用户名: 密码: 验证码:
盐湖盆地相控砂体预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜江凹陷潜江组地层由碎屑岩、碳酸盐岩和盐岩等岩性所构成,该岩性组合形成于半咸水、咸水条件下的内陆盐湖环境,主要以砂泥互层和盐韵律为主,共发育193个盐韵律。受北部单向物缘的控制,潜江凹陷潜江组主要发育陡坡扇、三角洲、滩坝以及盐湖相沉积体系,总体具有北部半盆砂的特点。潜江凹陷是江汉盆地油气最富集的富烃凹陷,勘探成果表明,潜江组具有全层系含油的特点,其中以Eq31、Eq32、Eq41、Eq43油气最为富集。研究区砂岩薄,储层横向变化快,且岩性组合复杂,导致地震储层预测及岩性油藏的识别难度大。同时,国内外对于陆相湖盆沉积体系的影响因素和沉积体系类型已形成了一套完整的理论体系,但对盐湖盆地沉积体系的影响因素、分布规律还处于不断认识阶段,导致对盐湖盆地岩性油藏的成因机制、分布规律难以把握。本文以江汉盆地这个典型的盐湖盆地为研究对象,采用相控储层建模方法预测砂体的展布特征,以期为江汉盆地潜江凹陷的勘探开发提供指导,同时为国内外相类似的盐湖盆地砂体预测研究奠定基础。
     本文以地震属性分析、储层预测的理论为基础,以江汉盆地潜江凹陷为研究对象,针对潜江凹陷盐湖沉积盐韵律发育、岩性类型多样、岩性组合多样的特点,采用地质与地震相结合的相控储层预测的方法完成潜江凹陷潜江组储层预测。具体的研究内容包括:通过岩心观察、测井曲线特征分析、地球化学指标特征分析等手段,划分研究区潜江组层序地层单元,搭建精细等时地层格架;通过岩心的精细描述、测井相分析总结研究区目的层段发育的沉积相类型及其特征,剖析层序格架内沉积相的展布特征和演化规律;根据岩石物理特征的分析,结合井、地震资料寻找储层预测的敏感参数,优选储层预测方法;通过模型正演分析不同岩性组合、不同成因砂体的地震响应特征,以此为基础划分有利地震相带,以有利相带约束地震属性和地震反演;最后根据构造、沉积的研究成果,结合相控储层预测的结果,圈定有利沉积相带发育的储层,寻找和识别岩性圈闭。
     本次论文研究主要采用了地震属性分析、波阻抗反演、密度与伽马参数反演以及叠前弹性参数反演等多种方法进行储层预测。论文通过对储层不同属性的的响应特征分析,优选出敏感属性进行预测。借此剔除不能真实反映储层信息的属性,保存真实信息,并根据各种参数之间的相关性,优选参数以减少参数空间中的信息冗余度。通过分析,研究区的最大振幅和瞬时频率属性可以较好地刻画出厚储层的分布。本次研究还对不同反演方法进行了评价和优选。分析表明,绝对波阻抗反演适合于大工区和厚层砂体预测,与地震属性相关性好;随机模拟和非线性约束反演适用于薄层的预测,其中非线性约束反演对井控程度的要求低,适用范围更大,同时确伴随着分辨率的提高,多解性问题增强;构造一测井非线性反演综合了测井约束反演和模型法反演的优点,既解决了单一的井约束反演方法中低频趋势的选取问题,同时又克服了模型法反演中给定初始模型的问题,采用了非线性约束反演算法,具有较高的分辨率。其预测结果不因井的是否参与而发生大的变化,薄层的可预测性较强;叠前反演利用的信息最为丰富,适用于复杂岩性的识别与预测,要利用的信息的丰富同时也带来影响因素增多,如:地震资料采集时的偏移距、叠前信噪比、保真度、全波列测井的缺乏等问题都直接影响反演效果。
     论文主要取得了如下成果认识:
     1.应用钻井取芯资料、测井资料、岩性组合、地震的波组反射特征标志和其它辅助标志,识别基准面旋回界面,探讨了盐湖盆地层序界面的识别方法。在综合分析的基础上,将潜江组划分为1个二级层序、8个三级层序,其中每个三级层序又细化为2-24个短期基准面旋回。建立了潜江凹陷北部陡坡带、南部缓坡带等不同单元的层序模式。
     2.通过层序演化特征的分析,认为盆地发育早期,受潜北断层的控制,盆地总体呈北低南高半地堑结构,断陷期的湖盆层序的发育受古构造和古地理背景的影响,层序及其内部体系域的展布特征在南北向与东西向有很大差别,低位体系域的分布、层序样式各不相同。盆地发育中期,北部边界断层持续活动,但强度逐渐减弱,构造演化使凹陷古地形总趋势呈北低南高,在此古地理背景上,南北向地震上,北部受断层及物源的控制,各体系域被断层断缺,且向北有地层的减薄,在北部断坡带主要发育较互层砂岩与泥岩的互层沉积,而沉积中心发育较厚层盐岩与泥岩以及薄层砂岩与泥岩的互层沉积,因而地震反射比下部层序有所增强,且反射相对较连续。在盆地发育晚期,由于盆地整体抬升,盆地的沉降幅度变小,整个湖盆已变得非常平缓,在横向上层序的厚度变化比下部层序明显减小。湖盆水体浓缩程度已达到最大,在盐湖中心主要沉积大套厚层盐岩,而盆地边缘也主要沉积细粒物质,由于与下部层序的岩性差别较大。
     3.根据层序发育的沉积—构造背景不同,潜江组内的层序结构可分为断折带和弯折带等两种层序发育模式。在凹陷北部,由于受断层影响,地层表现为断缺,主要为断坡带层序发育模式;而在凹陷西斜坡则以一系列的地层超覆为特征,主要为弯折带层序发育模式。从层序的发育时间来看,早期的Sm1~sm5层序主要为断坡带模式,晚期的sm6~Sm10层序主要为弯折带模式。断坡带层序模式表现为单断阶式,断坡带的下降一侧(潜北断裂的下降盘)既是低位域的沉积区,又限制了各体系域的沉积边界范围,该区往往发育的陡坡低位扇体和高位扇三角洲侧向相连成裙状,由于其坡度大,造成相带窄、变化快,三角洲前缘砂体常直接插入盐湖中,砂岩直接相变到盐岩。由于北部断坡带的陡断性,近物源区的突发强物源间歇供给,使得断坡带内在高位和低位体系域中发育陡坡扇三角洲沉积,而湖侵体系域常发育重力流砂体。弯折带的层序发育模式则表现在弯折带地层厚度的差异,弯折带上部,沉积旋回明显减少,低位体系域一般在弯折带部位向西超覆尖灭;而弯折带下坡度突然加大,各层序的厚度明显增加,沉积旋回增多,低位、湖侵和高位体系域发育齐全;整体看来弯折型模式在地层格架上呈向东侧散开的扇形。
     4.受盆地基底北西走向断裂的影响,潜北断层上升盆总体呈盆-岭结构,该构造形态控制了区内物源的入口。同时,潜北断层雁列式展布的特征产生了多个构造调节带,这些构造调节带是研究区潜江组沉积时期北部物源的主要入口。盆缘构造活动的强弱及古气候特征控制了潜江组物源的规模。受盆地构造形态及古气候的影响,研究区主要发育浅水三角洲—盐湖相沉积体系。总体而言,砂体在湖盆的分布范围与膏泥岩、盐岩的分布范围呈此消彼长的关系;纵向上自下而上湖盆水体总体逐渐变浅,砂体逐渐发育。随着气候干-湿的变化,以及物源供给的影响,潜江组各段地层沉积具有明显的旋回性,同时,砂岩发育程度也具有旋回性。
     5.潜江凹陷潜江组盐湖的盐岩沉积并非全部是典型的SS型蒸发盐建造,而是由多种成因类型的盐岩组成的。潜江组下部旋回主要是一种在高盐度的连续水体条件下的成盐环境,主要反映了盆地沉降速度快、补给速度较高时期沉积的深水盐岩的特点。而潜江组上部旋回,及其上覆的荆河镇组和广华寺组,则主要是由于盆地干涸或近于干涸时期的沉积产物。
     6.通过对不同岩石的物理参数(声波速度、密度、波阻抗和伽马)变化规律进行总结,认为就速度值而言,泥膏岩速度值最大,其它岩性速度叠置严重,区分性差;就密度值而言,ρ盐岩<ρ渗砂<ρ泥岩、泥膏岩、干砂,渗透性砂岩与其它岩性的可分性好;而波阻抗值表现出Z盐岩     7.通过地震属性分析、地震相分析、地震反演、时频分析等方法的应用,对主要目的层进行储层预测,结合古构造面貌、沉积微相和已钻井小层数据,预测了Eq341的储层平面展布规律,并对广38-6井的沉积微相类型进行了重新解释和认识。
     8.在地震预测模型建立的基础上,应用地震属性分析、地震相分析等方法清晰地刻画厚层砂岩。应用属性分析和地震相分析识别出厚砂岩和可能的薄砂岩;在通过地质上划分出大致的岩性相带内,应用频谱成像分析方法、叠后波阻抗和密度反演、叠前反演提取区别岩性的弹性阻抗参数等方法识别薄层砂岩。
