用户名: 密码: 验证码:
火山碎屑岩储层的岩石学特征与储层评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国内外相继在火山碎屑岩中找到油气资源,火山碎屑岩储层已经成为新的勘探目标之一。由于火山碎屑岩是介于正常火山岩和正常沉积岩之间的过渡类型岩石,其储层有一定的特殊性,即储层物性差、黏土矿物含量高、储层的非均质性强,勘探难度较大。因此,火山碎屑岩储层的岩石学特征研究及火山碎屑岩储层评价对于进一步的油气勘探和开发具有重要意义。
     本文以蒙古国塔木察格盆地塔南凹陷铜钵庙组—南屯组火山碎屑岩储层为研究对象,通过岩心观察、薄片鉴定、扫描电镜观察、X‐衍射分析、压汞资料和储层敏感性实验,研究了火山碎屑岩的岩石类型、特征及分布规律;确定了成岩作用类型、成岩共生序列、成岩相及成岩阶段;总结了储集空间的构成;定量分析了储层的物性及储层的孔隙结构,并用聚类分析法对储层孔隙结构进行了分类;评价了储层的水敏、盐敏、速敏、碱敏及酸敏性;分析了火山碎屑岩储层的储层控制因素;最终,选择了孔隙度、渗透率、粒度、碳酸盐矿物含量、黏土矿物含量、最大孔喉半径、排驱压力和最大进汞饱和度等8个指标,应用多指标加权和法并结合灰色关联度法对火山碎屑岩储层进行了综合评价。本次研究结果可为火山碎屑岩储层的油气勘探工作提供基础地质信息。
Tamtsag basin is located in the eastern Mongolia, which is mesozoic continentalextensional faulted basin. Tamtsag basin of Mongolia and Hailar Basin of Chinabelong to the same basin: Hailar-Tamtsag basin. Tanan Depression is one of the mostimportant second tectonic units with NE orientation. Besides, Tanan Depression is ahalf graben-like depression with steep slope in the east and gentle slope in the west.Pyroclastic rock is found in Tongbomiao Formation and Nantun Formation. In recentyears, oil and gas resources have been found in pyroclastic rock, so pyroclastic rock isconsidered as one of new exploration targets. Pyroclastic rock is a kind of transitionalrock between normal volcanic rock and normal sedimentary rock, with a poorreservoir property, high content of clay minerals,content of the strong reservoirheterogeneity.It is obvious that this type of reservoir is difficult for exploration.Thus,it is necessary to research the reservoir characteristics and its influence factors,evaluate the reservoir quality in order to provide theoretical basis for reservoirexploration and development.
     Taking the pyroclastic rock of Tongbomiao Formation and Nantun Formation fromTanan Depression in Tamtsag Basin for example, the lithology, diagenesis, reservoirspaces, physical properties, pore structure, reservoir sensitivity characteristics,controlling factors and reservoir assessment were researched by observation on rocks,casting thin sections and scanning electron microscope, based on the theory ofsedimentology and reservoir geology. The achievement and main understanding are as follows:
     The pyroclastic rock is mainly composed of welded pyroclastic rocks,ordinarypyroclastic rocks,sed pyroclastic rocks and pyroclastic sedimentary rocks. Thepyroclastic rock types of Tongbomiao Formation mainly includes welded tuff, weldedbreccias,tuff, volcanic breccias,sedimentary tuff and tuffaceous sandstone(conglomerates).Among these, tuffaceous sandstone (conglomerates) is the mostabundant rock, the second most abundant types are tuff and welded tuff. Thepyroclastic rock types Nantun Formation1stsection mainly includes welded tuff, tuff,sedimentary tuff and tuffaceous sandstone (conglomerates), tuffaceous sandstone(conglomerates) is the most abundant rock. The pyroclastic rock types of NantunFormation2ndsection only includes tuff and tuffaceous sandstone (conglomerates),tuffaceous sandstone (conglomerates) has absolute superiority
     Diagenesis includes compaction, cementation, dissolution, dissolution,metasomatism, sinter, devitrification and recrystallization. The diagenetic processesare as follows: Welding and corrosion,clay coating, devitrification andmicrocrystalline quartz, mechanical compaction,smectite,illite and chlorite,dissolution, kaolinite and albite, calcite, ferrocalcite, dawsonite, ankerite. Thediagenetic facies are including: tufaceous cementaion,corrosion,authigenic minealcoating, pore filling, carbonate cementaion. The diagenetic stage is in middlediagenetic A.
     Pyroclastic reservoir spaces can be divided into four types: primary pores, primarycracks, secondary pores, secondary cracks, including10sub types, dominated bysecondary dissolved pore. Meanwhile, the pyroclastic rock belongs to low-extra lowporosity, extra low permeability reservoir. The porosity and permeability have a goodcorrelation.
     From the best to the worst, the order of reservoir physical property of TongbomiaoFormation are as followed: west faulted buried-hill tectonic zone,middle faultedburied-hill tectonic zone and west sub-depression,middle sub-depression,eastfaulted-nose tectonic zone,east sub-depression.That of Nantun Formation1st are asfollowed: east faulted-nose tectonic zone, middle sub-depression, west sub-depression,east sub-depression.Two abnormal high porosity belts are found at thelocations of1900m-2100m and2600m-2900m,one abnormal high permeability isfound at the location of1900m-2100m.
