch orders of two Chinese temperate tree species[J]. Plant and Soil,2006,288:155–171.
    [96] Wells CE, Glenn DM, Eissenstat DM. Changes in the risk of fine-root mortality with age: a case studyin peach, Prunus persica (Rosaceae)[J]. American Journal of Botany,2002,89:79–87.
    [97] Withington JM, Reich PB, Oleksyn J, et al. Comparisons of structure and life span in roots and leavesamong temperate trees[J]. Ecological Monographs,2006,76:381–397.
    [98] Xu H, Li Y. Water use strategy of three central Asian desert shrubs and their responses to rain pulseevents[J]. Plant and Soil,2006,285:5–17.
    [99] Xu H, Li Y. Water use strategy of three central Asian desert shrubs and their responses to rain pulseevents [J]. Plant and Soil,2006,285:5-17.
    [100] Yamauchi A, Paradales Jr JR, Kono Y. Root system structure and its relation to stress toleran.//Ito O,Katayama K, Johansen JV D K, Kumar Rao JJ eds. Root and Nitrogen in Cropping System s of theSemiarid Tropics. Tsukuba, Japan: Cultio Corporation,1996:211–233.
    [101] Zeng FJ, Song C, Guo HF, et al. Responses of root growth of Alhagi sparsifolia Shap.(Fabaceae) todifferent simulated groundwater depths in the southern fringe of the Taklimakan Desert, China[J].Journal of Arid Land,2013,5:220232.
    [102] Zhang MS, Xie B, Tan F. Relationship between changes on endogenous horm one of sweet-potatounder water stress and drought resistance[J]. Scientia Agricultura Sinica,2002,35:498–501.
    [103] Zhao CY, Yan YY, Yilihamu Yimamu, et al. Effects of soil moisture on cotton root length density andyield under drip irrigation with plastic mulch in Aksu Oasis farmland[J]. Journal of Arid Land,2010,2:243249.
    [104] Zhao H J, Tan J F. Role of calciumion in protection against heat and high irradiance stress inducedoxidative damage to photosynthesis of wheat leaves [J]. Photosynthetica,2005,43:473–476.
    [105]蔡丽平,吴鹏飞,侯晓龙,等.类芦根系对不同强度干旱胁迫的形态学响应[J].中国农学通报2012,28(28):44–48.
    [106]蔡顺香,颜明娟,林琼,等.黑麦草根系抗氧化系统和细胞质膜透性对土壤中芘胁迫的响应[J].福建农业学报,2012,27(2):162–166.
    [107]曹仪植,吕忠恕.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用[J].植物生理学报,1985,11(1):9–16.
    [108]陈吉虎,余新晓,有祥亮,等.不同水分条件下银叶椴根系的分形特征[J].中国水土保持科学,2006,4(2):71–74.
    [109]陈明涛.黄土高原主要造林树种苗木根系抗旱机理研究.硕士论文,2010.
    [110]陈鹏,潘晓玲.河西走廊地区的植物区系特征[J].植物研究,2001,18(1):2429.
    [111]陈世鍠,张昊,王立群,等.中国北方草地植物根系[M].长春:吉林大学出版社,2001.
    [112]单长卷,徐新娟,王光远,等.冬小麦幼苗根系适应土壤干旱的生理学变化[J].植物研究,2007,27(1):55–58.
    [113]单立山,李毅,董秋莲,等.红砂根系构型对干旱的生态适应[J].中国沙漠,2012,32(5):12831290
    [114]单立山,李毅,任伟,等.河西走廊中部两种荒漠植物根系构型特征[J].应用生态学报,2013,24(1):2531.
    [115]单立山,张希明,王有科,等.水分条件对塔里木沙漠公路防护林植物幼苗生长及生物量分配的影响[J].科学通报,53(增刊Ⅱ):82-88.
    [116]丁钰,李得禄,尉秋实,等.不同土壤水分胁迫下沙漠葳的水分生理生态特征[J].西北林学院学报,2008,23(3):5–11
    [117]董丽佳,桑卫国.模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响[J].植物生态学报2012,36(8):819–830.