     9.通过对研究区沉积古地貌及沉积微相的精细刻画,认为潜江凹陷潜江组沉积时期具备形成岩性圈闭的有利的条件,发育河道、河口坝以及滩坝等多种类型的岩性圈闭。在总结岩性圈闭发育特征的基础上,建立了本区岩性圈闭的发育模式,预测了有利的岩性圈闭发育区带,并对重点的岩性圈闭进行了评价。研究表明,利用相控储层预测在潜江凹陷成功预测处广北河道、河口坝及滩坝等储层的展布特征,发现一批岩性、构造-岩性圈闭,其中广38-6井钻探的岩性圈闭获得高产工业油流,取得了良好的应用效果。
Qianjiang Formation of Qianjiang Depression is composed of clastic rocks, carbonate rocks and salt rock. The strata deposited in inland salt lake environment under brackish water or salt water conditions, its deposition mainly includes sandstone&mudstone interbed and salt rhythms which developed a total of193. Controlled by northern unidirectional material source, Qianjiang Formation of Qianjiang Depression mainly developed steep slope fan, delta, beach bar and salt lake facies sedimentary system,overall its northern part has a characteristic of "half-basin-wide sand-Bearing". Qianjiang Depression is the richest Hydrocarbon-rich Depressions of oil and gas in Jianghan Basin.The exploration results show that all layers of Qianjiang Formation have a characteristic of oil-bearing, among which Eq31, Eq32, Eq41and Eq43are the most enriched layers. In research area, the sandstone reservoir is thin and the lateral variation of sand body is quick; meanwhile due to the existence of sault rhythm,there form Multiple sets of wave impedance interface and multiple reflection characteristics of sault rock, sandsone, mudstone and so on, bringing comparatively large difficulties to the recognition of lithological reservoir by using seismic data. At the same time, there has already formed a complete theoretical system for the influencing factors and depositional system types of continental lacustrine basin depositional system at home and abroad, but the influencing factors and distibution rules of salt lake basin depositional system are still in continuous research stage, making it difficult to grasp the formation mechanisms and distibution rules of salt lake basin lithology reservoir. This paper takes Jianghan Basin, a typical salt lake basin, as a research object, using facies-controlled reservoir modeling to predict sandbody distribution characteristics in order to provide guidance for the exploration and development of Qianjiang Sag, Jianghan Basin, and meanwhile lay foundation for sandbody prediction of similar salt lake basin at home and abroad.
     Aiming at salt rhythm development, various lithology types and multiple lithology associations of salt lake deposit in Qianjiang Depression, this paper based on Seismic attribute analysis and reservoir prediction theory takes Qianjiang Sag of Jianghan Basin as a research object, using facies-controlled reservoir modeling by combination of seismic and geology to accomplish reservoir prediction of Qianjiang Formation, Qianjiang Depression. The exact research include:divide sequence stratigraphic units of Qianjiang Formation in research area, and build fine isochronous stratigraphic framework by core observation, well logs characteristics analysis and geochemical indicators characteristics analysis; summarise sedimentary facies types and characteristics of target layer in research area, analyze Sedimentary facies distribution characteristics and evolution laws within the sequence stratigraphic framework by fine core description and log facies analysis; find reservoir prediction sensitive parameters with wells and seismic data, and pick