用户名: 密码: 验证码:
川东南地区重晶石—萤石矿成矿规律与找矿方向
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川东南地区重晶石-萤石成矿带是我国重要的重晶石、萤石成矿带之一,在该成矿带上已发现的重晶石-萤石矿床(点)达到134个,重晶石-萤石矿脉已超过310条,分布面积大于1.8万平方公里,具有分布范围广,矿体规模大,延伸长度长和多层位赋矿等特点。本文在对川东南重晶石-萤石矿的成矿控制条件,成矿物质来源和矿床成因研究的基础上,总结了成矿规律,并对该成矿带进行了成矿预测,提出了找矿方向,为研究区及邻区成因类似的矿床进一步的找矿勘探工作提供了重要的理论依据。
     川东南重晶石-萤石矿受建造和构造双重因素共同控制。研究区及邻区已出露的重晶石-萤石矿床主要赋存于下奥陶统碳酸盐岩地层中,层控矿床特征明显。且严格受NE向褶断带和NW向断裂带所控制,NE向褶断带为导矿断裂系统,重晶石-萤石矿均无一例外的赋存于NW向容矿断裂破碎带中。
     根据萤石和重晶石的REE配分模式、δEu、δCe和Y/Ho分异特征,推断川东南重晶石-萤石成矿带上不同矿体的成矿物质来源是来自同一成矿热流体场,属同期形成的;但重晶石和萤石的成矿物质分别来自不同的地层。根据Tb/Ca-Tb/La关系图与La/Yb-∑REE关系图,研究区重晶石-萤石矿床为热液成因,成矿物质主要来自沉积岩地层。
     流体包裹体测温结果表明,研究区矿床为中低温矿床,成矿过程由中低温向低温演化。流体包裹体的氢氧同位素证据显示,成矿流体来源是多源的,主要为建造水、大气降水和海水。
     根据同位素和微量元素结果显示,寒武-奥陶系碳酸盐岩地层均可为成矿提供足够的Ca,Ca的来源应为多源的;下寒武统牛蹄塘组为Ba的主要源层。上震旦统陡山沱组-下寒武统明心寺组地层可为研究区成矿物质F提供物源。成矿物质中的S主要来源于该区的寒武系蒸发岩。根据火石垭矿区的萤石Sm-Nd等时线年龄为104±14Ma,表明研究区成矿时代主要为燕山晚期。
     根据矿床地质特征、控矿因素和成矿机制等研究表明,川东南地区重晶石-萤石矿床为中低温热液成因-断裂带充填交代型层控矿床。通过研究确定建造、构造、围岩、遥感、地球物理-化学探测等方面的成矿预测标志,圈定了找矿靶区,为川东南重晶石-萤石矿的进一步找矿工作指明了方向。
The barite-fluorite metallogenic belt of southeast Sichuan is one of the importantmetallogenic belt with barite and fluorite in China. They have134barite-fluoritedeposits and more than310ore bodies been found in this metallogenic, and thedistribution area of more than18000square kilometers. These deposits have a widedistribution, large ore body size, long extension length and many layers of ore. Basingon the study of the mineralization control condition, metallogenic material source andgenesis, this thesis summarizes the metallogenic regularities and puts forwardmetallogenic prediction of the metallogenic belt, in order to provide an importanttheoretical basis for the further exploration work about similar deposits in study areaand its adjacent area.
     The barite-fluorite deposits of southeast Sichuan controlled by the formation andthe structure. The host rocks of the barite-fluorite deposit are mainly the lowerordovician carbonate strata, and they are obvious stratabound ore deposits. Meanwhile,they controlled by NE fold-fault belts and NW belts strictly, NE fold-fault belts arepassage structures and barite-fluorite are all occurred in NW storage fault zone.
     REE geochemical analysis, δEu, δCe and Y/Ho results indicate that many oredeposits (points) in barite-fluorite metallogenic belt of southeast Sichuan havecontemporaneous and homologous characteristics, and ore-forming materials offluorite and barite come from different stratums, they formed during the same periodbut came from different sources. Eu and Ce anomaly of ore Prove metallogenicenvironment is high oxygen fugacity open system. According to Tb/Ca-Tb/Larelationship diagram and La/Yb-REE relationship diagram display that barite-fluoritedeposits of the study area are hydrothermal origin, and have no relationship withmagmatic activity, metallogenic materials from sedimentary stratum.
     Barite and fluorite mineralization in the study area belongs to the middle-lowtemperature ore deposit. The temperature in the ore-forming process is reduced. Fromthe Hydrogen and oxygen isotopic data collected, it shows that the source ofhydrothermal fluid in the study area is multi-source, which is mainly from theformation water, meteoric water and sea water.
     According to the studies of isotope and trace elements, Cambrian-ordoviciancarbonate strata can provide enough Ca for mineralization, the source of the Ca formulti-source. Main source layer of Ba is the lower Cambrian Niutitang group. the upper sinian doushantuo group-the Lower Cambrian Mingxinsi group formation canprovide source for ore-forming materials F in the study area. the ore-forming materialof S is mainly from the Cambrian evaporates. According to the fluorite Sm-Ndisochron age of Huoshiya barite-fluorite deposit is104±14Ma, indicates that themetallogenic era of study area mainly for late yanshanian movement.
     According to the ore deposit geological characteristics, ore-controlling factorsand metallogenic mechanism study, these deposits belong to low temperaturehydrothermal genesis-fault zone filling metasomatic deposits. Determinedmetallogenic prediction marker by the studes of formation, structure, wall rockalteration, remote sensing, etc, the prospecting target areas are delineated, and pointedout the direction for further ore prospecting the barite-fluorite deposits.
引文
Allegre C J and Minster J F, Quantitative models of trace element behavious in magmaticprocesses. Earth and Planetary Science Letters,1978,38(1):1~25.
