用户名: 密码: 验证码:
磁场重联中的低频波动和绝热动力学阿尔芬孤立波
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究磁场重联中的低频波动和绝热过程中的动力学Alfven孤立波。
     1.在磁场重联低频波动方面的主要工作包括:
     磁场重联在空间等离子体中扮演重要角色,它可以有效地转移和转化等离子体的物质、动量和能量。空间等离子体中的许多爆发现象以及太阳风和地球磁层的相互作用都与磁场重联有关。磁场重联与波动有紧密联系。波动可能是触发重联的因素之一,而重联过程中磁力线拓扑结构的改变和高速粒子的产生都是激发波动的重要来源。在本文中,主要研究重联激发的低频波动特性。
     本文采用二维三分量混杂模拟程序模拟了重联过程。在重联达到准稳态后的随体坐标中,利用快速傅里叶分析法研究了波动的频谱特性,利用最小方差分析法研究了波动的传播方向和偏振特性。通过研究不同重联区域的波动,给出了波动的空间分布特性。并结合观测讨论了本文的研究结果。
     本文研究结果表明:重联区的低频波动以Alfven离子回旋波为主,其频率主要集中在0-1个离子回旋频率之间,偏振特性为左旋。其中入流区波动以小振幅的Alfven离子回旋波为主,传播方向以沿磁场方向为主,频率较高,其主峰常常高于0.5个当地离子回旋频率;而出流区波动以大尺度的湍动为主,振幅较大,频率较低,主要集中在0-0.6个当地离子回旋频率之间,其旋转特性相对较杂乱。由此推测重联可以产生左旋低频Alfven波,并提供了一些磁尾和极区的观测证据。本文还结合其他采用混杂模拟研究波动传播的文章,讨论了本文研究结果的可靠性,解释了本文结果与观察出现不同的原因。
     另外本文的研究结果还表明出流区大尺度的湍动会引起部分Hall重联四极结构的分布出现部分翻转,这可以解释卫星观测到的一些与Hall理论相反的数据点。
     2.在绝热动力学Alfven孤立波方面的主要工作包括:
     动力学Alfven孤立波(SKAWs)伴随有密度扰动和平行于磁场方向的电场扰动,是空间等离子体物理的重要研究内容之一。SKAWs可以解释空间等离子体中观测到的强电磁扰动,其平行电场对等离子体中波粒相互作用和磁层-电离层耦合有重要意义。已有大量文章从观测、理论和数值模拟方面对SKAWs进行了研究。为了简化数学分析,以往许多关于SKAWs的研究都采用了等温假设。但是事实上在不同的等离子体中热力学过程并不相同。许多研究表明在不同的空间等离子体区域,绝热指数的取值各不相同,甚至在同一地区的不同方向绝热指数也会不同。因此,研究不同热力学过程中绝热指数对SKAWs的影响是有必要的。
     为此本文在绝热条件下对SKAWs进行了研究。本文从双流体模型出发,采用Sagdeev势方法,在小振幅近似下得到了SKAWs的解析解。并在相同参数下,数值分析了SKAWs的波形和扰动场随绝热指数的变化情况。通过对比绝热过程和等温过程中SKAWs的差别大小,分析了绝热指数对SKAWs的修正程度。
     本文的研究结果表明随着绝热指数的增加,SKAWs波形的振幅变小、宽度变大,其平行方向的扰动电场变小,垂直方向的扰动电磁场变大。而且相比于等温过程,绝热过程的修正是显著的。因而在太阳风或磁层极区的热等离子体中,需考虑绝热指数对SKAWs的影响,特别在估算平行电场对电子的加速效应时应考虑这一修正。
This thesis is focused on the the low-frequency waves in magnetic reconnection and solitary kinetic Alfven waves in an adiabatic process.
     1.Low-frequency waves in magnetic reconnection:
     Magnetic reconnection plays an important role in space plasma physics. It can ef-ficiently transfer and transform the material, momentum, and energy of plasmas.There are lots of eruptive activities in space plasmas and interactions between the solar wind and Earth's magnetosphere that relate to magnetic reconnection. Plasma waves are im-portant to magnetic reconnection. Because there is a possibility that magnetic recon-nection is triggered by some plasma waves, also lots of plasma waves can be excited during the magnetic reconnection process. This thesis focuses on the characteristics of the low-frequency waves that are produced by magnetic reconnection.