preferred reservoir prediction method according to petrophysical characteristic analysis; analyze Seismic response characteristics of sandbody with different lithology associations and genesis by forward modeling, as a basis for dividing favorable seismic facies belts, conducting favorable facies constrained seismic attributes analysis and seismic inversion; at last according to structure and deposition research results, we delineate reservoir with favorable sedimentary facies belts developed, find and recognise lithology traps combining facies-controlled reservoir prediction results.
     The study mainly adopts seismic attribute analysis, wave impedance inversion, density and gamma parameter inversion and pre-stack elastic parameter inversion to conduct reservoir prediction. This paper analyzes reservoir response characteristics of different attributes, and pick preferred sensitive attributes for prediction. In this way, we eliminate attributes which cannot truly reflect reservoir information, save real information, and pick parameters according to correlation between various parameters so that we can reduce information redundancy in parameter space. Through analysis we find that the maximum amplitude and instantaneous frequency attributes can better depict thick reservoir distribution. This study also evaluates and picks different inversion methods. The analysis shows:Absolute acoustic impedance inversion is suitable for a large work area and thick san dbody forecast, correlates well with seismic attributes; stochastic simulation and nonlinear constrained inversion are suitable for thin layer forecast, nonlinear constrained inversion has lower requirements for well-control degree and much bigger application scope, meanwhile multiplicity problems increase with the improvement of resolution; the structure-logging nonlinear inversion combine advantages of logging constrained inversion and modeling inversion, it not only solves the slection problem of low-frequency trends in single well constrained inversion, but also overcome the problem of given initial model in modeling inversion, and the application of nonlinear constrained inversion algorithm provide higher resolution, its prediction results will not change a lot whether well datas participate in computing or not and have strongger predictability for thin layers; the pre-stack inversion suits for complex lithology recognition and prediction, it uses the most abundant information bringing the increase of influencing factors at the same time, for example, offset of seismic data acquisition, prestack signal-to-noise ratio, fidelity and lack of full wave logging all can influence the inversion effects directly.This paper mainly acquired achievements below:
     1. Applying drilling coring datas, logging datas, lithology associations, seismic wave reflection characteristics signsand other auxiliary signs to recognise base-level cycle interface and discuss recognition method of salt lake basin sequence interface. On the base of comprehensive analysis, we divide Qianjiang Formation into one second-order sequence and eight third-order sequences, and each third-order sequence is divided into2-24short-term base-level cycles. Thus we build sequence modes of different units like northern steep slope zone and southern gentle slope zone in Qianjiang Depression.