    Barbieri M and Bellanca A. Use of strontium isotopes to determine the source ofhydrothermal fluorite and barite from northwestern Sicily (Italy). Chemical Geology,1987,66:273~278.
    Bau M and Moller P. Rare earth element fractionation in metamorphogenic hydrothermalcal-cite, magnesite and siderite; Mineralogy and Petrology;1992,45:231~246.
    Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rockinterac-tion and the significance of the oxidation state of europium. Chemical Geology,1991,93:219~230.
    Becker S P, Fall A and Bodnar R J. Synthetic fluid inclusions. XVII.1PVTX properties ofhigh salinity H2O-NaCl solutions (>30wt%NaCl): Application to fluid inclusions that homogenizeby halite disappearance from porphyry copper and other hydrothermal ore deposits. EconomicGeology,2008,103:539~554
    Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O:A PVTX summary from300℃to500℃. American Journal of Science,1991,291:309~338.
    Bodnar R J. Revised equation and table for determining the freezing point depression ofH2O-NaCl solutions. Geochimica et Cosmochimica Acta,1993,57(3):683~684.
    Brown P E and Hagemann S G. MacFlincor and its application to fluid in Archean lode-golddeposits. Geochimica et Cosmochimica Acta,1995,59:3943-3952.
    Burt D M and Sheridan M F. Types of mineralization related to fluorine-rich silicic lava flowsand domes. GSA Special Papers,1987,212:103~110
    Chaypool G E. The age curves of sulfur and oxygen isotopes in marine sulfate and theimutual interpretation. Chemical Geology,1980,28:199~260.
    Chemiak D J, Zhang X Y, Wayne N K, et al. Sr, Y and REE diffusion in fluorite. ChemicalGeology,2001,181:99~111.
    Chen Y J, Pirojno F, Sui Y H. Geology and D-O-C isotope systematics of the Tieluping silverdeposit, Henan, China: Implications for ore genesis. Acta Geologica Sinica,2005,79:106~119.
    Chen Y J, Pirojno F, Sui Y H. Isotope geochemistry of the Tieluping silver deposit, Henan,China: A case study of orgenic silver deposits and relatedtectonic setting. Mineralium Deposita,2004,39:560~575
    Chesley J T, Halliday A N, Kyser T K, et al. Direct dating of Mississippi Valley-typemineralization: use of Sm-Nd in fluorite. Economic Geology,1994,89:1192~1199.
    Chesley J T. Samarium-neodymium direct of fluorite.Science,1991,252:949~951.
    Chung S L and Jahn B M. Plume-lithosphere interaction in generation of the Emeishan floodbasalts at the Permian-Triassic boundary. Geology,1995,23:889~892.
    Clayton R N and Mayeda T K. The use of bromine penta fluoride in the extraction of oxygenfrom oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta,1963,27:43~52.
    Constantopoulos J. Fluid inclusions and rare earth element geochemistry of fluorite fromsouth central Idaho. Economic Geology,1988,83(3):626~636.
    Deer W A, Howie R A and Zussman J. An introduction to the rock forming minerals. NewYork, Longman Press,1966.511~515.
    Dejonghe J, Boulegue J, Demaffe D, et al.1989. Isotope geochemistry (S, C, O, Sr, Pb) of theChaudfontaine mineralization(Belgium). Mineralium Deposita,24:132~134.
    Driesner T and Heinrich C A. The system H2O-NaC.l Part I:Correlation formulae for phaserelations in temperature-pressure-composition space from0to1000℃,0to5000bar, and0to1XNaCl. Geochimica et Cosmochimica Acta,2007,71:4880~4901
    Elderfield H, Goddard R V and Sholkovitz E R. The rare earth elements in rivers,estuariesand coastal sea and their significance to the composition of ocean water. Geochimica etCosmochimica Acta,1990,54:971~991.
    Elderfield H; The oceanic chemistry of the rare-earth elements; Philosophical Transactions ofthe Royal Society of London.(Series A), Mathematical and Physical sciences,1988,325(1583):105~126;
    Evans N J, Wilson N S, Cline J S, et al. Fluorite (U–Th)/He Thermochronology: Constraintson the Low Temperature History of Yucca Mountain, Nevada. Applied Geochemistry,2005,20(6):1099~1105.
    Faure G. Principle of Isotope Geology. New York. John Wiley&sons,1977.97~146.
    Fournier R O. Hydrothermal processes related to movement of fluid from plastic into brittlerock in the magmatic-epithermal environment. Economic Geology,1999,94:1193~1211.
    Friedman I and O’Neil J R, Compilation of stable isotope fractionation factors ofgeochemical interest. In: Date of geochemistry.6th ed Geol Surv Prof Pap,1977.400KK.
    Graf J L. Rare earth elements as hydrothermal tracers during the formation of massive sulfidedeposits in volcanic rocks. Economic Geology,1977,72:527~548
    Hall D L, Strerner S M and Bodnar R J. Freezing point depression of NaCl-KCl-H2Osolutions. Economic Geology,1988,83:197~202
    Hanor J S. Barite-Celestine geochemistry and environments of formation; in SulfateMinerals-crystallography, geochemistry and environmental significance; Reviews in Mineralogyand Geochemistry,2000,40:193~275
    Hoefs J. Stable isotope geochemistry.4th edition, Springer-verlag, Berlin,1997.
    Hugh R R. Using geochemical data: evaluation, presentation, interpretation. Longman,Edinburgh Gate.1993.242~291
    Icenhower J P and London D. Partitioning of fluorine and chlorine between biotite andgranitic melt: experimental calibrition at200MPa H2O. Contributions to Mineralogy andPetrology,1997,127:17~29
    Jerry R W and Robert F M. Phase equilibria of a fluorine-rich leucogranite from theSt.Austell pluton, Cornwall. Geochemica et Cos-mochimica Acta,1987,51:1591~1597
    Jiang S Y, Han F, Shen J Z, et al. Chemical and Sr-Nd isotopic systematics of tourmalinefrom Dachang Sn-ploymetallic ore deposit, Guangxi Province, China. Chemical Geology,1999,157:49~67.