     The pore structure Heterogeneity of Tongbomiao Formation and Nantun Formationis strong.The pore structure can be divided into four class:class Ⅰ, class Ⅱ, class Ⅲ,class Ⅳ.The pore structure of Nantun Formation2nd section is better than that ofTongbomiao Formation and Nantun Formation1st section.
     The water sensitivity differs when rock types changes; salinity sensitivity ismoderate–strong, critical salinity is5126mg/L;velocity sensitivity is moderate-weakto weak; alkaline sensitivity is moderate-weak to moderate-strong, critical alkalinity is7.43;acid sensitivity changes widely.
     Reservoir qualities are affected by lithology and lithofacies, tectonic movement,diagenesis, etc. And the dissolution contributes a lot to the qualities of reservoir.Porosity,permeability,granular,carbonate content,clay minerals comtent, radius ofpore throat, expulsion pressure and SHgmax are chosen;and Grey CorrelationAnalysis Method is used to evaluate the reservoir,the results of evaluation are dividedinto four levels:Ⅰ,Ⅱ, Ⅲ,Ⅳ;with a content of34.27%25.87%,25.87,13.99%respectively.The north part of reservoir quality in middle sub-depression and middlefaulted buried-hill tectonic zone is better than that of south part;on the contrary, westfaulted buried-hill tectonic zone and east sub-depression are opposite.The bestreservoir quality locates in the south part of west faulted buried-hill tectonic zone.
引文
[1] Aagaard P, Egeberg P K, Saigal G C, et al. Diagenetic albitization of detrital K-feldspars inJurassic,Lower Cretaceous and Tertiary clastic reservoir rocks fromoffshore Norway; II,Formation water chemistry and kinetic considerations [J]. Journal of Sedimentary Research,1990,60(4):575-581.
    [2] Altaner, S P and Ylagan R F. Comparison of structural models of mixed-layer illite/smectiteand reaction mechanisms of smectite illitization[J].Clays and Clay Minerals,1997,45,517-533.
    [3] Bertog J, Huff W, Martin J E. Geochemical and mineralogical recognition of the bentonites inthe lower Pierre Shale Group and their use in regional stratigraphic correlation[J]. GeologicalSociety of America Special Paper,2007,427:23-50.
    [4] Benthke C M, Harrison W J, Upson C, et al. Supercomputer analysis of sedimentarybasin[J].Science,1988,239:261~267.
    [5] Bjorlykke K, Mo A,Palm E. Modelling of thermal convection in sedimentary basins and itsrelevance to diagenetic reactions [J]. Marine and Petroleum Geology,1988,5:338-351.
    [6] Bjorlykke K.Fluid-flow processes and diagenesis in sedimentary basin[C]//ParnellJ,ed.Origin,migration and evolution of fluids in sedimentary basins.Spec Publ GeolSoc,1994,78:127-140.
    [7] Blatt H, Middleton G, Murray R. The Origin of Sedimentary Rocks [M]. Second edition.Englewood Cliffs, New Jersey: Prentice&Hall, Inc.1980:332-362.
    [8] Bloch S, Lander R H, etc.Anomalously high porosity and permeability in deeply buriedsandstones reservoirs: origin and predictability[J].American Association of PetroleumGeologistBulletin,2002,86:301~328.
    [9] Boyce J A and Gertisser R.Variations in welding characteristics within the Plinian air-falldeposit of the Middle Pumice eruption, Santorini, Greece[J]. Journal of VocanologyGeothermal research,2012,221-222:71-82.
    [10]Carey R J,Houghton B F and Thordarson T.Contrasting styles of welding observed in theproximal Askja1875eruption deposits Ⅰ:Regional welding[J].Journal of VolcanologyGeothermal Research,2008,171:1-19.
    [11]Carlos R, Rafaela M, Karl R,et al.Facies-related diagenesis and multiphase sideritecementation and dissolution in the reservoir sandstones of the Khatatba Formation,Egyptwestern desert[J].Journal of Sedimentary Research,2001,71(3):459-472.
    [12]Christidis G E and Huff W D. Geological aspects and genesis of bentonites [J]. Elements,2009,5:93-98.
    [13]Cole J W,Brown S J A,Burt R M,et al.Lithic types in ignimbrites as a guide to the evolutionof a caldera complex,Taupo volcanic center,New Zealand[J].Journal of Volcanology andGeothermal research,1998,(80):217-237.
    [14]Ddani M, Meunier A, Zahraoui M, et al. Clay mineralogy and chemical composition ofbentonites from the Gourougou volcanic massif (northeast Morocco)[J]. Clays and ClayMinerals,2005,53:250-267.
    [15]Deming D, Sass J L, Lachhenbruch A H, et al. Heat flow and subsurface temperature asevidence for basin——scale ground water flow[J].Bull Geol Am,1992,104:528~542.
    [16]Dixon S A,Summers D M,Surdam R C.Diagenesis and preservation of porosity in NorhletFormation(Upper Jurassic),southern Alabama[J]. AAPG Bulletin,1989,73(6):707-728.
    [17]Dutton S P. Diagenesis and porosity distribution in deltaic sandstone, Strawnseries(Pennsylvanian), north-central Texas: GulfCoast [J].Association of Geological SocietiesTransactions,1977,27:272-277.
    [18]Fairbrige R W. Syndiagenesis-Anadiagenesis-Epidiagenesis in Lithogenesis[C]//Larsen Gand Chikingar G V, eds.Diagenesis in sediments and sedimentary rocks,1983,2:17~114.
    [19]Fawad A, etc. Porosity loss in sand by grain crushing-experimental evidence and relevance toreservoir quality [J].Marine and Petroleum Geology,2002,19:39~53.