    [118]董守坤,赵坤,刘丽君,等.干旱胁迫对春大豆叶绿素含量和根系活力的影响[J].大豆科学2011,30(6):949–953.
    [119]杜建会,严平,展秀丽,等.民勤绿洲白刺灌丛沙堆不同演化阶段表面抗蚀性及其影响因素[J].应用生态学报,2008,19(4):763–768.
    [120]段舜山,谷文祥,张大勇,等.半干旱地区小麦群体的根系特征与抗旱性的关系[J].应用生态学报,1997,8(2):134–138.
    [121]冯斌,杨培岭.植物根系的分形及计算机模拟[J].中国农业大学学报,2000,5(2):96–99.
    [122]高照全,张显川,王小伟.不同水分条件下桃树根系的分形特征[J].天津农业科学,2006,12(3):20–22.
    [123]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922–928.
    [124]韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报,1990,13(1):17–21.
    [125]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23–27.
    [126]何明珠,张景光,王辉.荒漠植物枝系构型影响因素分析[J].中国沙漠,2006,24(6):625629.
    [127]何明珠,王辉,张景光.民勤荒漠植物枝系构型的分类研究[J].西北植物学报,2005,25(9):18271832
    [128]贺海波,李彦.干旱、盐胁迫下两种盐生植物生物量分配对策的研究[J].干旱区研究,2008,25(2):242–247.
    [129]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49(13):1226–1233.
    [130]胡小文,王彦荣,武艳培.荒漠草原植物抗旱生理生态学研究进展[J].草业学报,2004,13(3):9–15.
    [131]黄子琛.荒漠植物的水分关系与抗旱性川[J].甘肃林业科技,1992,(2):1–7.
    [132]贾淑霞,赵妍丽,丁国泉,等.落叶松和水曲柳不同根序细根形态结构、组织氮浓度与根呼吸的关系[J].植物学报,2010,45(2):174–181.
    [133]贾宇,徐炳成,王晓凌,等.半干旱黄土丘陵区垄沟集雨对紫花苜蓿人工草地土壤水分和产草量的影响.植物生态学报,2007,31(3):470–475.
    [134]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报,2004,30(21):169–174.
    [135]蒋礼学,李彦.三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较[J].中国沙漠,2008,28(6):11181124.
    [136]景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报,2005,29(3):5–8.
    [137]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报,2005,13(3):199–202.
    [138]孔祥悦,王永泉,眭晓蕾,等.灌水量对温室自根与嫁接黄瓜根系分布及水分利用效率的影响[J].园艺学报,2012,39(10):1928–1936
    [139]李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(1):37-43.
    [140]李鸿儒,王继和,蒋志荣,等.白刺沙包发育过程的土壤水分与根系生物量的关系[J].甘肃农业大学学报,2010,45(6):133-138.
    [141]李鲁华,李世清,翟军海,等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1–7.
    [142]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503–507.
    [143]李文娆,张岁岐,丁圣彦,等.干旱胁迫下紫花苜蓿根系形态变化及水分利用的关系[J].生态学报,2010,30(19):5140-5150.
    [144]李燕,薛立,吴敏.树木抗旱生理及造林技术研究进展[J].山西林业科技,2005,(6):19–25.
    [145]梁泉,廖红,严小龙.植物根构型的定量分析[J].植物学通报,2007,24(6):695702.
    [146]梁新华,史大刚.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响[J].干旱地区农业研究,2006,24(3)108-110.
    [147]廖成章,余翔华.分形理论在植物根系结构研究中的应用[J].江西农业大学学报,2001,23(2):192–196.
    [148]刘佳,项文化,徐晓,等.湖南会同5个亚热带树种的细根构型及功能特征分析[J].植物生态学报,2010,34(8):938-945.
    [149]刘家琼,邱明新,蒲锦春,等.我国荒漠典型超旱生植物--红砂[J].植物学报,1982,24(5):485–488.
    [150]刘健,贺晓,包海龙,等.毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系[J].中国沙漠,2010,30(6):1362-1366.
    [151]刘玉冰,张腾国,李新荣,等.红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学(C辑)生命科学,2006,36(4):328333.