    Jorgenson B B, Isaksen M F and Jannasch H W. Bacterial sulfate reduction above100℃indeep sea hydrothermal vent sediments. Science,1992,258:1756~1757.
    Kesler S E and Jones L M. Sulfur and strontium isotopic gepchemistry of celestite, barite andgypsum from the Cretaceous basins of northeastern Mexico, Chemical Geology,1981,31,211~224
    Kesler S E, Ruiz J and Jones L M. Strontium-isotopic geochemistry of fluoritemineralization(Coahuia, Mexico). Isotope Geosciences.1983,1,65~75.
    Kesler S E, Ruiz J and Jones L M. Sulfur and Strontium isotopic geochemistry of celestite,barite and gypsum from the Cretaceous basins of northeastern Mexico. Chemical Geology,1981,31:211~224.
    Machel H G. Relationships between sulphate reduction and oxidation of organic compoundsto carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits.Carbonates and Evaporites,1989,4(2):137~151.
    Mao J W, Lehmann B, Du Andao, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Aumineralization in Lower Cambrian black shales of South China and its geologic significance.Economic Geology,2002,97:1051~1061.
    Martin E E, McDougall J D, Herbert T D, et al. Strontium and Neodymium isotopic analysisof marine barite separates; Geochimica et Cosmochimica Acta;1995,59:1353~1361.
    McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance andsedimentary processes. Reviews in Mineralogy and Geochemistry,1989,21(1):169~200.
    Michard A. Rare earth element systematics in hydrothermal fluids. Geochimica etcosmochimica acta,1989,53:745~750.
    Moller P and Morteani G. On the geochemical fractionation of rare earth elements during theformation of Ca-minerals and its application to problems of the genesisof ore deposits. In:AugustithisS S, ed. The significance of trace elements in solving petrogenetic problems andcontroversies. Athens: Theophrastus Pub.1983,747~791.
    Moller P, Dulski P, and Schley F. A new way of interpreting trace element concentrationswith respect to modes of mineral formation. Journal of Geochemical Exploration,1981,15:271~284.
    Moller P, Parekh P P and Schneider H J. The application of Tb/Ca-Tb/La abundance ratios toproblems of fluorspar genesis. Mineralium Deposita,1976,11(1):111~116.
    Morgan J W and Wandless G A. Rare earth element distribution in some hydrothermalminerals: evidence for crystallographic control. Geochimica et cosmochimica Acta.1980,44:973~980.
    Nakai S and Halliday A N. Rb-Sr dating of sphalerites from Mississippi Valley-Type oredeposits. Geochimica et Cosmochimica Atca,1993,57:417~427
    Norman D I and Landis G P. Source of mineralizing components in hydrothermal ore fluidsas evidenced by87Sr/86Sr and stable isotope data from the Pasto Bueno deposit, Peru. EconomicGeology,1983,78:451~465.
    O’Neil J R and Taylor H P, The oxygen isotope and cation exchange chemistry of feldspars.American Mineralogist,1967,52:1414~1437
    O’Neil J R, Clayton R N and Mayeda T K. Oxygen isotope fractionation in divalent metalcarbonates. Journal of Chemical Physics,1969,51:5547~5558.
    Ohmoto H and Rye R O, Hydrogen and oxygen isotopic compositions of fluid inclusions inthe Kuroko deposits, Japan. Economic Geology,1974,69:947~953.
    Ohmoto H, Kaiser C J and Ceer K A. Systematics of sulphur isotopes in recent marinesediments and ancient sediment-hosted base metal deposits. In: Herbert H K and Ho S E (Editors),Stable isotopes and Fluid Processes in mineralization. Geology Department and ExtensionService,University of Western Australia,.1990,23:70~120.
    Ohmoto H, Rye R O. Isotopes of sulfur and carbon, in Barnes H L, ed., Geochemistry ofhydrothermal ore deposits,2nd edition, New York, J. Wiley and Sons, Inc.,1979.798.
    Ohmoto H. Stable isotope geochemistry of ore deposits. Reviews in mineralogy,1986,6:491~559.
    Richardson C K, Rye R O and Wasserman M D, The chemical and thermal evolution of thefluids in the Cave-in-rock fluorspar district, llinois: stable isotope systematics at the Deardorffmine. Economic Geology,1988,83:765~783.
    Roedder E and Bodnar R J. Geologic pressure determinations from fluid inclusion studies.Annual Review of Earth and Planetary Sciences,1980,8:263~301.
    Roedder E. Fluid inclusions Mineral. Society. American Reviews Mineral,1984,12:644.
    Ruiz J and Kesler S E. Strontium isotope geochemistry of fluorite mineralization associatedwith fluorine-rich igneous rocks from the Sierra Madre Occidental, Mexico: possible explorationsignificance. Economic Geology,1985,80:33~42.
    Ruiz J, Jones, L M and Kelly W C, Rubidium-strontium dating of ore deposits hosted byRb-rich rocks, using calcite and other common Sr-bearing minerals. Geology,1984,12,259~262.
    Ruiz J, Kesler S E and Jones L M. Sr isotopic geochemistry of fluorite mineralization innorthern Mexico. Geology Society. American Abstract Program,1981,13(7):542.
    Ruiz J,Kesler S E, Jones L M, et al. Geology and geochemistry of the Las Cuevas fluoritedeposit, San Luis Potosi, Mexico. Economic Geology,1980,75(8):1200~1209.
    Schneider H J, Moller P and Parekh P P. Rare earth element distribution in fluorites andcarbonate sediments of the east Alpine midTriassic sequences in the Nordliche Kalkalpen.Mineralium Deposita,1975,10:330~344.
    Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of itsformation. Nature,1977,266:346~348.