    [20]Fisher R V. Rocks composed of volcanic fragments and their classification [J].Earth-ScienceReviews,1996,1(4):287-289.
    [21]Fisher R V. Proposed classification of volcaniclastic sediments and rocks [J].GeologicalSociety of America Bulletin,1961,72(9):1409-1414.
    [22]Freundt A.Formation of high-grade ignimbrites.Part Ⅱ.A pyroclastic suspension currentmodel with implications also for lowgrade ignimbrites[J].Bulletin of Volcanology1999,60(7):545-567.
    [23]Garcia-Romero E,Vegas J,Baldonedo J L,et al.Clay minerals as alteration products in basalticvolcanicalstic deposits of La Palma (Canary Islands,Spain)[J].SedimentaryGeology,174:27-253.
    [24]Hanocock N J. Possible cause of Rotliegend sandstone diagenesis in northern West Germany[J]. Geological Society, London,1978,135:35-40.
    [25]Hassan B, Reza R M, Nazhat D,et al., Evaluation of Damage Mechanisms and Skin Factorin Tight Gas Reservoirs[C].SPE European Formation Damage Congerence, Noordwijk,TheNetherlands,2011,1-13.
    [26]Hay R L. Zeolite weathering in Olduvai gorge, Tanganyik [J]. Bulletin of Geological Societyof America,1963,74:1281~1286.
    [27]Heald M T, Larese R E. Influence of coatings on quartz cementation [J]. Journal ofSedimentary Petrology,1974,44:1269-1274.
    [28]Heald MT, Anderegg RC. Differential cementation in the Tuscarora sandstone [J]. Journal ofSedimentary Petrology,1960,30:568-577.
    [29]Hower J, Eslinger E, Hower M,et al.The mechanism of burial digenetic reaction inargillaceous sediments,mineralogical and chemical evidence [J].Geol. Soc. Amer. Bull,1976(87):725-737.
    [30]Huff W D, Müftüoglu E, Kolata D R, et al. K-bentonite bed preservation and itsevent-stratigraphic significance[J]. Acta Universitatis Carolinae-Geologica,1999,43:491-493.
    [31]Hunt J M. Generation and migration of petroleum from abnormally pressured fluidcompartments [J].AAPG Bulletin,1990,74(1):1~12.
    [32]Inoue A, Meunier A, Beaufort D. Illite-smectite mixed-layer minerals in felsic volcaniclasticrocks from drill cores,Kakkonda,Japan[J].Clays and Clay Minerals,2004,53(1):66-84.
    [33]Kaise W R.Predicting Reservoir Quality and Diagenetic History in the FrloFormation(Oligocene of Texas)[J].Clastic Diagenesis,AAPG Memoir,1984,37:207-212.
    [34]Kaszuba J P, Janecky D R, Snow M G. Carbon dioxide reaction processes in a model brineaquifer at200℃and200bars: implications for geologic sequestration of carbon[J].AppliedGeochemistry,2003,18:1065-1080.
    [35]Knauss K G, Wolery T J. The dissolution kinetics of quartz as afunction of pH and time at70℃[J]. Geochim. Cosmochim. Acta,1988,52:43-53.
    [36]Kyser K, Hiatt E E. Fluids in sedimentary basins: an introduction [J]. Journal of GeochemicalExploration,2003,80:139~149.
    [37]Lander R H, Bonnell L M.A model for fibrous illite nucleation and growth in sandstone s[J].AAPG Bulletin,2010,94(8):1161-1187.
    [38]Liu L H, Suto Y, Bignall G, et al. CO2injection togranite and sandstone in experimental rock/hot water systems[J].Energy Conversion and Management,2003,44:1399-1410.
    [39]Lundegard P D, Land L S, Galloway W E. Problem of secondary porosity: Frio Formation(Oligocene), Texas Gulf Coast [J]. Geology,1984,12(7):399-402.
    [40]Lutton R J.Rock slope chart from empirical slope date.Transactions of the society of miningengineers of American institute of mining [J].Metallurgical and Petroleum Engineers,1972,247(2):160-162.
    [41]Macdonald G. Volcanoes [M].Prentice-Hall, Englewood Cliffs,NJ.1972.
    [42]Magara K.Fluid flow to sediment—an application to Arabian gulf region[C]//Goff JC,Williams B P J,eds.Fluid flow in sedimentary basins and aquifers.Geological SocietySpecial Publication,1987,34:19~30.
    [43]Maria Grazia Di Figlia, Adriana Bellanca, Rodolfo Neri, et al. Chemical weathering ofvolcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solutioninvestigations [J]. Chemical Geology,2007,246:1~18.
    [44]Morad S. Carbonate Cementation in Sandstones: Distribution Patterns and GeochemicalEvolution[C]//Morad S. Carbonate Cementation in Sandstones. Boston: Wiley-Blackwell,1998:1-26.
    [45]Mundula F, Cioni R and Rizzo R.A simplified scheme for the description of textural featuresin welded Ignimbrites:The example of San Pietro Island(Sardinia,Italy)[J]. Italian Journal ofGeosciences,2009,128(3):615-627.
    [46]Neuzil C E, Pollock D W. Erosional unloading and fluid pressures in hydraulically "tight"rocks [J].Journal of Geology,1983,91(2):179-193.
    [47]Odom I E. Smectite clay minerals: properties and uses[J]. Philosophic Transactions of theRoyal Society of London,1984,A311:391-409.