     A two-dimensional hybrid simulation code is carried out to simulate the magnetic reconnection process. In the coordinate moving with fluid, wave spectrums are obtained by the fast Fourier transformation of magnetic field component which are perpendicular to the magnetic reconnection plane, and wave propagation directions and polarizations are determined by the minimum variance analysis of the electric field.After the recon-nection becoming quasi-steady, the space distributions of waves are studied.
     The results show that low-frequency Alfven ion-cyclotron waves are dominating in reconnection area. The frequencies of these waves are between0and1local proton gyrofrequency, the polarizations are all left-handed. In the inflow regions the dominant waves are Alfven ion-cyclotron waves with smaller amplitudes and propagation direc-tions mainly along the ambient magnetic field, these waves have higher frequencies, the main peaks of spectrums are usually higher than half of the local proton gyrofrequency. The large amplitude turbulence with frequency of0-0.6local proton gyrofrequency and isotropic propagation direction dominates in the outflow regions. We believe that the magnetic reconnection can produce Alfven waves, and some observational evidences are presented. A comparison of our results with another paper which investigates wave propagation with hybrid code is carried out to prove the correction of our results and explain the observations.
     The large-scale turbulence in the outflow regions can affect the Hall quadrupole structure distribution and produce some inverted distribution which agrees with some of the observations.
     2. Solitary kinetic Alfven waves in an adiabatic process:
     Solitary Kinetic Alfven Waves (SKAWs) are important in the field of space plas-ma physics because of their nonzero parallel electrical fields and density fluctuations. SKAWs play significant roles in wave-particle interaction and magnetosphere-ionosphere coupling. They have been investigated extensively through observation and theoretic-s with a focus on charged particle acceleration and heating. However, those studies were done under the simplifying assumption that the whole process was an isothermal process.In reality, the adiabatic index varies significantly under different plasma con-ditions. Therefor it is necessary to investigate the influence of changing adiabatic index on the SKAWs.
     Under different thermodynamic processes, SKAWs with the limit of small ampli-tudes are studied analytically and numerically by the method of the Sagdeev potential. The results show that as the adiabatic index increases, the amplitude of the solitary struc-ture and perturbed electric field along the background magnetic field direction reduce, the width of the solitary structure and perturbed electromagnetic fields which are per-pendicular to the background magnetic field direction increase. The results also show that the modifications of an adiabatic process to the isothermal process is significan-t. Therefor it is necessary to consider the modifications in plasmas where the electron thermal effect is much stronger than electron inertial effect, such as in the solar wind and in the pole regions of the Earth's magnetosphere.
引文
周国成,曹晋滨,王德驹,蔡春林(2004).无碰撞等离子体电流片中的低频波.物理学报53(8),2644.
    王德焴,吴德金,黄光力(2000).空间等离子体中的孤波.非线性科学丛书.中国上海:上海科技教育出版社.
    Alfven, H.(1943).On the Existence of Electromagnetic-Hydrodynamic Waves. Arkiv for Astrono-mi 29,1-7.
    Alfven, H.(1968).Some properties of magnetospheric neutral surfaces.Journal of Geophysical Research 73(13),4379-4381.
    Axford, W. I.(1984). Magnetic field reconnection. In Magnetic Reconnection in Space and Labo-ratory Plasmas, Volume 30 of Geophys. Monogr.Ser.,pp.1-8.Washington, DC:AGU.
    Baumjohann, W. G.Paschmann(1989). Determination of the polytropic index in the plasma sheet. Geophysical Research Letters16(4),295-298.
    Belcher, J. W. L. Davis, Jr.(1971).Large-amplitude Alfven waves in the interplanetary medium,2. Journal of Geophysical Research 76,3534.
    Bellan, P. M. (2006).Fundamentals Of Plasma Physics. Cambridge University Press.
    Bellan, P. M. (2012). Improved basis set for low frequency plasma waves.Journal of Geophysical Research (Space Physics)117(A16),12219.
    Belmont, G. C.Mazelle(1992).Polytropic indexes in collisionless plasmas-theory and measure-ments.Journal of Geophysical Research-Space Physics 97(A6),8327-8336.
    Biskamp, D.(1986).Magnetic reconnection via current sheets. Physics of Fluids 29(5),1520-1531.
    Biskamp, D.(1996).Magnetic reconnection in plasmas. Astrophysics and Space Science 242, 165-207.
    Biskamp, D.H. Welter(1989).Dynamics of decaying two-dimensional magnetohydrodynamic tur-bulence. Physics of Fluids B 1,1964-1979.