    Simonetti A, Bell K. Nd, Pd, and Sr isotope systematics of fluorite at the Amba Dongarcarbonatite complex, India: evidence for hydrothermal and crustal fluid mixing. EconomicGeology,1995,90:2018~2027.
    Sukru KOC, Fluid Inelusion Studies and Geochemistry of Rare Earth Elements ofHydrothermal Fluorites from Pohrenk, kirsehiy, Central Turkey, Acta Geologica Sinica,2001,75(1):59~65.
    Taylor H P. The application of Oxygen and Hydrogen Isotope Studies to Problems ofHydrothermal Altertion and Ore deposition. Ecoomic Geology,1974,69:843~883.
    Taylor R P and Fryer B J. Rare earth element geochemistry as an aid to interpretinghydrothermal ore de posits in:metallization associated with acid magmatism Edited by Evans A M,John Wiley and Sons Ltd,1982.
    Veizer J, Hoefs J, Lowe D R, et al. Geochemistry of Precambrian carbonates: II. Archeangreenstone belts and Archean sea water. Geochimica et Cosmochimica Acta,1989,53(4):859~871.
    Veizer J. Strontium isotopes in seawater through time. Annual Review of Earth and PlanetarySciences,1989,17:141~167.
    Whitford D J, Korsch M J. and Solomon M, Strontium isotope studies of barites:Implications for the origin of base metal mineralization in Tasmania. Economic Geology,1992,87:953~959.
    Xu Y G, Luo Z Y, Huang X L, et al. Zircon U-Pb and Hf isotope constraints on crustalmelting associated with the Emeishan mantle plume. Geochirnica et Cosrnochimica Acta,2008,72(13):3084~3104.
    Xu Y G. Thick, high-velocity crust in the Emeishan large igneous province, southwesternChina:Evidence for crustal growth by magmatic underplating or intraplating. Geological Societyof America.2007,430:841~858.
    安德烈耶娃,苏守田.萤石的标型特征对寻找陆相火山建造有关的热液铀矿化的意义.世界核地质科学,1980,(3):226~229.
    蔡国祥.论湖南省萤石矿床类型的划分.湖南地质,1985,4(3):8~16.
    曹俊臣,李本超,李新安,等.层控萤石矿床地球化学.见:涂光炽主编.中国层控矿床地球化学.第二卷.北京:科学出版社,1987,224~259.
    曹俊臣.初论中国层控萤石矿床分类及某些地球化学特征.地质与勘探,1985,7:8~14.
    陈大经,李毅,谢世业,等.广西古潭热水沉积重晶石矿床中硅质岩的地质-地球化学特征.矿产与地质,2005,5:461~464.
    陈洪德,刘文均,郑荣才,等.层序地层学理论和研究方法.成都:四川科学技术出版社.1994.
    陈洪德,田景春,刘文均,等.中国南方震旦系-第三系构造-层序岩相古地理研究及编图.成都:成都理工大学,2008.
    陈怀录,张良旭,吕鸿图.马衔山萤石矿床萤石裂变径迹年龄的测定及成矿时代探讨.科学通报,1987,(14):1087~1090.
    陈建书,蒲元强,石磊,等.贵州大河边一带重晶石矿成矿地质背景及找矿潜力.贵州地质,2011,28:86~91.
    陈先沛,高计元.层控重晶石矿床地球化学.见:涂光炽主编.中国层控矿床地球化学.第二卷.北京:科学出版社,1987,157~196.
    陈迎宾,张寿庭.四川盐边地区脉状重晶石矿床地球化学特征.矿物岩石,2009,3:65~69.
    陈永权,蒋少涌,凌洪飞,等.华南寒武纪海洋中沉积矿床及其古环境.海洋地质与第四纪地质,2005,1:79~84.
    褚有龙.中国重晶石矿床的成因类型.矿床地质,1989,4:91~96.
    崔秉荃,龙学明,李元林,等.川西坳陷的沉降与龙门山的崛起.成都地质学院学报,1991,18(l):39~44.
    代寒松.2010.四川盆地北部米仓山及前缘震旦系油气地质条件研究.成都:成都理工大学.
    邓明森.米仓山区盖层褶皱构造变形分析.矿物岩石,1997,17(增).
    丁振举,姚书振,刘丛强,等.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪.岩石学报,2003,19(4):792~798.
    丁正宇.旺华萤石矿成矿地质特征及找矿模型.西部探矿工程,2007,(8):88~89.
    都国增,陈勇,何伟民,等.我国重晶石矿床类型及资源利用.河南省地质调查与研究通报,2007,上册:113~116.
    杜思清,魏显贵,刘援朝.汉南一米仓山区叠加东西向隆坳的北东向推覆构造.成都理工学院学报,1998,25(3):42-51.
    端木合顺.镇巴—城口震旦系毒重石成矿带地质特征.西安矿业学院学报,1999,(04):329-332.
    范祖全,于明舜,钟太山,等.湘西贡溪气液沉积型层状重晶石矿床特征及成因分析.矿物岩石,1986,3:65~75.
    方维萱,胡瑞忠,苏文超,等.2002.大河边一新晃超大型重晶石矿床地球化学特征及形成的地质背景.岩石学报,2002,18(2):247~256.
    方维萱,张国伟,黄转莹.银硐子-大西沟特大型银多金属矿床中重晶石岩类特征及成岩成矿作用.岩石学报,1999,3:484~491
    方乙,李忠权.浙江缙云县骨洞坑萤石矿床成因及成矿模式.四川有色金属,2010,(03):10~16+23.
    冯佳睿,周振华,程彦博.云南南秧田钨矿床流体包裹体特征及其意义.岩石矿物学杂志,2010,29(1):50~58.
    傅树超.试述福建顺昌南舟萤石矿地质特征.福建地质,2003,(2):53~61.
    甘昭国.四川盆地褶皱形成时间及其对油气聚集的控制.1988.