     2. Through the analysis of sequence evolution characteristics, we think that in the earlier period of basin development, the Qianbei Fault in northern depression activated strongly, the basin bottom was northwestwardly half-graben and presented to be low in the north and high in the south, the lake basin development in the fault-depression stage was affected by paleostructure and paleogeographic background, the distribution characteristics of sequence and its internal system tracts vary a lot between the north-south and east-west, and so are the distribution and sequence patterns of lowstand system tract. In the medium-term stage of basin development, the northern boundary faults had been activating continuously, but its intensity gradually decreased, the structure evolution made the general trend of the depression paleotopography to be "north-low and south-high", under this paleogeographic background, in north-south trending, controlled by faults and provenance each system tract of the northern part was breaked by faults and the formation thickness decreased northward, in north fault slope zone there mainly developed sandstone and mudstone interbed deposition, and in depocenter there developed thick layer of salt rock and mudstone, along with thin sandstone and mudstone interbed, thus the seismic reflection was strengthened in compare with lower sequence and the reflection was relatively continuous. In the late period of basin development, the basin sedimentary magnitude diminished as the basin uplifted integrally, the whole lake basin had already become very flat, and in the traverse direction the changes of sequence thickness diminished obviously inayompare with the lower sequence. The concentration degree of the lake basin water had already reached the maximum degree, in the salt lake center there mainly developed large sets of thick layer salt rock, and due to the very defference with lower sequence lithology there maily developed fine material on the edge of the basin.
     3. According to the sedimentation-structure background differences of sequence development, the sequence structure within the Qianjiang Formation can be divided into two development models:fault break zone and bending zone. In the northern depression, influenced by faults, the formation presents to be missing and mainly belongs to the sequence development model of fault slope break zone; in the western slope of depression, it is characterized by a series of stratigraphic overlap and mainly belongs to the the sequence development model of bending zone. From the sequence development time, we can see that the early SⅢ1~ⅢS5sequence mainly belongs to fault slope break zone mode and the late SⅢ6~SⅢ10sequence mainly belongs to bending zone mode. The sequence model of fault slope break zone present to be single-step-fault. The down side of the fault slope break zone, on the one hand, is the deposition area of low stand system tract, on the other hand, it also limits the deposition boundary range of each system tract, the steep slope low stand fans and high stand fan delta developing in this area connect together laterally like a skirt shape,and due to the steep slope, the facies zone becomes narrow and changes quickly, the delta front sandbody often directly inserts into salt lake, and the sandstone directly change into salt rock in facies. As the northern fault slope break zone is steep and develops faults,and the sudden intermittent supply of strong sedimentary source in near-source area, there develops steep slope fan delta deposits in high and low system tract within the fault slope break zone, however, in lake transgression system tract there commonly develops gravity flow sandbody. The sequence development model of bending zone appears to be the big changes of sedimentary thickness of bending zone, commonly, in bending zone, the slope is mild, each sequence has thinner thickness and changes stably, the sedimentary cycle obviously decreases, the low stand system tract generally westward overlaps and pinches out in bending zone; but under the bending zone, the slope suddenly increases, the thickness of each sequence obviously increases and so are the sedimentary cycles, there completely develops low stand, lake transgression and high stand system tract; overall the bending model presents to be a fan shape spreading out eastward in stratigraphic framework.
     4. In Cretaceous period, the paleostructure of uplift and sag interval change, which was formed in the north of Qianjiang Depression, controlled the entrance of north provenance of Qinjiang Formation. The triple section structure of the Qianbei Fault and its saltative fault section caused multiple tectonic transformation zones, these zones were the main entrance of north provenance of Qianjiang Formation, Qianjiang Depression. The pre-existing regional tectonic framework and the Qianbei Fault controlled provenance entrance and scale of Qianjiang Formation. Under the control, in research area there mainly developed salt lake shallow-water delta——freshwater-brackish lake——salt lake depositional system. The distribution of delta front subfacies and salt lake facies presented to be a trade-off relationship, vertically, the general appearance was:from the bottom to top, the lake basin gradually became shallow, the sandbody developed, however, influenced by provenance supply and aqueous media condition, the deposition of each section within Qianjiang Formation had cyclicity which affected sandstone development.