    [152]娄成后.植物水分平衡中根-冠间的信号传递与整体行动[J].植物学通报,2000,17(5):475–477.
    [153]罗亚勇,赵学勇,黄迎新,等.植物水分利用效率及其测定方法研究进展[J].中国沙漠,2009,29(4):648-655.
    [154]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂叶片δ13C值与生理指标的关系[J].应用生态学报,2008,19(5):1166-1171.
    [155]马廷臣,余蓉蓉,陈荣军,等. PEG-6000模拟干旱对水稻幼苗期根系的影响[J].中国生态农业学报,2010,18(6):1206-1211.
    [156]马晓东,朱成刚,李卫红.多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应[J].植物生态学报2012,36(10):1024–1032.
    [157]马新明,席磊,熊淑萍,等.大田期烟草根系构型参数的动态变化[J].应用生态学报,2006,17(3):373-376.
    [158]马彦军,马瑞,曹致中,等. PEG胁迫对胡枝子幼苗叶片生理特性的影响[J].中国沙漠,2012,32(6):1662–1668
    [159]梅莉.水曲柳落叶松人工林细根周转与碳分配.东北林业大学硕士学位论文.2006,52–75.
    [160]木巴热克·阿尤普,陈亚宁,李卫红,等.极端干旱环境下的胡杨细根分布与土壤特征[J].中国沙漠,2011,31(6):1449-1458
    [161]慕自新,张岁岐,郝文芳,等.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报,2005,25(11):2895-2900.
    [162]齐曼·尤努斯,木合塔尔·扎热,塔衣尔·艾合买提.干旱胁迫下尖果沙枣幼苗的根系活力和光合特性[J].应用生态学报,2011,22(7):1789–1795.
    [163]齐伟,张吉旺,王空军,等.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响[J].应用生态学报,2010,21(1):48-52.
    [164]祈娟,徐柱,王海清,等.旱作条件下披碱草属植物叶的生理生化特征分析[J].草业学报,2009,18(1):39–45.
    [165]曲复宁,王云山,张敏,等.高温胁迫对仙客来根系活力和叶片生化指标的影响[J].华北农学报,2002,17(1):127–131.
    [166]邵世光,阎斌伦,许云华,等. Cd2+对条斑紫菜的胁迫作用[J].河南师范大学学报(自然科学版),2006,34(2):113-116.
    [167]沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):18
    [168]师伟,王政权,刘金梁,等.帽儿山天然次生林20个阔叶树种细根形态[J].植物生态学报,2008,32(6):1217–1226.
    [169]石岩,于振文,位东斌,等.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18(2):196–201.
    [170]史玉炜,李文兵,王燕凌.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5–8.
    [171]斯琴巴特尔,吴红英.不同逆境对玉米幼苗根系活力及硝酸还原酶活性的影响[J].干旱地区农业研究,2001,19(2):67–70.
    [172]斯琴图雅.土壤干旱胁迫对蒙古扁桃种子及根系生理活动的影响[D].包头:内蒙古师范大学,2007.
    [173]宋娟丽,姚军,吴发启.黄土高原21种造林树种的苗木根系活力与土壤含水量关系的研究[J].西北植物学报,2003,23(10):1688–1694.
    [174]孙书存,陈灵芝.辽东栎植冠的构型分析[J].植物生态学报,1999,23(5):433–440.
    [175]孙祥,于卓.白刺根系的研究[J].中国沙漠,1992,12(4):50–54.
    [176]覃鹏,刘叶菊,刘飞虎.干旱处理对烟草叶片SOD和POD活性的影响[J].中国烟草科学,2005(2):28-30.
    [177]汪洪,金继运,山内章.以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系[J].作物学报,2008,34(9):16371643.
    [178]王德权,周宇飞,陆璋镳,等.水分胁迫下持绿型玉米根系形态及根系活力的研究[J].玉米科学,2012,20(5):84–87.
    [179]王海珍,粱宗锁,韩蕊莲,等.土壤干旱对黄土高原乡土树种水分代谢与渗透调节物质的影响[J].西北植物学报,2004,24(10):1822–1827.