    Bogdanov, A. T., K. H. Glassmeier, G. Musmann, M. K. Dougherty, S.Kellock, P. Slootweg, B.T-surutani (2003). Ion cyclotron waves in the earth's magnetotail during cassini's earth swing-by. Annales Geophysicae 21(10),2043-2057.
    Borg, A. L.,M. Oieroset, T. D. Phan, F. S.Mozer, A. Pedersen, C. Mouikis, J. P. McFadden, C. Twitty, A. Balogh, H. Reme (2005). Cluster encounter of a magnetic reconnection diffusion region in the near-Earth magnetotail on September 19,2003.Geophysical Research Letters 32(19), L19105.
    Broughton, M. C, M. J. Engebretson, K. H. Glassmeier, Y.Narita, A.Keiling, K. H. Fornacon, G. K. Parks, H. Reme (2008). Ultra-low-frequency waves and associated wave vectors observed in the plasma sheet boundary layer by cluster. Journal of Geophysical Research-Space Physic-s 113(A12),A12217.
    Chai, L. Y. Li (2009). Solitary kinetic alfv[e-acute]n waves in adiabatic process. Physics of Plas-mas 16(12),122309.
    Chai, L., Y. Li, S. Wang, C. Shen (2012). Low-frequency waves in magnetic reconnection. Chinese Science Bulletin 57(12),1461-1466.
    Chaston, C. C, C. W.Carlson, W. J. Peria, R. E. Ergun, J. P. McFadden(1999). FAST Observations of Inertial Alfven Waves in the Dayside Aurora. Geophysical Research Letters 26,647-650.
    Chaston, C. C, Y. D. Hu, B.J. Fraser(1999).Electromagnetic ion cyclotron waves in the near-earth magnetotail. Journal of Geophysical Research-Space Physics 104(A4),6953-6971.
    Cirtain, J. W.,L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M.Shimojo, E. DeLuca, S.Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, K. Shibasaki (2007). Evidence for Alfven Waves in Solar X-ray Jets. Science 318,1580.
    Cowley, S.W. H.(1976). Comments on the merging of nonantiparallel magnetic fields. Journal of Geophysical Research 81(19),3455-3458.
    Drake, J. F.(1995). Magnetic reconnection:A kinetic treatment. In P. Song, B.U. Sonnerup, and M. F. Thomsen (Eds.), Physics of the Magnetopause, Volume 90 of Geophys. Monogr.Ser.,pp. 155-165.Washington, DC:AGU.
    Drake, J. F., M. Swisdak, H. Che, M.A. Shay (2006).Electron acceleration from contracting mag-netic islands during reconnection. Nature 443(7111),553-556.
    Dungey, J. W.(1961).Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett.6,47-48.
    Dungey, J. W.(1963).Interactions of solar plasma with the geomagnetic field. Planetary and Space Science 10(0),233-237.
    Echer, E.,W. Gonzalez, M.V. Alves (2006). Minimum variance analysis of interplanetary coronal mass ejections around solar cycle 23 maximum(1998-2002).Solar Physics 233(2),249-263.
    Ergun, R. E., L.Andersson, D.Main, Y.-J. Su, D. L.Newman, M. V.Goldman, C. W. Carlson, J. P. McFadden, F. S.Mozer (2002).Parallel electric fields in the upward current region of the aurora: Numerical solutions.Physics of Plasmas 9(9),3695-3704.
    Fletcher, L. H. S.Hudson (2008,March). Impulsive Phase Flare Energy Transport by Large-Scale Alfven Waves and the Electron Acceleration Problem.Astrophysical Journal 675,1645-1655.
    Forbes, T. G. (2001).The nature of Petschek-type reconnection. Earth, Planets, and Space 53, 423-429.
    Fujimoto, M.(1991).Instabilities in the magnetopause velocity shear layer. Ph. D.thesis, U.Tokyo, Tokyo, Japan.
    Galeev, A.A.L. M.Zelenyi(1976).Tearing instability in plasma configurations. Zhurnal Eksperi-mentalnoi i Teoreticheskoi Fiziki 70,2133-2151.
    Giovanelli,R.G.(1946).A Theory of Chromospheric Flares. Nature158,81-82.
    Giovanelli,R.G.(1947). Magnetic and electric phenomena in the sun's atmosphere associated with sunspots. Monthly Notices of The Royal Astronomical Society 107,338.