     5. Not all salt rock deposition of Qianjiang Formation salt lake are typical "SS" evaporite formation, it is composed of salt rock with multiple genetic types. The lower cycle of Qianjiang Formation is mainly a kind of salification environment under continuous water condition with high salinity, it reflects the characteristics of deep-water salt rock in the period of high sedimentation velocity and recharge rate. The upper cycle of Qianjiang Formation, along with the overlying Jinhezhen Formation and Guanghuasi Formation are mainly the deposition of when the basin was dry up or nearly dry up.
     6. Through summarizing the variation regularity of different petrophysical parameters(acoustic velocity, density, wave impedance and gamma), we think, in terms of velocity, the velocity of gypsum mudstone is the biggest, the velocities of other rocks stack with each other seriously and distinguishes from each other badly; in terms of density, psalt rock     7. Through the application of seismic attribute analysis, seismic facies analysis, seismic inversion and time-frequency analysis, we proceeded reservoir prediction of main subject resevoir. Combining with paleostructure aspect, sedimentary micro-facies and sublayer datas of drilled wells, we predicted the reservoir plane distribution rules of Eq341, and again interpreted and researched the sedimentary micro-facies types of Guang38-6well.
     8. Based on the establishment of seismic prediction model, we apply methods like,seismic attribute analysis and seismic facies analysis to clearly depict thick layer sandstone. We apply attribute analysis and seismic facies analysis to recognise thick sandstone and possible thin sandstone; in the lithofacies belts divided roughly by geology, we pick up elastic impedance parameters which can distinguish lithology to recognise thin layer sandstone by applying spectral imaging analysis, post-stack wave impedance inversion, post-stack density inversion and pre-stack inversion.
     9. Through summarizing the lithological trap formation geological conditions in research area, we think that the present structure framework and sedimentary system characteristics of Qianjiang Formation had created favorable conditions for the formation and development of lithological trap, and thus leaded to the formation of various types of lithological trap. Based on the summary of lithological trap development characteristics, we establish the lithological trap development pattern of this area, predict the favorable lithological trap development zones and evaluate important lithological traps.
     The research showed that we successfully predicted the reservoir distribution characteristics of Guangbei river channel, debouch bar and beach bar by facies-controlled reservoir prediction in Qianjiang Depression, and finded out a number of lithological traps and structral-lithological traps, thereamong the lithological trap drilled by Guang38-6acquired high-yield industrial oil and got an good application effect.
引文
[1]卢明国,陈凤玲,刘俊等.江汉盐湖盆地沉积特征[J].中国矿业,2007,16(4):102-104.
    [2]庄东海.地震属性分析与四维地震方法研究及应用[D].武汉:中国地质大学,1999.
    [3]乐友喜.地震属性提取、分析与应用方法研究[D].北京:石油勘探开发研究院,2002.
    [4]邬长武.地震属性在塔中16-24井区奥陶系碳酸盐岩储层预测中的应用p].北京:中国石油大学,2001.
    [5]Alistair R. Brown.Seismic attribute and their classification[J].The Leading Edge,1996,15(10):1090
    [6]Quincy Chen,Steve Sideney.Seismic attribute technology for reservoir forecasting and monitoring [J].The Leading Edge,1997,16(5):445-456.
    [7]Hirsche,K,Porter-Hirsche,Mewhort,L,et.The use and abuse of geostatistics[J]. The Leading Edge,1997,16(5):253-258.
    [8]Kailomey,C.T.Potential risks when using seismic attributes as predictors of reservoir properties[J].The Leading Edge,1997,16(3):247-251.
    [9]何碧竹.利用多元地震属性预测储层信息[J].石油地球物理勘探,2003,38(3): 258-262.
    [10]张建宁,于建国.地震属性应用中的不确定性分析[J].石油物探,2006,45(4):373-379.
    [11]曹辉.关于地震属性应用的几点认识[J].勘探地球物理进展,2002,25(5):18-22.
    [12]Basin, Kazakhstan, J. Thorseth, G. Riley.Us:3D seismic interpretationusing the coherence cube:An example from the south Embra Precaspian[J].The Leading Edge, 1997,16(60):907-909.
    [13]Wang Yonggang,Zhang Junhua,Zhao Yong.A study on fault structure using coherence body technology[J].GEOTECTONICA et METALLOGENIA,2000,24(1):49-55.
    [14]刘雯林.油气田开发地震技术[M].北京:石油工业出版社,1996.
    [15]刘企英.利用地震信息进行油气预测[M].北京:石油工业出版社,1994.
    [16]Juliana M.TEBO.Use of volume-based three-dimensional seismic attribute analysis to characterize physical property distribution:A case study to delineate reservoir heterogeneity at the Appleton Field,SW Alabama[M].March,2003.
    [17]Rasheed Abdelkareem Jaradat.Prediction of reservoir properties of the N-sand, Vermilion Block 50, Gulf of Mexico, from multivariate seismic attributes[M].March,2004.