    [48]Parks K P, Toth I. Field evidence of erosion induced underpressing in upper Cretaceous andTertiary strata, west central Alberta,Canada [J].Bullentin of Canadian Petroleum Geology,1995,43(3):281-292.
    [49]Pittman E D, Lumsden D N. Relationship between chlorite coatings on quartz grains andporosity, SpiroSand, Oklahoma [J]. Journal of Sedimentary Petrology,1968,38:668-670.
    [50]Powley D E.Pressures and hydrogeology in petroleum basins [J].Earth-Science Reviews,1990,29:215-226.
    [51]Rodrigo D L, Luiz Fernando De Ros.The role of depositional setting and diagenesis on thereservoir quality of Devonian sandstones from the Solimoes Basin.Brazilian Amazonia[J].Marine and Petroleum Geology.2002,19:1047-1071.
    [52]Roger J B,Oetting G C,Gao Guoqiu. Strontium isotopic signatures of oil-field waters:Applications for reservoir characterization[J].AAPG Bulletin,2004,88(12):1677-1704.[]Ozkan Aysen,Cumella S P,Milliken K L,et al.Prediction of lithofacies and reservoir qualityusing well logs,late cretaceous williams fork formation,Mamm Creek field,PiceanceBasin,Colorado[J].AAPG Bulletin,2011,95(10):1699-1723.
    [53]Roland F K.An overview of formation damage and well productivity in oilfield operations [J].JPT,1986,6(2):131-152.
    [54]Saigal G C, Morad S,Bjlrlykke K,et al.Diagenetic albitization of detrital K-feldapars inurassic,Lower Cretaceous,and T ertiary clastic reservoirs from offshore Norway. I.Texture andorigin[J].Sed. Petrology,1988,58:1003-1013.
    [55]Schmida S,Wordena R H, Fisherb Q J. Diagenesis and reservoir quality of the SherwoodSandstone (Triassic),Corrib Field, Slyne Basin, west of Ireland[J].Marineand PetroleumGeology,2004,21:299~315.
    [56]Shiraki R, Dunn T L. Experimental study on water-rock interactions during CO2flooding inthe Tensleep Formation,Wyoming, USA[J]. Applied Geochemistry,2000,15:265-279.
    [57]Smith R L.Zones and zonal variations in welded ash flows [J]. USGS Professinal Paper,1960,345F:149-159.
    [58]Sparks R S and Wright J V.Welded air-fall tuffs[J].Geological Society of America SpecialPaper,1979,180:150-166.
    [59]Storvoll V, Bj rlykkea K, Karlsen D,et al.Porosity preservation in reservoir sandstones due tograin-coating illite:A study of the Jurassic Garn Formation from the Kristin and Lavransfields,offshore Mid-Norway[J]. Marine and Petroleum Geology,2002,19(6):767-781.
    [60]Streck M J and Grunder A L. Crystallization and welding variations in a widespreadignimbrite sheet: The Rattlesnake Tuff, eastern Oregon, USA [J]. Bulletin of Volcanology,1995,57(3):151-169.
    [61]Talor,T R. The influence of calcite dissolution on reservoir Porosity in Miocene sandstones,picaroon field, offshore Texas Gulf coast [J]Journal of Sedimentary Petrology,1990,60(3):322-334.
    [62]Tester J W, Worley W G,et al. Correlating quartz dissolution kinetics in pure water from25to625℃[J]. Geochim. Cosmochim. Acta,1994,58(11):2407-2420.
    [63]Walderhang O. A fluid inclusion study of quartz cemented sandstones from offshoreMid-Norway possible evidence for continued quartz cementation during oil emplacement[J]. Journal of Sedimentary Petrology,1990,60:203-210.
    [64]Wood D C, Hewett T A.Forced fluid and diagenesis in porous reservoirs controls on spatialdistribution[C]//Gautier D L, ed. Roles of organic matter in sediment diagenesis. SEPMSpecial Publicaion,1986,38:75-82.
    [65]Worden R H, Smalley P C, etc.Can oil emplacement stop quart cementation in sandstones[J].Petroleum Geoscience,1998,4:129~138.
    [66]Worley W G,Tester J W,Grigsby C O. Quartz dissolution kinetics from100-200℃as afunction of pH and ionic strength[J]. AICHE J,1996,42(12):3442-3457.
    [67]Wilson C J and Hildreth W.Assembling an ignimbrite:mechanical and thermal buildingblocks in the Bishop Tuff, California[J]. The Journal of Geology,2003,111:653-670.
    [68]蔡春芳,顾家裕,蔡红美.塔中地区志留系烃类侵位对成岩作用的影响[J].沉积学报,2001,19(1):60-65.
    [69]蔡春芳,梅博文,马亭.塔里木盆地流体-岩石相互作用研究[M].北京:地质出版社,1997:66.
    [70]操应长,姜在兴,邱隆伟.山东惠民凹陷商741块火山岩油藏储集空间类型及形成机理探讨[J].岩石学报,1999,15(1):129-136.
    [71]操应长,姜在兴.渤海湾盆地埕岛东斜坡地区东三段油气成岩成藏模式[J].矿物岩石,2002,22(2):64~68.
    [72]曹瑞成,曲希玉,文全,等.海拉尔盆地贝尔凹陷储层物性特征及控制因素[J].吉林大学学报:地球科学版,2009,39(1):23-30.