    高红灿.四川盆地上三叠统须家河组层序-岩相古地理及砂体分布研究:[硕士学位论文].成都:成都理工大学,2007.
    高军波,杨瑞东,陶平,等.贵州镇宁重晶石矿中硅质岩稀土元素地球化学研究.贵州地质,2012,28:310~314.
    高军波,杨瑞东,陶平,等.贵州镇宁乐纪泥盆系重晶石矿热水沉积特征.沉积学报,2012,3:422~430.
    高奇东,赵宽志,胡秀芳,等.塔里木盆地奥陶系碳酸盐岩碳氧同位素组成及流体来源讨论.浙江大学学报(理学版),2011,5:579~583.
    高文亮.江西波阳莲花山萤石矿床地质特征及矿床成因探讨.江西地质,1996,10(02):85~92.
    高振西,潘江.浙江武义一带萤石矿的若干规律.地质学报,1957,(1):99~108
    郭文平,胡受权,徐旃章,等.云南巴打湾沉积型重晶石矿床控矿条件研究.云南地质,2002,1:34~41.
    郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化.北京:地质出版社,1996.
    韩文彬.萤石矿床地质及地球化学特征——以浙江武义矿田为例.北京:地质出版社,1991.22~47.
    韩吟文,马振东.地球化学.北京:地质出版社,2003,46~49.
    何斌,徐义刚,肖龙,等.峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据.地质学报,2003,(02):56~65.
    何斌,徐义刚,肖龙,等.峨眉山地幔柱上升的沉积响应及其地质意义.地质论评,2006,(01):12~22.
    何天宇.镇宁乐纪重晶石矿地质特征及找矿标志.西部探矿工程,2012,2:122~125.
    何伟民,郗国增,徐青峰,等.河南刘楼重晶石矿床地质特征及找矿标志.矿产与地质,2010,6:557~561.
    何涌,王艳林.湘南某地紫色萤石呈色机理新认识.地质科技情报,1995,14(4):33~36.
    胡瑞忠,彭建堂,马东升,等.扬子地块西南缘大面积低温成矿时代.矿床地质,2007,6:583~594.
    胡受权,徐旃章,张寿庭.云南宁蒗地区巴打湾沉积-热液改造型重晶石矿床地质特征.地质与勘查,1998,5:23~27.
    胡振权.山西省浑源县董庄萤石矿矿床特征及成因.华北国土资源,2005,(2):31~33.
    湖南省地质研究所湘中组.湘中泥盆系层控铅锌黄铁矿床控矿因及成因探讨.湖南地质.1982,1(1):1~12.
    黄菲,金成洙,姚玉增,等.山西耿庄金矿重晶石巨晶中多相态包裹体研究.吉林大学学报(地球科学版),2005,3:314~320.
    黄时胜.永丰南坑萤石矿床地质特征与成因研究.建材地质,1989,(6):3~10+49.
    黄思静,石和,毛晓冬,等.重庆秀山寒武系锶同位素演化曲线及全球对比.地质论评,2002,48(5):509~516.
    黄先平.川东北地区下三叠统飞仙关组储层综合研究:[博士学位论文].成都:西南石油大学,2004
    金能启,王家楼,王兴祥,等.五河县朱顶蓝天重晶石矿成矿地质特征及找矿标志.现代矿业,2011,2:67~68
    李爱民,张巧莲,徐振民.山东省招远市青龙萤石矿床地质特征.山东地质,2002,18(2):36~41.
    李春阳,田升平,牛桂芝.中国重晶石矿主要矿集区及其资源潜力探讨.化工矿产地质,2010,32(2):75~86.
    李惠.金矿床地球化学异常模式研究的新进展.地质与勘探,1997,33(2):43~47.
    李久明,巩恩普,姚玉增.河北省丰宁银矿萤石特征及找矿意义.地质与勘探,2006,42(6):52~56.
    李诺,陈衍景,倪智勇,等.河南省嵩县鱼池岭斑岩钼矿床成矿流体特征及其地质意义.岩石学报,2009,25(10):2509~2522.
    李庆海.川东南一带萤石重晶石矿普查工作总结报告.重庆:重庆市地质矿产勘查开发局107队,1977.
    李胜荣,高振敏.湘黔寒武系底部黑色岩系贵金属元素来源示踪.中国科学(D辑),2000,30(2):169~174.
    李文光.我国重晶石矿床成因类型及找矿方向初探.河南地质,1994.3:177~181.
    李文炎,余洪云.中国重晶石矿床.北京:地质出版社.1991,12~23,34~43.
    李晓彪,罗远良,罗泰义,等.重庆城口地区早前寒武系黑色岩系研究:(2)早寒武世硅质岩的沉积环境.矿物学报,2007,27(3):302~313.
    李新安,刘铁庚,赵云龙.白云鄂博萤石染色机制研究.矿物学报,1985,5(2):164~168+196.
    李毅.广西热水沉积矿床成矿规律及找矿方向研究:[硕士学位论文].长沙:中南大学,2007
    李勇,曾允孚.龙门山前陆盆地沉积及构造演化.成都:成都科技大学出版社.1995.
    李裕能.甘肃文献重晶石矿床地质特征.西北地质,1985.1:52~59
    李长江,蒋叙良.浙江武义-东阳地区萤石矿床的锶同位素地球化学研究.矿床地质,1989.8(3):65~74.
    李智武,刘树根,林杰.川西坳陷构造格局及其成因机制.成都理工大学学报(自然科学版),2009,36(6):645~653.
    李智武.中一新生代大巴山前陆盆地一冲断带的形成演化:[博士学位论文].成都:成都理工大学,2006.
    廖明汉,王波.陕西石梯重晶石矿床地质特征及其成因初步探讨.陕西地质,1988,2:11~20.
    刘宝珺.中国南方震旦纪-三叠纪岩相古地理图集.北京:科学出版社,1994.
    刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999:84~91.
    刘斌,沈昆.流体包裹体的氧逸度计算公式及其应用.矿物学报,1995,15(3):291~302.
    刘道荣,陈春发,王新利,等.浙江常山县蕉坑坞矿段17号萤石矿体控矿因素及成因探讨.地质与资源,2009,18(3):177~182.
    刘景波,叶凯,从柏林,等.大别山超高压变质带片麻岩锆石中重晶石和硬石膏包裹体及其意义.岩石学报,2000,16:482~484.
    刘树根,邓宾,李智武.盆山结构与油气分布——以四川盆地为例.岩石学报,2011,27(3):23-31.
    刘树根.龙门山冲断带与川西前陆盆地的形成演化.成都:科技大学出版社,1993:l~163.
    刘铁庚,叶霖,李乙雨,等.银矿与萤石的时空关系.矿物学报2002,22(2):169~174.
    刘铁庚,叶霖.银矿与萤石.矿物岩石地球化学通报,2000,19(4):300~302.
    刘伟,范永香,齐金忠,等.甘肃省文县阳山金矿床流体包裹体的地球化学特征.现代地质,2003,17(4):444~452.
    刘文均,伊海生,温春齐,等.花垣铅锌矿床中黑色萤石的发现及其地质意义.科学通报,1994,39(23):2169~2171.
    刘文均.花垣铅锌矿床中黑色萤石再研究.成都理工学院学报,1999,26(2):4~9.
    刘英俊,曹励明.元素地球化学导论.北京:地质出版社.1987,194~205.
    卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社,2004:205~209.
    卢武长,杨绍全,张平.浙江黄双岭萤石矿的同位素研究.成都地质学院学报,1991,18(03):103~111.
    罗志立,刘树根.评述“前陆盆地”名词在中国西部含油气盆地中的应用.地质论评,2002,48(4):398~407.
    罗志立.略论地裂运动与中国油气分布.中国地质科学院院报,1984,(10):93~99.
    罗志立.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响.四川地质学报,1981,(1):20~30.
    吕新前.浙江湖山萤石矿床成矿热源问题探讨.浙江国土资源,2006,(2):42~45
    吕宇,董艳明.芳畈-青山口矿带铜、铅、重晶石矿矿床成因探讨.地质与勘探,2007,2:8~12.
    吕志洲.龙门山冲断带构造特征与油气勘探前景研究:[博士学位论文].成都:成都理工大学,2008
    马承安,韩文彬.萤石染色机理初析--以武义萤石为例.火山地质与矿产,1992,13(03):53~62.
    马承安.武义萤石矿床矿物包裹体研究.中国地质科学院南京地质矿产研究所所刊,1990,11(3):13~24.
    马永生,陈洪德,马国力.中国南方层序地层与古地理.北京:科技出版社,2009
    马永生,陈洪德,马国力.中国南方构造--层序岩相古地理图集.北京:科技出版社,2009
    马永生,刘树根,徐国盛,等.中国海相碳酸盐岩层系深层油气成藏机理.成都:成都理工大学.2010.
    马元海.大通县花石掌-其美萤石矿地质特征及找矿前景.建材地质,1994,(6):23~26+45.
    倪志耀,莫怀毅.四川冕宁前寒武纪重晶石岩的地球化学特征.地球化学,1996.5:513~520.
    牛贺才,陈繁荣,林茂青.岩浆成因重晶石、萤石的稀土元素地球化学特征.矿物学报,1996,4:382~388
    牛贺才,林传仙.萤石中流体-熔融包裹体的研究.地质论评,1995,41(1):28~33.
    牛丽贤,张寿庭.中国萤石产业发展战略思考.中国矿业,2010,19(8):21~25.
    潘忠华,范德廉.川东南脉状萤石-重晶石矿床流体包裹体研究.矿物岩石,1994,14(4):9~16.
    潘忠华,范德廉.川东南脉状萤石-重晶石矿床同位素地球化学.岩石学报,1996,12(1):127~136.
    潘忠华.川东南脉状萤石-重晶石矿矿床地质地球化学与成因研究:[博士学位论文].北京:中科院地质研究所,1993.
    彭建堂,胡瑞忠,漆亮,等.晴隆锑矿床中萤石的稀土元素特征及其指示意义.地质科学,2002.37(3):277~287.
    钱秋松.1986.贵州层控型重晶石矿地质特征及成矿地质条件.贵州区域地质科技情报.1986,2:16~22.
    饶红娟,罗平,阳正熙,等.塔里木盆地西克尔萤石地球化学特征及成因讨论.沉积学报,2010,28(4):821~831.
    商怀忠,白士魁.湖北省随县重晶石矿床地质特征及成因探讨.地质科技情报,1983,S1:236~242.
    邵洁涟,梅建明.浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义.矿物岩石,1986,6(3):103~111.
    施振生,杨威,谢增业.四川盆地晚三叠世碎屑组分对源区分析及印支运动的指示.地质学报.2010,84(3):21-32.
    石龙.北大巴山下寒武统重晶石-毒重石矿形成调教与成矿过程分析:[硕士学位论文].北京:中国地质大学(北京),2007
    石玉臣,王芳,焦秀美,等.山东省萤石矿的成矿规律探讨.华东六省一市地学科技论坛,2003,87~89.
    四川地质矿产局.1987.四川省地质志.北京:地质出版社
    宋谢炎,王玉兰,曹志敏,等.峨眉山玄武岩、峨眉地裂运动与幔热柱.地质地球化学,1998,(01):21~28.
    宋兆昌.贵州织金岩溶重晶石矿床的地质特征和成矿机理分析.中国岩溶,1988,9:37~46.
    孙祥,杨子荣,王永春,等.辽西义县萤石矿床Sr同位素组成及成因.地质科技情报,2009,28(01):82~86.