    Goertz, C. K. R. W. Boswell(1979).Magnetosphere-ionosphere coupling. Journal of Geophysical Research:Space Physics 84(A12),7239-7246.
    Gosling, J.T.,J. Birn, M.Hesse(1995). Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events.Geophysical Research Letters 22(8),869-872.
    Hasegawa, A. K. Mima(1976). Exact solitary Alfven wave. Physical Review Letters 37(11), 690-693.
    He, J.-S.,Q.-G.Zong, X.-H. Deng, C.-Y. Tu, C.-J. Xiao,X.-G.Wang, Z.-W. Ma, Z.-Y. Pu, E. Lucek, A.Pedersen, A. Fazakerley, N. Comilleau-Wehrlin, M. W. Dunlop, H. Tian, S.Yao, B.Tan, S.-Y. Fu, K.-H. Glassmeier, H. Reme, I.Dandouras, C.P. Escoubet (2008).Electron trapping around a magnetic null. Geophysical Research Letters 35,14104.
    Hesse, M. J. Birn(1992).3-dimensional MHD modeling of magnetotail dynamics for different polytropic indexes.Journal of Geophysical Research-Space Physics 97(A4),3965-3976.
    Horowitz, E. J., D. E. Shumaker, D. V. Anderson(1989). Qn3d:A three-dimensional quasi-neutral hybrid particle-in-cell code with applications to the tilt mode instability in field reversed config-urations. Journal of Computational Physics 84(2),279-310.
    Hu, Y.R.E.Denton (2009). Two-dimensional hybrid code simulation of electromagnetic ion cy-clotron waves in a dipole magnetic field. Journal of Geophysical Research-Space Physics 114, A12217.
    Huang, C.Y.,C. K. Goertz, L. A. Frank, G. Rostoker(1989). Observation determination of the adiabatic index in the quiet time plasma sheet. Geophysical Research Letters 16(6),563-566.
    Kalita, M.K. B.C. Kalita (1986). Finite-amplitude solitary Alfven waves in a Iow-beta-plasma. Journal of Plasma Physics 35,267-272.
    Keiling, A., G. K. Parks, J. R. Wygant, J. Dombeck, F. S.Mozer, C. T.Russell, A. V.Streltsov, W. Lotko (2005). Some properties of Alfven waves:Observations in the tail lobes and the plasma sheet boundary layer. Journal of Geophysical Research;Space Physics 110(A10), A10S11.
    Koskinen, H. E. (2011).Magnetic reconnection. In Physics of Space Storms, Springer Praxis Books, Chapter 8, pp.219-243.Berlin, Germany:Springer Berlin Heidelberg.
    Kulsrud, R. M. (2001).Magnetic reconnection:Sweet-Parker versus Petschek. Earth, Planets, and Space 53,411-422.
    Kuznetsova, M. M., M. Hesse, L. Rastatter, A. Taktakishvili, G. Toth, D. L. De Zeeuw, A. Ridley, T.I. Gombosi (2007). Multiscale modeling of magnetospheric reconnection. Journal of Geophysical Research:Space Physics 112(A10), A10210.
    Li, Y, X. Cai, L. Chai, H. Zheng, C. Shen, S.Wang (2011).Eigenmodes of quasi-static magnetic islands in current sheet. Physics of Plasmas 18(12),122110.
    Li, Y.F., D. J. Wu, G. E. Morfill (2008). Solitary kinetic Alfven waves in dusty plasmas. Physics of Plasmas 15(8),083703.
    Lin, Y.D.W.Swift(1996). A two-dimensional hybrid simulation of the magnetotail reconnection layer. Journal of Geophysical Research-Space Physics 101(A9),19859-19870.
    Loureiro, N. F., R. Samtaney, A. A. Schekochihin, D. A. Uzdensky (2012). Magnetic reconnection and stochastic plasmoid chains in high-lundquist-number plasmas. Physics of Plasmas 19(4), 042303.
    Malyshkin, L. M. (2008). Model of hall reconnection. Phys. Rev. Lett.101,225001.
    Matthews, A.P.(1994). Current advance method and cyclic leapfrog for 2d multispecies hybrid plasma simulations.Journal of Computational Physics 112(1),102-116.
    Mecheri, R. E. Marsch (2007). Coronal ion-cyclotron beam instabilities within the multi-fluid de-scription. Astronomy and Astrophysics 474(2),609-615.