    [73]陈桂菊,姜在兴,田继军,等.成岩相对磨溪气田上三叠统致密储层的控制作用[J].大庆石油地质与开发,2007,26(2):14-18.
    [74]崔海娜.海拉尔盆地乌尔逊—贝尔凹陷成岩作用及其对孔隙特征的影响[D].长春:吉林大学,2007.
    [75]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986:194-199.
    [76]陈伟.蒙古塔南凹陷下白垩统铜钵庙组—南屯组沉积相研究与储层地质建模[D]北京:中国地质大学(北京),2012.
    [77]陈彦华,刘莺.成岩相—储集体预测的新途径[J].石油实验地质,1994,16(3):274-280.
    [78]陈忠,罗蛰潭,沈明道,等.由储层矿物在碱性驱替剂中的化学行为到砂岩储层次生孔隙的形成[J].西南石油学院学报,1996,18(2):15-19.
    [79]陈忠,罗蛰潭.高岭石与碱剂作用后反应液中硅铝元素变化规律研究[J].矿物岩石,1997,17(3):53-58.
    [80]程启贵,郭少斌,王海红,等.鄂尔多斯盆地中西部长6油层组储层综合评价[J].石油实验地质,2010,32(5):415-419.
    [81]程日辉,沈艳杰,颜景波,等.海拉尔盆地火山碎屑岩的成岩作用[J].岩石学报,2010,26(1):47-54.
    [82]单华生,周锋德.伊通盆地鹿乡断陷低渗储层敏感性机理分析及分布预测[J].地球科学—中国地质大学学报,2012,37(4):719-727.
    [83]董林森,刘立,张革,等.火山碎屑岩对CO2的矿物捕获能力[J].沉积学报,2010,28(3):572-578.
    [84]董林森,刘立,蒙启安,等.蒙古国塔木察格盆地塔南凹陷铜钵庙组火山碎屑岩中片钠铝石胶结物的成因[J].吉林大学学报(地球科学版),2011a,41(2):421-431.
    [85]董林森,刘立,朱德丰,等.海拉尔盆地贝尔凹陷火山碎屑岩自生碳酸盐矿物分布及对储层物性的影响[J].地球科学与环境学报,2011b,33(3):253-256.
    [86]董林森.CO2—火山碎屑岩相互作用的特征与机理—以蒙古国塔木察格盆地塔南凹陷为例[D]长春:吉林大学,2011c.
    [87]杜红权,朱如凯,何幼斌,等.合川地区须二段砂岩储层成岩作用及其对储层的影响[J].岩石矿物学杂志,2012,31(3):403-411.
    [88]杜业波,季汉成,吴因业,等.前陆层序致密储层的单因素成岩相分析[J].石油学报,2006,27(2):48-52.
    [89]杜叶波,季汉成,朱筱敏.川西前陆盆地上三叠统须家河组成岩相研究[J].吉林大学学报:地球科学版,2006,36(3):358-363.
    [90]冯一波.麻黄山西区块北部延安组沉积微相及储层评价研究[D].成都:成都理工大学,2010.
    [91]高建军,孟元林,张靖,等.鸳鸯沟地区沙河街组三段沉积微相对成岩作用的影响[J].地学前缘,2005,12(2):60.
    [92]高玉巧,刘立,曲希玉. CO2与砂岩相互作用机理与形成的自生矿物组合[J].新疆石油地质,2007,28(5):579-584.
    [93]关平,张文涛,吴雪松,等.江汉盆地白垩系渔阳组砂岩的成岩作用及其热力学分析[J].岩石学报,2006,22(8):2144-2150.
    [94]郭欣欣,刘立,曲希玉,等.CO2流体对火山碎屑岩改造作用的实验研究[J].岩石矿物学杂志,2013a,32(2):189-196.
    [95]郭欣欣,刘立,曲希玉,等.碱性地层水对火山碎屑岩改造作用的实验研究[J].石油实验地质,2013b,35(3):314-319.
    [96]郭欣欣,刘立,蒙启安,等.火山碎屑岩储层特征及控制因素—以塔木察格盆地塔南凹陷铜钵庙组-南屯组为例[J].世界地质,2013c,32(2):290-299.
    [97]郭少斌,杜佳,林小云.鄂尔多斯盆地三叠系延长组长2油层组次生孔隙控制因素及有利区预测[J].石油天然气学报(江汉石油学院学报),2006,28(4):236-238.
    [98]国家经济贸易委员会.SY/T5358—2002储层敏感性流动实验评价方法[S].北京:石油工业出版社,2002.
    [99]胡菲.塔南凹陷下白垩统南屯组沉积相类型及特征[D]长春:吉林大学,2009.
    [100]黄思静,谢连文,张萌,等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281.
    [101]黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):7-13.
    [102]黄思静,孙伟,黄培培,等.鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响[J].矿物岩石,2009,29(4):25-32.
    [103]黄玉龙,王璞珺,邵锐.火山碎屑岩的储层物性——以松辽盆地营城组为例[J].吉林大学学报:地球科学版,2010,40(2):227-236.
    [104]纪友亮,曹瑞成,蒙启安,等.塔木察格盆地塔南凹陷下白垩统层序结构特征及控制因素分析[J].地质学报,2009,83(6):827-835.
    [105]姜振学,庞雄奇,金之钧,等.地层抬升过程中的砂体回弹作用及其油气成藏效应[J].地球科学-中国地质大学学报,2004,29(4):420-426.
    [106]康毅力,罗平亚.黏土矿物对砂岩储层损害的影响——回顾与展望[J].钻井液与完井液,2000,17(5):36-40.