    [18]Hart B.S., Balch R.S.Approaches to defining reservoir physical properties from 3-D seismic attributes with limited well control:An example from the Jurassic Smackover Formation, Alabama[J].Geophysics,2000,65(2):368-376.
    [19]Bruce Hart,Marc Andre Chen.Understanding seismic attribute through forward modeling[J].The Leading Edge,2004,20(4):834-841.
    [20]Brown,R.A.Understanding seismic attributes[J].Geophysics,2001,66(1):46-49.
    [21]Schuelke, J.S,Quirein,J.A.Validation:A technique for selecting seismic attributes and verifying results[J].68th Ann.Internat.Mtg.,Soc.Expl.Geophys. Expanded Abstracts,1998,936-939.
    [22]仝兆岐.储层地震技术新进展[M].东营:石油大学出版社,2004.
    [23]陈遵德,朱广生.地震储层预测方法研究进展[J].地球物理学进展,1997,12(4),76-84.
    [24]刘宪斌,林金逞,韩春明等.地震储层研究的现状及展望[J].地球学报,2002,23(1),73-78.
    [25]Withers R,Ozdemir H.Seismic tools for reservoir management[J].Oil field Rev 1999,7(4),4-17.
    [26]何汉漪.二十一世纪的地震勘探技术[J].地学前缘,2000,7(3),267-273.
    [27]穆龙新,贾爱林,陈亮等.储层精细研究方法[M].北京:石油工业出版社,2000.
    [28]熊翥.我国物探技术的进步及展望[J].石油地球物理勘探,2003,38(5):565-578.
    [29]姚姚,詹正彬,钱绍湖.地震勘探新技术与新方法[M].武汉:中国地质大学出版社,1991.
    [30]张剑秋,张福炎.地球物理勘探可视化工作的挑战与机遇[J].石油地球物理勘探,1997,32(6),884-888.
    [31]曲寿利,王鑫.国内外物探技术进步与展望[M].北京:石油工业出版社,2003.
    [32]马在田.关于油气开发地震学的思考[M].油气地球物理,2004,2(1),1-5.
    [33]王捷.油藏描述技术-勘探阶段[M].北京:石油工业出版社,1996.
    [34]杨勤勇,徐丽萍.地震勘探技术新进展[J].勘探地球物理进展,2002,25(1):5-10.
    [35]Barnes, A. E.2003, Shadded relief seismic attribute[J].Geophysics,Soc.of Expl. Geophys,68,1281-1285.
    [36]Batzle,M.and Wang,Z.2000,Seismic properties of pore fluids, Seismic and acoustic velocities in reservoir rocks[J].Soc.of Expl Geophys,329-341.
    [37]赵政璋,赵贤正,王英民.储层地震预测理论与实践[M].北京:科学出版社,2005.
    [38]陈开远,何胡军,柳保军等.潜江凹陷潜江组古盐湖沉积层序的地球化学特征[J].盐湖研究,2002,10(4):22-23.
    [39]黄春菊,陈开远,杨香华.盐湖盆地层序地层特征[J].石油与天然气地质,2002,23(2):134-138.
    [40]李春荣,陈开远,柳保军等.盐湖盆地沉积与油气形成的关系[J].西部探矿工程,2004,96(5):46-49.
    [41]柳保军,陈开远,史忠生等.潜江凹陷盐湖沉积储集层分布预测[J].石油勘探与开发,2004,31(2):74-80.
    [42]徐怀大,王世凤,陈开远.地震地层学解释基础[M].武汉:中国地质大学出版社,1990.
    [43]方志雄,陈开远,柳保军.潜江盐湖地球化学特征及其沉积母源探讨[J].江汉石油学院学报,2003,25(3):20-21.
    [44]方志雄,陈开远,杨香华等.潜江盐湖盆地层序地层特征[J].盐湖研究,2003,11(2):14-23.
    [45]王必金.江汉盆地构造演化与勘探方向[D].武汉:中国地质大学,2006.
    [46]沈尚峰.江汉盆地江陵凹陷的构造格架和演化[D].武汉:中国地质大学,2008.
    [47]漆家福等.油区构造解析[M].北京:石油工业出版社,2006.
    [48]杨长清.江陵凹陷构造特征形成演化及其与油气聚集的关系[D].成都:成都理工大学,2005.
    [49]戴世昭.江汉盐湖盆地石油地质[M].北京:石油工业出版社,1997.
    [50]王典敷,汪仕忠等.盐湖油田地质[M].北京:石油工业出版社,1998.15-54.
    [51]刘春平,朱国华.江汉盆地构造演化与古潜山油气成藏[J].石油天然气学报(江汉石油学院学报),2006,28(3):174-17.