    Mozer, F. S.A. Hull (2001).Origin and geometry of upward parallel electric fields in the auroral acceleration region. Journal of Geophysical Research:Space Physics 106(A4),5763-5778.
    Nishizuka, N., M. Shimizu, T. Nakamura, K. Otsuji, T. J. Okamoto, Y. Katsukawa, K. Shibata (2008). Giant Chromospheric Anemone Jet Observed with Hinode and Comparison with Magne-tohydrodynamic Simulations:Evidence of Propagating Alfven Waves and Magnetic Reconnec-tion. The Astrophysical Journal Letters 683, L83-L86.
    Nykyri, K., P. J. Cargill, E. Lucek, T. Horbury, B. Lavraud, A. Balogh, M. W. Dunlop, Y. Bogdanova, A. Fazakerley, I. Dandouras, H. Reme (2004). Cluster observations of magnetic field fluctuations in the high-altitude cusp. Annales Geophysicae 22(1),2413-2429.
    Parker, E. N. (1957). Sweet's mechanism for merging magnetic fields in conducting fluids. Journal of Geophysical Research 62(4),509-520.
    Paschmann, G. (2008). Recent in-situ observations of magnetic reconnection in near-earth space. Geophysical Research Letters 35(19), n/a-n/a.
    Petschek, H. E. (1964). Magnetic Field Annihilation. NASA Special Publication 50,425.
    Priest, E. R. (1985). The magnetohydrodynamics of current sheets. Reports on Progress in Physic-s 48(1),955.
    Priest, E. R. (2003). Theory of 3d reconnection and coronal heating heating. Advances in Space Research 32(6),1021-1027.
    Priest, E. R. T. G. Forbes (1986).New models for fast steady state magnetic reconnection. Journal of Geophysical Research:Space Physics 91 (A5),5579-5588.
    Priest, E. R. L. C. Lee (1990,9). Nonlinear magnetic reconnection models with separatrix jets. Journal of Plasma Physics 44,337-360.
    Pritchett, P. L.F. V. Coroniti (2004). Three-dimensional collisionless magnetic reconnection in the presence of a guide field. Journal of Geophysical Research:Space Physics 109(A1),n/a-n/a.
    Pudovkin, M. I.,C.V. Meister, B.P. Besser, H.K.Biernat(1997).The effective polytropic index in a magnetized plasma. Journal of Geophysical Research-Space Physics 102(A 12),27145-27149.
    Rankin, R., J. C. Samson, V. T. Tikhonchuk (1999). Parallel electric fields in dispersive shear Alfven waves in the dipolar magnetosphere. Geophysical Research Letters 26(24),3601-3604.
    Rogers, B. N., R. E. Denton, J. F. Drake, M. A. Shay (2001). Role of dispersive waves in collisionless magnetic reconnection. Physical Review Letters 87(19),195004.
    Roychoudhury, R. P. Chatterjee(1998). Effect of finite ion temperature on large-amplitude solitary kinetic Alfven waves. Physics of Plasmas 5(11),3828-3832.
    Runov, A., R. Nakamura, W. Baumjohann, R. A.Treumann, T. L. Zhang, M. Volwerk, Z. V?r?s, A.Balogh, K.-H. Gla?meier, B. Klecker, H. Reme, L.Kistler (2003). Current sheet structure near magnetic x-line observed by cluster. Geophysical Research Letters 30(11),1579.
    Sato, T. A.Hasegawa(1982). Externally driven magnetic reconnection versus tearing mode insta-bility. Geophysical Research Letters 9(1),52-55.
    Schindler, K.(1974). A theory of the substorm mechanism. Journal of Geophysical Research 79(19), 2803-2810.
    Schindler, K.,M. Hesse, J. Birn(1988). General magnetic reconnection, parallel electric fields, and helicity. Journal of Geophysical Research:Space Physics 93(A6),5547-5557.
    Shay, M. A., J. F. Drake, B. N. Rogers, R. E. Denton (2001).Alfvenic collisionless magnetic recon-nection and the hall term. Journal of Geophysical Research:Space Physics 106(A3),3759-3772.
    Shoji, M., Y.Omura, B.T. Tsurutani, O. P. Verkhoglyadova, B. Lembege (2009). Mirror instability and 1-mode electromagnetic ion cyclotron instability:Competition in the earth's magnetosheath. Journal of Geophysical Research 114, A10203.