    [107]赖锦,王贵文,王书南,等.碎屑岩储层成岩相研究现状及进展[J].地球科学进展,2013,28(1):39-50.
    [108]李飞,程日辉,王璞珺,等.松辽盆地东缘下白垩统营城组二段火山碎屑岩的发育特征[J].吉林大学学报:地球科学版,2009,39(5):803-810.
    [109]李海燕,彭仕宓.低渗透储层成岩储集相及储集空间演化模式[J].中国石油大学学报:自然科学版,2007,31(5):1-5.
    [110]李军,王德发,范红军.甘肃酒泉盆地青西油田裂缝特征及成因分析[J].现代地质,2007,21(4):691-696.
    [111]李玲玲.蒙古国东部塔木察格盆地下白垩统储层成岩作用及其对孔隙的影响[D].长春:吉林大学,2009.
    [112]李帅.沉积相划分与分布特征研究[D].大庆:东北石油大学,2012.
    [113]李义军.浅述次生孔隙的成因[J].西北地质,2002,35(1):65-69.
    [114]李忠,陈景山,关平.含油气盆地成岩作用的科学问题及研究前沿[J]岩石学报,2006,22(8):2113-2122.
    [115]连承波.龙西地区泉四段低渗透储层特征及油气富集规律[D].北京:中国石油大学,2009.
    [116]梁官忠.二连盆地哈南凝灰岩油藏裂缝发育特征[J].石油实验地质,2001,23(4):412-417.
    [117]刘春燕,郑和荣,胡宗全,等.碎屑岩中的碳酸盐胶结特征——以鄂尔多斯盆地南部富县地区延长组长6砂体为例[J].中国科学:地球科学,2012,42(11):1681~1689.
    [118]刘昊年,黄思静,邓丽丽,等.碎屑岩自生黏土矿物的沉淀作用及其对储层的影响——以川西坳陷上三叠统须家河组砂岩为例[J].华南地质与矿产,2008(4):1-7.
    [119]刘建明,刘家军,顾雪祥.沉积盆地中的流体活动及其成矿作用[J].岩石矿物学杂志,1997,16(4):341~352.
    [120]刘立,杨庆杰,于均民.大气水—砂岩的相互作用[J].世界地质,1999,18(2):47-52.
    [121]刘万洙,庞彦明,吴河勇,等.松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J].吉林大学学报:地球科学版,2007,37(4):698-702.
    [122]刘伟,窦齐丰,黄述旺,等.成岩作用的定量表征与成岩储集相研究——以科尔沁油田交2断块区九佛堂组(J3jf)下段为例[J].中国矿业大学学报,2002,31(5):399-403.
    [123]刘阳.松辽盆地北部徐家围子断陷营城组一段火山岩储层评价[D].大庆:大庆石油学院,2009.
    [124]刘义坤,魏丽影,隋新光.大庆油田萨中地区过渡带储层的敏感性[J].大庆石油学院学报,2004,28(1):106-108.
    [125]吕成福,李小燕,陈国俊,等.酒东坳陷下白垩统砂岩中碳酸盐胶结物特征与储层物性[J].沉积学报,2011,29(6):1138-1141.
    [126]马立民,林承焰,文钢锋,等.塔南凹陷铜钵庙组火山碎屑岩成岩作用[J].新疆石油地质,2013,34(2):165-168.
    [127]孟万斌,吕正祥,冯明石,等.致密砂岩自生伊利石的成因及其对相对优质储层发育的影响——以川西地区须四段储层为例[J].石油学报,2011,32(5):783-790.
    [128]孟元林,高建军,刘德来,等.渤海湾盆地西部凹陷南段成岩相分析与优质储层预测[J].沉积学报,2006,24(2):185-189.
    [129]苗长盛,刘招君,方石,等.塔南凹陷南屯组近岸水下扇沉积特征及有利含油相带分析[J].中国石油大学学报:自然科学版,2011,35(1):34-39.
    [130]木士春.凝灰岩的物理化学性质及其开发利用[J].中国矿业,2000,9(3):17~20.
    [131]裴蒂庄.沉积岩(中译本)[M].北京:石油工业出版社,1981.
    [132]彭仕宓,熊琦华,王才经,等.储层综合评价的主成分分析方法[J].石油学报(增刊),1994,15:187-192.
    [133]彭仕宓,尹旭,张继春,等.注水开发中黏土矿物及其岩石敏感性的演化模式[J].石油学报,2006,27(4):71-75.
    [134]彭晓蕾,曾祥鹏,洪雪.拉布达林盆地上库力组火山碎屑岩成岩作用特征[J].吉林大学学报(地球科学版),2010,40(4):961-970.刘斌,黄邓,龙国清,等.低渗透储层成岩作用及其对物性的影响[J].特种油气藏,2005,12(3):18-22.
    [135]谯汉生,方朝亮,牛嘉玉,等.中国东部深层石油地质[M].北京:石油工业出版社,2002.
    [136]邱家骧,陶奎元,赵俊磊.火山岩[M].北京:地质出版社,1996.
    [137]邱隆伟,姜在兴,操应长.泌阳凹陷碱性成岩作用及其对储层的影响[J].中国科学(D辑),2001,31(9):753-760.
    [138]邱隆伟,姜在兴,陈文学,等.一种新的储层孔隙成因类型——石英溶解型次生孔隙[J].沉积学报,2002,20(4):621-627.