    [180]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J].西北植物学报,2002,22(2):285–290.
    [181]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响[J].西北植物学报,2002,22(3):561–565.
    [182]王清泉,陈云,谢虹,等.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响[J].中国农学通报,2004,20(3):210–213.
    [183]王秋菊,李明贤,赵宏亮,等.控水灌溉对水稻根系生长影响的试验研究[J].中国农学通报,2008,24(8):206-208.
    [184]王思思,张吉旺,刘鹏,等.干旱对不同玉米品种苗期根系生理生化特性的影响[J].山东农业科学,2009,6:36–38.
    [185]王文,蒋文兰,谢忠奎,等.黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J].草业学报,2013,22(1):20–28.
    [186]王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报,2005,29(6):871–877.
    [187]王义琴,张慧娟,白克智,等.分形几何在植物根系研究中的应用[J].自然杂志,1999,21(3):143145.
    [188]王政权,郭大力.根系生态学[J].植物生态学报,2008,32(6):12131216.
    [189]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报,2005,29(3):394–402.
    [190]卫星,刘颖,陈海波.黄波罗不同根序的解剖结构及其功能异质性[J].植物生态学报,2008,32(6):1238–1247.
    [191]卫星,王政权,张国珍,等.水曲柳苗木不同根序对干旱胁迫的生理生化反应[J].林业科学,2009,6:16-21
    [192]卫星,张国珍.树木细根主要研究领域及展望[J].中国农学通报,2008,24(5):143–147.
    [193]魏良民.几种旱生植物碳水化合物和蛋白质变化的研究[J].干旱区研究,1991,8(4):38–41.
    [194]吴茜,丁佳,闫慧,等.模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J].植物生态学报,2011,35(3):256–267.
    [195]武宝轩.小麦幼苗中过氧化物岐化酶活性与幼苗脱水忍耐力相关性的研究[J].植物学报,1985,27(2):152–160.
    [196]席本野,王烨,贾黎明,等.宽窄行栽植模式下三倍体毛白杨根系分布特征及其与根系吸水的关系[J].生态学报,2011,31(1):0047-0057.
    [197]邢承华,吴韶辉,梅忠,等.黑豆边缘细胞对干旱胁迫的响应和对根系生理特性的影响[J].植物营养与肥料学报,2012,18(2):332-337.
    [198]熊德成,黄锦学,杨智杰,等.亚热带6种树种细根序级结构和形态特征[J].生态学报,2012,32(6):1888-1897.
    [199]徐炳成,山仑.苜蓿和沙打旺苗期需水及其根冠比[J].草地学报,2003,11(1):78-82.
    [200]徐彩霞,赵忠,陈明涛.水分胁迫对5个树种苗木根系部分生理指标的影响[J].西北农林科技大学学报(自然科学版),2009,37(8):109-114.
    [201]徐贵青,李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报,2009,29(1):130137.
    [202]徐孟亮,姜孝成,周广洽,等.干旱对水稻根系活力与结实性状的影响[J].湖南师范大学自然科学学报,1998,21(3):64-68.
    [203]徐兴友,张风娟,龙茹,等.6种野生耐旱花卉幼苗叶片脱水和根系含水量与根系活力对干旱胁迫的反应[J].水土保持学报,2007,21(1):180-184.
    [204]闫江艳,张永清,冯晓敏,等.干旱胁迫及复水对不同黍稷品种根系生理特性的影响[J].西北植物学报,2012,32(2):348–354.
    [205]严小龙,廖红,戈振扬,等.植物根构型特性与磷吸收效率[J].植物学通报,2000,17,511-519.
    [206]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850–854.
    [207]杨敏生,裴保华,程志鹏.白杨杂种无性系抗寒性生理指标动态分析[J].植物生态学报,1997,21(4):367375
    [208]杨培岭,罗远培.冬小麦根系形态的分形特征[J].科学通报,1994,39(20):19111913.
    [209]杨培岭,任树梅,罗远培.分形曲线度量与根系形态的分形表征[J].中国农业科学,1999,32(1):89-92.