    Shukla, P.K., H. U. Rahman, R. P. Sharma(1982). Alfven soliton in a low-beta plasma. Journal of Plasma Physics 28(AUG),125-131.
    Sonnerup, B.(1970). Magnetic-field re-connexion in a highly conducting incompressible fluid. Journal of Plasma Physics 4,161.
    Sonnerup, B.(1984). Magnetic field reconnection at the magnetopause:An overview. In Magnet-ic Reconnection in Space and Laboratory Plasmas, Volume 30 of Geophys. Monogr. Ser.,pp. 92-103.Washington, DC:AGU.
    Sonnerup, B.(1988). On the theory of steady state reconnection. Computer Physics Communica-tions 49(1),143-159.
    Stefant, R. J.(1970). Alfven wave damping from finite gyroradius coupling to the ion acoustic mode. Physics of Fluids 13(2),440-450.
    Stringer, T. E.(1963).Low-frequency waves in an unbounded plasma. Journal of Nuclear Energy 5, 89-107.
    Sundkvist, D., V. Krasnoselskikh, P. K. Shukla, A. Vaivads, M. Andre, S.Buchert, H. Reme (2005). In situ multi-satellite detection of coherent vortices as a manifestation of Alfvenic turbulence. Nature 436(1052),825-828.
    Swanson, D.G.(2003).Plasma Waves (2nded).Series in Plasma Physics. Bristol and Philadelphia: Institute of Physics Publishing.
    Sweet, P. A.(1958).The Neutral Point Theory of Solar Flares. In B.Lehnert (Ed.), Electromagnetic Phenomena in Cosmical Physics, Volume 6 of IAU Symposium, pp.123.
    Thomas, V. A.,D.Winske, N.Omidi(1990).Re-forming supercritical quasi-parallel shocks:1.one-and two-dimensional simulations. Journal of Geophysical Research:Space Physics 95(A11), 18809-18819.
    Totten, T. L.,J. W. Freeman, S.Arya(1995).An empirical determination of the polytropic index for the free-streaming solar-wind using helios-1 data. Journal of Geophysical Research-Space Physics 100(A1),13-17.
    Tsurutani,B.T.,B.Dasgupta, J. K.Arballo, G.S.Lakhina, J. S.Pickett (2003). Magnetic field tur-bulence, electron heating, magnetic holes, proton cyclotron waves, and the onsets of bipolar pulse (electron hole) events:a possible unifying scenario.Nonlinear Processes in Geophysics 10(1-2), 27-35.
    Uzdensky, D. A.,N. F. Loureiro, A.A. Schekochihin (2010).Fast magnetic reconnection in the plasmoid-dominated regime.Physical Review Letters 105(23),235002.
    Vasyliunas, V. M.(1975). Theoretical models of magnetic field line merging.Reviews of Geophysic-s 13(1),303-336.
    Voitenko, Y. (2009).Kinetic Alfven turbulence driven by MHD turbulent cascade.
    Voitenko, Y. M.Goossens (2003).Kinetic excitation mechanisms for ion-cyclotron kinetic Alfven waves in sun-earth connection. Space Science Reviews 107,387-401.
    Wang, X. G.,A.Bhattacharjee, Z.W. Ma (2000).Collisionless reconnection:Effects of hall cur-rent and electron pressure gradient. Journal of Geophysical Research-Space Physics 105(A12), 27633-27648.
    Wang, X. Y.,X. Y.Wang, Z. X. Liu, Z. Y.Li(1998). One-dimensional solitary kinetic Alfv6n waves in low-beta plasma. Physics of Plasmas 5(12),4395-4400.
    Winske, D.,L. Yin, N. Omidi, et al. (2003).Hybrid Simulation Codes:Past, Present and Future-A Tutorial. In J. Buchner, C. Dum, and M. Scholer (Eds.), Space Plasma Simulation, Volume 615 of Lecture Notes in Physics, Berlin Springer Verlag, pp.136-165.
    Wu, D. J. (2003a). Dissipative solitary kinetic Alfv6n wave and electron acceleration. Physics of Plasmas 10(5),1364-1370.
    Wu, D. J. (2003b). Model of nonlinear kinetic Alfven waves with dissipation and acceleration of energetic electrons. Physical Review E 67(2),027402.
    Wu, D. J. (2005). Dissipative solitary kinetic Alfven waves and electron acceleration in the solar corona. Space Science Reviews 121(1-4),333-342.