    [52]王必金,林畅松,陈莹等.江汉盆地幕式构造运动及其演化特征[J].石油地球物理勘探,2006,41(2):226-230.
    [53]T.A.Cross,M.R.Maker.Applications of High-resolution Sequence Stratigraphy to Reservoir Analysis.In:Proceedings of the 7th Exploration and Production Research Conference,1993, Paris,11-13.
    [54]Posamentier H W, Vail P R.Eustatic controls on clastic deposition Ⅱ-sequence and systems tract models.In:Wilgus C W, et al, eds. Sea Level Changes:An Integrated Approach.SEPM Special Publication,1998,42:125-154.
    [55]Hag RV et al. Mesozonic and Cenozoic Chronostratigraphy and Cycles of Sea-level Change.In:Wilgus C K et al Ed Sea level changes:an integrated approach S1988, Pub 42, 71-108.
    [56]Vail P R, Mitchum R M, ThompsonⅢS.Seismic stratigraphy and global changes of sea level, Part3, relative changes of sea level from coastal onlap.In:Payton C E, ed.Seismic Stratigraphy Application to Hydrocarbon Exploration.AAPG Memoir,1977,26:63-82.
    [57]Van Wagoner J C, Posamentier H W, Mitchum R M. An overview of the fundamental of sequences stratigraphy and key definition In:Wilgus C K et al Ed Sea level changes:an integrated approach SEPM Spec Pub 1988,42,39-45.
    [58]Vail P R, Mitchum RM,Thompson S.Seismic Stratigraphic and Global Changes of Ses Level[C].In:Proceedings of Northwestern Europian Sequence Stratigraphy Congress,1994.
    [59]Banners J L.Application of trace element and isotope geochemistry of strontium of carbonate to studies of carbonate diagenesis[J].Sedimentology,1995,42(5):805-824.
    [60]孙镇城,杨藩,张枝焕等.中国新生代咸化湖泊沉积环境与油气生成[M].北京:石油工业出版社,1997.
    [61]徐昶.中国盐湖粘土矿物研究[M].北京:科学出版社,1993。
    [62]李春荣,陈开远.潜江凹陷盐湖层序地层岩石地球化学古环境研究[J].海洋石油,2004,24(3),25-29.
    [63]黄春菊,陈开远,杨香华.盐湖盆地层序地层特征[J].石油天然气地质,2002,23(2):134-138.
    [64]顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6-10.[65]胡受权,郭文平.论陆相盆地层序地层学理论体系及其研究思路[J].断块油气田,2001,8(5):1-7.
    [66]解习农,李思田.陆相盆地层序地层研究特点[J].地质科技情报.1993,12(1):22-24.
    [67]薛良清.层序地层学在湖相盆地中的应用探讨[J].石油勘探与开发.1990,17(6):29-34.
    [68]赵本书,赵追,韩朝阳等.盐湖盆地层序地层学综述[J].西北地质,2005,36(1):94-99.
    [69]胡光明,纪友亮,张亚京.陆相盐湖层序地层学研究简述[J].盐湖研究,2006,14(1):55-59.
    [70]黄春菊,陈开远,杨香华.盐湖盆地层序地层特征[J].石油与天然气地质2002,23(2):134-138.
    [71]陈克造.柴达木盆地察尔汗盐湖沉积特征及其古气候演化的初步研究[J].中国科学,1985,5:463-475.
    [72]柳保军,陈开远,史忠生等.潜江凹陷盐湖沉积储集层分布预测[J].石油勘探与开发,2004,31(2):74-80.
    [73]贾承造,赵文智,魏国齐等.盐构造与油气勘探[J].石油勘探与开发,2003,30(2):17-19.
    [74]汤良杰,余一欣,陈书平等.含油气盆地盐构造研究进展[J].地学前缘,2005,12(4):375-383.
    [75]杨长清.江陵凹陷盐构造及与油气聚集的关系[J].断块油气田,2004,11(3):426.
    [76]JACKSON M P A.Retrospective salt tectonics [A]. JACKSON M P A,ROBERTS D G, SNELSON S.Salt Tectonics:A Global Perspective[C].Oklahoma:AAPG,1995:1-28.
    [77]ROWAN M G,JACKSON M P A,TRUDGILL B D.Salt-related fault families and fault welds in the Northern Gulf of Mexico[J].AAPG Bulletin,1999,83(9):1454-1484.
    [78]BUCHANAN P G,BISHOP D J,HOOD D N.Development of salt-related structures in the Central North Sea:Results from section balancing[A].ALSOP G I, BLUNDELL D J,DAVISON I.Salt Tectonics[C].London:The Geological Society,1996:111-128.
    [79]Chen Quincy S.Seismic attribute technology for reservoir forecasting and monitoring [J]. The Leading Edge,1997,16(5):445-456.
    [80]阳飞舟,崔永福,李青.地震属性分类及其应用[J].内蒙古石油化工,2009,(2):94-97.