    [210]杨小林,张希明,单立山,等.塔克拉玛干沙漠腹地塔克拉玛干柽柳根系构筑型研究[J].干旱区研究,2008a,25(5):660-667.
    [211]杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J].植物生态学报,2008b,32(6):12681276
    [212]杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地几种植物根系分形特征[J].干旱区地理,2009,32(2):249-254.
    [213]余绍文,孙自永,周爱国,等.用D、18O同位素好确定黑河中游戈壁地区植物水分来源[J].中国沙漠,2012,32(3):717-723.
    [214]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,739-751.
    [215]曾凡江,刘波.骆驼刺根系生态学[M].北京:科学出版社.2012.
    [216]张成军.辽东栎林中4种木本植物幼苗对土壤干旱的生理生态响应[D].哈尔滨:东北林业大学,2003.
    [217]张大勇.理论生态学研究[M].北京:高等教育出版社,2000:52-63.
    [218]张德炎.水分胁迫对辣椒叶片生理活性的影响[J].湖北农业科学,2010,49(4):819–821.
    [219]张明生,谢波,谈锋,等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [220]张岁岐,周小平,慕自新,等.不同灌溉制度对玉米根系生长及水分利用效率的影响[J].农业工程学报,2009,25(10):1-6.
    [221]张小全.环境因子对树木细根生物量、生产与周转的影响[J].林业科学研究,2001,14(5):566–573.
    [222]张晓蕾,曾凡江,刘波,等.塔干沙漠南缘骆驼刺幼苗根系生长和分布对不同灌溉量的响应[J].中国沙漠,2011,31(6):1459-1466.
    [223]张永清,苗果园.不同施肥水平下黍子根系对干旱胁迫的反应[J].作物学报,2006,32(4):601-606.
    [224]赵大宏,沈秀瑛,杨德光,等.水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响[J].沈阳农业大学学报,2002,33(6):408–410.
    [225]赵华,徐芳森,石磊,等.植物根系形态对低磷胁迫应答的研究进展[J].植物学通报,2006,23(4):409-417.
    [226]赵坤,董守坤,刘丽君,等.干旱胁迫对春大豆开花期根系生理特性的影响[J].大豆科学,2010,29(3):437-443.
    [227]赵领军,赵善仓.干旱胁迫下苹果根系内源激素含量的变化[J].山东农业科学2007,2:48–49.
    [228]赵天宏,沈秀瑛,杨德光,等.水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响[J].沈阳农业大学\学报,2002,33(6):408-410
    [229]赵文魁,童建华,谢深喜,等.干旱胁迫对枳橙内源激素含量的影响[J].现代生物医学进展,2008,8(9):1662–1664.
    [230]赵新风,徐海量,刘新华,等.极度干旱区不同灌溉量下沙枣防护林根系分布特征.地理科学进展,2012,31(5):646654.
    [231]种培芳,李毅,苏世平,等.红砂3个地理种群的光合特性及其影响因素[J].生态学报,2010a,30(4):914-922.
    [232]种培芳,李毅,苏世平.荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J].中国沙漠,2010b,3(30):539-544.
    [233]周桂莲,杨惠霞.小麦抗旱鉴定的生理指标及分析评价[J].干旱地区农业研究,1996,14(2):65-71.
    [234]周海燕,谭会娟,张志山,等.红砂和珍珠对极端环境的生理响应与调节机制[J].中国沙漠,2012,32(1):24-32.
    [235]周生荟,刘玉冰,谭会娟,等.荒漠植物红砂在持续干旱胁迫下的光保护机制研究[J].中国沙漠,2010,30(1):69-73.
    [236]周双喜,吴冬秀,张琳,等.降雨格局变化对内蒙古典型草原优势种大针茅幼苗的影响[J].植物生态学报,2010,34(10):11551164.
    [237]周艳松,王立群.星毛委陵菜根系构型对草原退化的生态适应[J].植物生态学报,2011,35(5):490499.
    [238]朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究[J].土壤通报,2003,34(1):25–28.
    [239]朱秀红,郝绍菊,茹广欣,等.干旱梯度下刺槐无性系生理指标的变化与品种抗旱性的关[J].山东农业科学,2006,(2):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700