    [139]裘亦楠,薛叔浩,应凤祥.中国陆相油气储集层[M].北京:石油工业出版社,1997.
    [140]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,2001:9~18.
    [141]曲希玉,刘立,胡大千,等. CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报(地球科学版),2007,37(4):690~696.
    [142]曲希玉,刘立,蒙启安,等.大气水对火山碎屑岩改造作用的研究——以塔木查格盆地为例[J].石油实验地质,2012,34(3):285~290.
    [143]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3):68-75.
    [144]史艳丽,侯贵廷.辽河油田黄于热地区火山岩储层物性评价[J].北京大学学报(自然科学版),2005,41(4):577-585.
    [145]宋子齐,谭成仟.灰色理论油气储层评价[M].北京:石油工业出版社,1995.
    [146]沈艳杰.松辽盆地营城组火山碎屑岩:相·结构·应用[D].长春:吉林大学,2012.
    [147]孙彦达,张民志.海拉尔盆地碳钠铝石特征及其地质意义[J].石油实验地质,2006,28(5):504~506.
    [148]孙善平,李家振,朱勤文,等.国内外火山碎屑岩的分类命名历史及现状[J].地球科学,1987,(06):571-577.
    [149]孙善平,刘永顺,钟蓉,等.火山碎屑岩分类评述及火山沉积学研究展望[J].岩石矿物学杂志,2001,(03):313-317+328.
    [150]覃建雄,田景春,杨作升.陕甘宁盆地中部马五41气层成岩相与有利储集区预测[J].中国海上油气地质,2000,14(1):38-41.
    [151]谭先锋,田景春,李祖兵,等.碱性沉积环境下碎屑岩的成岩演化—以山东东营凹陷陡坡带沙河街组四段为例[J].地质通报,2010,29(4):535-543.
    [152]田丰华,姜振学.地层抬升剥蚀对油气成藏的促进作用[J].西南石油大学学报(自然科学版),2008,30(5):37-40.
    [153]田建锋,陈振林,杨友运.自生绿泥石对砂岩储层孔隙的保护机理[J].地质科技情报,2008,27(4);49-54.
    [154]田克勤,于志海,冯明,等.渤海湾盆地下第三系深层油气地质与勘探[M].北京:石油工业出版社,2000.
    [155]万大学.贵州盘县羊槛地区安尼锡克中期凝灰岩的发现及其意义[J].贵州地质,2002,19(2):77~81.
    [156]汪成辞.塔木察格盆地塔南凹陷火山碎屑岩成岩作用及CO2注入对储层的影响[D]长春:吉林大学,2008.
    [157]王果寿,陈振林,吴金才.松辽盆地南部下白垩统地震相及沉积体系[J].江汉石油学院学报,1995,17(4):12-18.
    [158]王海燕,刘立,高玉巧,等.海拉尔盆地贝尔凹陷南屯组火山碎屑岩成岩作用的讨论[J].世界地质,2005,24(3):219~224.
    [159]王宏语,樊太亮,肖莹莹,等.2010,凝灰质成分对砂岩储集性能的影响[J].石油学报,31(3):432-439.郭欣欣岩石矿物学杂志
    [160]王健,操应长,高永进,等.东营凹陷古近系红层储层成岩作用特征及形成机制[J].石油学报,2013,34(2):283-291.
    [161]王建伟,鲍志东,陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间的影响——以鄂尔多斯盆地西北部二叠系为例[J].地质科学,2005,40(3):429-438.
    [162]王金友,张世奇,赵俊青,等.渤海湾盆地惠民凹陷临商地区火山岩储层特征[J].石油实验地质,2003,25(3):264-268.
    [163]王京,赵彦超,刘琨,等.鄂尔多斯盆地塔巴庙地区上古生界砂岩储层“酸性+碱性”叠加溶蚀作用与储层质量主控因素[J].地球科学—中国地质大学学报,2006,31(2):221-228.
    [164]王年梅.塔木察格盆地塔南凹陷查干组沉积特性研究[D].大庆:大庆石油学院,2007.
    [165]王琪,史基安,薛莲花,陈国俊.碎屑储集岩成岩演化过程中流体-岩石相互作用特征—以塔里木盆地西南坳陷地区为例[J].沉积学报,1999,17(4):584-590.
    [166]王琪,禚喜准,陈国俊,等.鄂尔多斯西部长6砂岩成岩演化与优质储层[J].石油学报,2005,26(5):17-25.
    [167]王卓卓,梁江平,李国会,等.成岩作用对储层物性的影响及与沉积环境的关系—以鄂尔多斯盆地崂山地区为例[J].天然气地球科学,2008,19(2):171-177.
    [168]吴运强,常秋生,蒋宜勤,等.气孔状火山碎屑岩储集层成因特征及油气勘探意义[J].新疆石油地质,2006,27(4):166-168.
    [169]谢继容.砂岩次生孔隙的形成机制[J].天然气勘探与开发,2000,1(3):52-56.
    [170]徐同台,王行信,张有瑜,等.中国含油气盆地黏土矿物[M].北京:石油工业出版社,2003.
    [171]许静华,郝石生.储层自生矿物在油气运移研究中的应用[J].石油大学学报,1997,21(5):5-8.
    [172]许岩.海拉尔盆地火山碎屑岩、含片钠铝石砂岩与普通砂岩的成岩作用及其比较研究[D]长春:吉林大学,2005.
    [173]薛莲花,史基安,晋慧娟.辽河盆地沙河街组砂岩中碳酸盐胶结作用对孔隙演化控制机理研究[J].沉积学报,1996,22(4):82-86.