    Wu, D. J. J. K. Chao (2003). Auroral electron acceleration by dissipative solitary kinetic Alfven waves. Physics of Plasmas 10(9),3787-3789.
    Wu, D. J. C. Fang (1999). Two-fluid motion of plasma in Alfven waves and the heating of solar coronal loops. Astrophysical Journal 511(2),958-964.
    Wu, D. J. C. Fang (2003).Coronal plume heating and kinetic dissipation of kinetic Alfven waves. Astrophysical Journal 596(1),656-662.
    Wu, D. J. C. Fang (2007). Sunspot chromospheric heating by kinetic Alfven waves. Astrophysical Journal 659(2), L181-L184.
    Wu, D. J., G. L. Huang, D. Y. Wang, C. G. Falthammar(1996a). Solitary kinetic Alfven waves in the two-fluid model.Physics of Plasmas 3(8),2879-2884.
    Wu, D. J.,G. L. Huang, D. Y.Wang, C. G. Falthammar (1996b). Solitary kinetic Alfven waves in the two-fluid model.Physics of Plasmas 3(8),2879-2884.
    Wu, D. J., J. Huang, J. F. Tang, Y.H. Yan (2007). Solar microwave drifting spikes and solitary kinetic Alfven waves. Astrophysical Journal 665(2),L171-L174.
    Wu, D. J. D. Y.Wang(1996). Solitary kinetic Alfven waves on the ion-acoustic velocity branch in a low-beta plasma. Physics of Plasmas 3(12),4304-4306.
    Wu, D. J., D. Y. Wang, C. G. Falthammar(1995). An analytical solution of finite-amplitude solitary kinetic Alfven waves. Physics of Plasmas 2(12),4476-4481.
    Xiao, C. J., X. G. Wang, Z. Y. Pu, Z. W. Ma, H. Zhao, G. P. Zhou, J. X. Wang, M. G. Kivelson, S. Y. Fu, Z. X. Liu, Q. G. Zong, M. W. Dunlop, K.-H. Glassmeier, E. Lucek, H. Reme, I. Dandouras, C. P. Escoubet (2007). Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature Physics 3,609-613.
    Xiao, C. J., X. G. Wang, Z. Y. Pu, H. Zhao, J. X. Wang, Z. W. Ma, S. Y. Fu, M. G. Kivelson, Z. X. Liu, Q. G. Zong, K. H. Glassmeier, A. Balogh, A. Korth, H. Reme, C. P. Escoubet (2006, July). In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail. Nature Physics 2,478-483.
    Yang, L. D. J. Wu (2005a). Effects of heavy ions on kinetic Alfven waves. Communications in Theoretical Physics 43(2),325-332.
    Yang, L. D. J. Wu (2005b). Kinetic Alfven waves in plasmas with heavy ions. Physics of Plas-mas 12(6),062903.
    Yang, L. D. J. Wu (2005c). Solitary kinetic Alfven waves in bi-ion plasmas. Physics of Plas-mas 72(11),112901.
    Yen, T. W. I. Axford (1970, May). On the re-connexion of magnetic field lines in conducting fluids. Journal of Plasma Physics 4,207.
    Yi, L., J. Shuping, Y. Hongang, L. Shaoliang (2007). Numerical study of low frequency wave in hall MHD reconnection with various plasma beta. Chinese Journal of Space Science 27(2),96-103.
    Yoon, P. H. A. T. Y. Lui (2006). Quasi-linear theory of anomalous resistivity. Journal of Geophysical Research:Space Physics 111(A2), A02203.
    Yu, M. Y. P. K. Shukla (1978). Finite-amplitude solitary Alfven waves. Physics of Fluids 21(8), 1457-1458.
    Zabusky, N. J. M. D. Kruskal(1965). Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.15,240-243.
    Zhang, T. L., Q. M. Lu, W. Baumjohann, C. T. Russell, A. Fedorov, S. Barabash, A. J. Coates, A. M. Du, J. B. Cao, R. Nakamura, W. L. Teh, R. S. Wang, X. K. Dou, S. Wang, K. H. Glass-meier, H. U. Auster, M. Balikhin (2012). Magnetic reconnection in the near venusian magnetotail. Science 336(6081),567-570.
    Zhang, X., Z. Pu, Z. Ma, X. Zhou (2008). Roles of initial current carrier in the distribution of field-aligned current in 3-d hall MHD simulations. Science in China Series E:Technological Sciences 51(3),323-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700