    [81]郭华军,刘庆成.地震属性技术的历史、现状及发展趋势[J].物探与化探,2008,32(1):19-22.
    [82]邸海滨,郭玉倩,刘喜武.基于稀疏约束贝叶斯估计的相对波阻抗反演[J].石油物探,2011,(2):124-128.
    [83]姚建阳.用地震道积分方法提高地层的识别能力[J].石油物探,1990,29(1):40-49.
    [84]张铭,张文起,徐海霞等.AVO约束稀疏脉冲反演技术在濮城油田储层预测中的应用[J].石油天然气学报,2012,(4):78-82.
    [85]许名文,姜瑞波,雷新华等.稀疏脉冲波阻抗反演技术在储层预测中的应用[J].油气地球物理,2011,9(2):24-27.
    [86]沈林克.塔里木盆地北部地震地层解释与油气检测[M].武汉:中国地质大学出版社,1993:35-80.
    [87]兰素清,陆明华.多种地球物理方法组合在储层预测中的应用[J].勘探地球物理进展,2002,25(6):43-46.
    [88]吴胜各,金振奎.储集层建模[M].北京:石油工业出版社,1999.
    [89]Haa S A, Dubrule O G. Eostatistical inversion -A sequentialmethod for stochastic reservoir modeling constrained by seismic data [J].First Break,1994,13(12):25.
    [90]Rothman D H.Geostatistical inversion of 3D seismic data for thinsand delineation[J].Geophysics,1998,51(2):332.
    [91]张永刚.地震波阻抗反演技术的现状和发展[J].石油物探,2004,41(4):385-390.
    [92]徐立恒,陈显森,姜岩等.不同变差函数变程下随机反演与随机模拟对比分析[J].物探与化探,2012,36(2):224-227。
    [93]伍鹏,陈学华,贺振华等.基于小波分频的地震资料相干属性对比分析[J].长江大学学报 (自然科学版),2011,8(1):39-42.
    [94]Portniaguine O.Castagna J P.Inverse spectral decom-position[J].Expanded Abstracts of 74th Annual Inter-nat SEG Mtg,2004:1786-1789.
    [95]Vetterli M.Herley C.Wavelets and filter banks:theory and design[J].IEEE Transactions on Signal Processing,1992,40(9):2207-2232.
    [96]郭刚明,时立彩,高生军等.小波变换在地震资料处理中的应用效果分析[J].石油物探,2003,42(2):237-270.
    [97]范留明,黄润秋.地震动信号的小波分析[J].物探化探计算技术,2000,22(1):1-4.
    [98]熊冉,高亮,杨姣等.曲线重构反演在储层横向预测中的应用[J].西南石油大学学报(自然科学版),2012,(1):83-89.
    [99]卢秀华,虞云岩,王丽恒.曲线重构反演在SN21井区头屯河组储层预测中的应用[J].石油天然气学报,2012,34(1):51-57.
    [100]Alavrez G. and Larner K.Relative performance of move out-based multiple-suppression methods for amplitude variation with offset (AVO) analysis and common midpoint (CMP) stacking [J].Geophysics,Soc.of Expl.Geophys,2004,69,275-285.
    [101]Russell B,Hedlin K, Hilterman F.Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J], Geophysics, Soc. of Expl.Geophys,2003,68,29-39.
    [102]胡伟光.AVO技术在生物礁储层预测中的应用[J].中国西部科技,2012,(3):7-8.
    [103]田杰,汪忠德,陈杰等.地震AVO正演和反演分析的方法及其应用[J].内蒙古石油化工,2007,(5):221-223.
    [104]胡勇,陈恭洋,周艳丽.地震反演资料在相控储层建模中的应用[J].油气地球物理,2011,9(2):41-43.
    [105]胡望水,张宇煜,牛世忠等.相控储层地质建模研究[J].特种油气藏,2010,17(5):37-39.
    [106]杨占龙,陈启林,郭精义等.“三相”联合解释技术在岩性油气藏勘探中的应用[J].天然气地球科学,2007,18(3):370-374.
    [107]顾家裕.沉积相与油气[M].北京:石油工业出版社,1994.
    [108]Barnes A E. Seismic attribution in your facies.CSEG Recordor,2001:41-47.
    [109]郭伟,马小刚,何顺利等.相分析技术在岩性油气藏储层预测中的应用—以鄂尔多斯盆地D16井区为例[J].勘探技术,2010,(5):33-36.
    [110]郑有恒.江汉盆地潜江凹陷[J].石油实验地质,2010,32(4):330-346.
    [111]王芳,赵新生,田继军.江汉盆地潜江凹陷岩性油藏规律研究[J].西部探矿工程,2011,(11):53-60.
    [112]方志雄.江汉盆地隐蔽油藏成藏主控因素及勘探方向[J].石油与天然气地质,2006,27(6):805-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700