    [174]杨华,钟大康,姚泾利,等.鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J].地学前缘,2013,20(2):69-76.
    [175]杨晓宁,陈洪德,寿建峰,等.碎屑岩次生孔隙形成机制[J].大庆石油学院院报,2004,28(1):4-7.
    [176]杨晓萍,赵文智,邹才能.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28:57–61
    [177]叶瑛,沈忠悦,郑丽波,等.塔里木盆地中新生界储层砂岩自生矿物组合与两种成岩环境[J].浙江大学学报,2000,27(3):307-314.
    [178]叶瑛,沈忠悦,郑丽波,王怀照,方大钧.塔里木库车坳陷中新生界储层砂岩成岩期钠长石化[J].高校地质学报,1999,5(3):251-258.
    [179]应凤祥,罗平,何东博.中国含油气盆地碎屑岩储层成岩作用与成岩数值模拟[M].北京:石油工业出版社,2003.
    [180]应凤祥,何东博,龙玉梅,等.SY/T5477-2003中华人民共和国石油天然气行业标准——碎屑岩成岩阶段划分[S].北京:石油工业出版社,2003.
    [181]于炳松,赖兴运.克拉2气田储集岩中方解石胶结物的溶解及其对次生孔隙的贡献[J].矿物岩石,2006,26(2):76-79.
    [182]于明德,王璞珺,施昌瑞,等.焉耆盆地包裹体特征和伊利石测年对油气成藏期次的指示[J].吉林大学学报:地球科学版,2009,39(1):45-52.
    [183]于振锋.海—塔盆地火山碎屑岩复杂岩性的岩石学机理及其测井响应[D].长春:吉林大学,2013.
    [184]郁东良.青海省满丈岗地区金地球化学特征及找矿方向探索[J].黄金科学技术,2008,16(1):52~55.
    [185]袁珍,李文厚,郭艳琴.鄂尔多斯盆地东南缘延长组石油充注对砂岩储层成岩演化的影响[J].高校地质学报,2011,17(4):594-604.
    [186]赵杏媛,王行信,张有瑜,等.中国含油气盆地粘土矿物[M].武汉:中国地质大学出版社,1995.
    [187]张凡芹,王伟锋,王建伟等.2006,苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J].吉林大学学报(地球科学版),36(3):365~369.
    [188]张关龙,陈世悦,鄢继华.郑家-王庄地区沙一段黏土矿物特征及对储层敏感性影响[J].矿物学报,2006,26(1):99-106.
    [189]张金亮,司学强,梁杰,等.陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响[J].沉积学报,2004,22(2):225~233.
    [190]张立强,纪友亮,尚刚,等.吐哈盆地中三叠统辫状河三角洲砂体储集性及控制因素[J].石油大学学报(自然科学版),2001,25(4):5~9.
    [191]张琴,朱筱敏,陈祥,等.南华北盆地谭庄凹陷下白垩统成岩相分布及优质储层预测[J].石油与天然气地质,2010,31(4):472-481.
    [192]张琴,朱筱敏.山东省东营凹陷古近系沙河街组碎屑岩储层定量评价及油气意义[J].古地理学报,2008,10(5):465-472.
    [193]张善文,袁静,隋凤贵,等.东营凹陷北部沙河街组四段深部储层多重成岩环境及演化模式[J].地质科学,2008,43(3):576-587.
    [194]张玉玺.鄂尔多斯盆地西缘奥陶系碳酸盐岩储层研究[D].荆州:长江大学,2012.
    [195]赵国祥.塔南凹陷储层成岩作用特征及“灰色理论”在储层评价中应用[D]长春:吉林大学,2010.
    [196]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989:3~11.
    [197]郑荣才,耿威,周刚,等.鄂尔多斯盆地白豹地区长6砂岩成岩作用与成岩相研究[J].岩性油气藏,2007,19(2):1-9.
    [198]钟大康,朱筱敏,李树静,等.早期碳酸盐胶结作用对砂岩孔隙演化的影响—以塔里木盆地满加尔凹陷志留系砂岩为例[J].沉积学报,2007,25(6):885-890.
    [199]钟广法,邬宁芬.成岩岩相分析:一种全新的成岩非均质性研究方法[J].石油勘探与开发,1997,24(5):62-66.
    [200]周恒涛,彭仕宓,李海燕.砂西油田低渗透储层成岩储集相及储集空间演化模式[J].煤田地质与勘探,2006,34(6):22-25.
    [201]周勇,纪友亮,张善文,等.胶莱盆地莱阳凹陷莱阳组低渗透砂岩储层特征及物性控制因素[J].石油学报,2011,32(4):611-619.
    [202]朱焕来,曲希玉,刘立,等. CO2流体-长石相互作用实验研究[J].2011,41(3):697-706.
    [203]朱如凯,郭宏莉,高志勇,等.塔里木盆地北部地球古近系—白垩系储层质量影响因素探讨[J].西北大学学报:自然科学版,2003,33(6):723-728.
    [204]朱占平.火山碎屑岩中粘土矿物的成岩作用特征—以海拉尔盆地贝尔凹陷为例[D].长春:吉林大学,2005.
    [205]邹才能,侯连华,匡立春,等.准噶尔盆地西缘二叠—三叠系扇控成岩储集相成因机理[J].地质科学,2007,42(3):587-601.
    [206]邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J]石油勘探与开发,2008,35(5):526-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700