    孙兴国,李永兵.内蒙古龙头山多金属硫化物矿床同生重晶石流体包裹体特征海相热水沉积成因证据.岩石矿物学杂志,2011,4:638~644.
    孙学通,姚慧.湖南应溪重晶石矿床地球化学特征及矿床成因.新疆地质,2005,1:50~54.
    汤正义,陈璐芳,陈渭涛.浙江省西北部萤石矿成矿规律研究.地质与勘探,1986,(1):26~30.
    唐红松,徐文杰,谢世业,等.我国下寒武统黑色岩系的矿产类型.矿产与地质,2005,
    4:341~343.
    童崇光.四川盆地构造演化与油气聚集.北京:地质出版社,1985.
    童崇光.新构造运动与四川盆地构造演化及气藏形成,成都理工学院学报,2000,27(2):43-49.
    涂登峰.湖南双江口-将军庙萤石矿床矿物中包裹体研究.地球化学,1987,(3):274~279.
    万永文,朱自尊.遂昌、丽水萤石的包裹体研究.科学通报,1989,(05):369~372.
    汪东波,李树新.略阳东沟坝金、银、铅、锌、黄铁矿-重晶石型矿床的成因-成矿物理化学条件及稳定同位素地球化学研究.西北地质,1991,3:25~32.
    汪泽成,赵文智,徐安娜,等.四川盆地北部大巴山前带构造样式与变形机制.现代地质,2006,20(3):429~435.
    汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探.北京:地质出版社,2002.
    王东,王国芝,刘树根.川东南地区燕山期以来的隆升剥蚀历史研究.四川地质学报,2009,29(1):5~7.
    王国芝,胡瑞忠,刘颖,等.黔西南晴隆锑矿区萤石的稀土元素地球化学特征.矿物岩石,2003,23(2):62~65.
    王国芝,刘树根,陈翠华,等.四川盆地东南缘河坝MVT铅锌矿与古油气藏的成生关系.地学前缘,2013,20(1):107~116.
    王鸿祯主编.中国古地理图集.北京:地图出版社.1985.
    王吉平,商朋强,牛桂芝.中国萤石矿主要矿集区及其资源潜力探讨.化工矿产地质,2010,32(2):87~94+111.
    王康年.湘黔下寒武统黑色岩系“多元素富集层”地质特征及成因探讨.贵州地质,2009,26(2):106~111.
    王莉娟.流体包裹体成分分析研究.地质论评,1998,44(5):496~501.
    王锡荣.文县重晶石矿的地质特征及成因探讨.中国非金属矿工业导刊,2009,3:56~57
    王玉荣,梁伟义,顾复,等.浙江武义地区萤石矿矿源(岩)层和成矿机制的实验研究.地球化学,1990,(1):21~31.
    王长生.四川省酉阳和秀山地区的寒武系.重庆:科学技术文献出版社(重庆分社),1988.
    王中刚,于学元,赵振华.稀土元素地球化学.北京:科学出版社,1989.
    王忠诚,储雪蕾.早寒武世重晶石与毒重石的锐同位素比值.科学通报,1993,16:1490~1492.
    王忠诚,范德廉,陈锦石.大巴山下寒武统黑色岩系中毒重石矿的探讨.地质科学,1992,3.
    魏怀瑞,杨瑞东,高军波.贵州天柱重晶石矿热水喷流沉积特征研究.矿物学报,2009,(2):378~379.
    文春华,徐文艺,钟宏,等.安徽姚家岭锌金多金属矿床地质特征与浅部矿化流体包裹体研究.矿床地质,2011,30(3):533~546.
    文华国,郑荣才, Hairuo QIN G,等.青西凹陷下沟组湖相热水沉积岩中的重晶石流体包裹体特征.成都理工大学报(自然科学版),2008,3:288~298.
    文化川,陈廷芳.江西永丰南坑萤石矿床赋矿岩石化学特征.四川建材学院学报1993,8(03):46~51.
    吴朝东,杨承运,陈其英.新晃贡溪天柱大河边重晶石矿床热水沉积成因探讨.北京大学学报(自然科学版),1999,6:774~783.
    吴胜华,刘家军,翟德高.陕西大丫毒重石与杨寨重晶石矿床成矿流体特征与指示意义.矿物学报,2009,增刊:143~144.
    吴胜华,刘家军,张鼐,等.南秦岭钡成矿带重晶石与毒重石成矿特征.现代地质,2010,2:237~244.
    夏菲,马东升,潘家永,等.贵州天柱大河边和玉屏重晶石矿床热水沉积成因的锶同位素证据.科学通报,2004,24:2592~2595.
    夏菲,马东升,潘家永,等.天柱大河边重晶石矿床铅同位素特征及来源探讨.地球化学,2005,5:501~507.
    夏学惠,徐少康,严生贤,等.浙江八面山特大型萤石矿床成因研究.化工矿产地质,2009,31(2):65~75.
    夏学惠,赵玉海.秦巴地区毒重石-重晶石矿床地质及成矿远景分析.化工矿产地质,2005,4:201~205.
    向阳,陆元庆,梁学东.重晶石、天青石硫同位素分析.湖南地质,1984,3:78~80.
    谢学锦,任天祥,孙焕振.中国地球化学图集.北京:地质出版社,2012.
    徐少康,殷友东.我国单一萤石矿床地质概要.化工矿产地质,2001,23(3):134~140.
    徐义刚.地幔柱构造、大火成岩省及其地质效应.地学前缘,2002,9(04):341~353.
    徐旃章,吴志俊.浙江省萤石矿成矿规律与成矿预测.成都:四川科学技术出版社,1991.89~100.
    徐旃章,张寿庭,沈军辉,等.浙江武义萤石矿田金(银)-萤石矿控矿构造型式.成都理工大学学报,1999,26(2):107~112.
    徐旃章,邹灏,陈远巍.川东南地区重晶石-萤石矿成矿控制条件及其时、空演变特征与资源评价.成都:成都理工大学,2013.
    徐志涛,黄蔚,胡新中,等.重庆市酉阳-彭水地区萤石、重晶石矿床地质特征与找矿前景.资源环境与工程,2012,26(1):5~13.
    许成,黄智龙,漆亮,等.四川牦牛坪稀土矿床萤石REE配分模式的影响因素.矿物学报,2001,21(3):556~559.
    许成,黄智龙,漆亮,等.四川牦牛坪稀土矿床成矿流体来源与演化初探-萤石稀土地球化学的证据.地质与勘探,2001.37(5):24~28.
    许东青,聂风军,刘妍,等.内蒙古敖包吐萤石矿床的Sr、Nd、Pb同位素地球化学特征.矿床地质,2008,27(5):1~16.
    许东青,聂凤军,江思宏,等.内蒙古敖包土萤石矿床地质和地球化学特征.地球学报,2008,29(4):440~450.
    许东青,聂凤军,钱明平,等.苏莫查干敖包超大型萤石矿床的稀土元素地球化学特征及其成因意义.矿床地质,2009,28(01):29~41.
    许志琴,侯立玮,王宗秀,等.中国松潘——甘孜造山带的造山过程.地质出版社.1992:1~190.
    闫飞,夏学惠,徐少康,等.浙江八面山萤石矿床流体包裹体地球化学研究.化工矿产地质,2010,32(04):215~220.
    颜仰基,吴应林.巴颜喀拉——川西边缘前陆盆地演化.岩相古地理,1996,16(3):16~29.
    杨道正.对鄂北早寒武世重晶石矿与生态关系探讨.湖北地质,1993,2:32~38.
    杨富全,王义天,毛景文,等.新疆阿合奇县布隆石英重晶石脉型金矿地质特征和硫、氦、氨同位素研究.地质论评,2004,1:87~95.
    杨剑,易发成.黔北下寒武统黑色岩系元素赋存状态及富集模式.矿物学报,2012,32(2):281~287.
    杨剑.黔北地区下寒武统黑色岩系形成环境与地球化学研究:[博士学位论文].西安:长安大学,2009,92~101.
    杨科伍,代祥芬,滕跃余,等.贵州木油厂层控汞矿床成矿机理.见:严钧平主编.贵州汞矿地质.北京:地质出版社.1989,57~98.
    杨耀民,方维萱.陕西大西沟重晶石菱铁矿-银硐子银铜铅多金属特大型矿床成矿成晕模式.有色金属矿产与勘查,1999,2:599~605.
    杨子荣,刘敬党,孙祥,等.阜新萤石成矿区稀土元素地球化学特征及指示意义.现代地质,2008,22(5):751~756.
    余洪云.贵州天柱大河边重晶石矿床地质特征及找矿方向.贵州地质,1988,5:1~9.
    翟德高,王建平,刘家军,等.内蒙古甲乌拉银多金属矿床成矿流体演化与机制分析.矿物岩石,2010,(2):68~76.
    张宝琛,覃功炯,王凤阁.辽宁省岫岩县东堡子金矿流体包裹体研究.现代地质,2002,16(1):26~30.
    张德会,徐九华,余心起,等.成岩成矿深度:主要影响因素与压力估算方法.地质通报,2011,30(1):112~125.
    张良旭,陈怀录,吕鸿图,等.马衔山萤石矿床层控属性及矿床成因.兰州大学学报,1988,24(3):100~107.
    张寿庭,帅德权,徐旃章,等.新类型金矿-萤石型金矿的矿石学研究.黄金地质,1997,3(2):13~16.
    张文淮,陈紫英.流体包裹体地质学.武汉:中国地质大学出版社.1993,1~87.
    张星垣.川东南重晶石-萤石层控矿床的地质构造特征.中国区域地质,1988,(4):369~373.
    张兴阳,顾家裕,罗平,等.塔里木盆地奥陶系萤石成因及其油气地质意义.岩石学报,2006,22(8):2220~2228.
    章永加.浙江武义盆地萤石矿成因分析.成都理工学院学报,1996,23(04):48~51.
    章雨旭,王惠章,谢良珍.中国非金属矿产分布及主要成矿特征.中国区域地质,1994,3:205~210.
    赵省民,聂凤军,江思宏,等.内蒙古东七一山萤石矿床的稀土元素地球化学特征及成因.矿床地质,2002,21(3):311~316.
    赵霞.塔里木盆地塔中45井及柯坪西克尔萤石成因的讨论.西北地质,2000,33(3):5~8.
    郑荣才,戴朝成,朱如凯.四川类前陆盆地须家河组层序-岩相古地理特征,地质论评.2009,55(4).
    钟德宏.五峰-宜都一带重晶石矿成矿规律及其成因探讨.湖北地质科技情报,1986,4:21-27.
    钟怡江.四川盆地东北部长兴组-飞仙关组沉积格局及层序充填结构研究:[硕士学位论文].成都理工大学,2009.
    重庆地质矿产研究院.重庆市矿产资源潜力评价萤石重晶石资源潜力评价成果报告.重庆:重庆地质矿产研究院,2012.
    周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床.地质地球化学,1997,1:65~75.
    周卫宁,付金宝,李达明.广西大厂拉么矿区萤石的稀土元素特征.矿产与地质1986,(1):52~56.
    朱东亚,胡文瑄,宋玉才,等.塔里木盆地塔中45井油藏萤石化特征及其对储层的影响.岩石矿物学杂志,2005,24(03):205~215.
    朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源.地学前缘,2006,(02):25~36.
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报,2003,19(2):314~318.
    朱进兴.麻弯同成断裂特性及其找矿意义.四川地质科技情报,1991,2,21~26.
    邹灏,徐旃章,张寿庭,等.重庆彭水地区火石垭重晶石-萤石矿床控矿因素与成因.成都理工大学学报(自然科学版),2013,40(1):369~373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700