用户名: 密码: 验证码:
粉煤灰混凝剂制备及与电絮凝联用处理含聚采出水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,油田普遍采用的是混凝沉降+过滤的油田采出水处理技术。但随着聚合物驱在油田的推广应用,聚合物驱含聚采出水水质复杂且难以处理的问题变得越来越突出,油田现有常规水驱采出水混凝沉降+过滤技术及系统已无法满足油田正常生产的要求。因此,针对聚驱含聚采出水组成及成分的变化,开发有效、稳定、廉价的产出水处理及回用技术,不仅有望解决油田继续扩大聚驱作业中的技术难题,而且具有着显著的实际应用价值和良好的环境效益。粉煤灰混凝剂与电絮凝联用将脉冲电絮凝的电中和、电压缩优势与粉煤灰混凝剂的多核无机高聚物的吸附、卷扫优势结合起来,提高含聚污水处理效率,成为集脉冲电絮凝胶体脱稳—旋流混凝反应双向沉降分离为一体的高效处理方法。本论文从粉煤灰混凝剂制备、电絮凝处理研究、化学絮凝机理及电絮凝机理等几个方面开展研究,主要研究内容包括以下几个方面:
     1.粉煤灰固相反应制备絮凝剂研究
     1)研究了粉煤灰固相反应制备絮凝剂的反应条件。通过研究原料成分配比、焙烧温度、焙烧时间、固液比、酸浸时间研究对制备产物絮凝性能及稳定性的影响,确定了粉煤灰制备聚硅酸铝铁锌絮凝剂的反应条件:ZnO/粉煤灰质量比为0.3:1、NaOH/粉煤灰质量比为0.6:1,600℃焙烧2h,固液比为0.155g/mL,酸浸时间2h,制备出聚硅酸铝铁锌(PAFZS)。
     2)利用XRD及红外光谱研究了粉煤灰固相反应生成无机高分在絮凝剂的机理。改变焙烧温度,比较不同焙烧温度条件下固相反应产物与粉煤灰原料的XRD谱图,发现粉煤灰、ZnO与NaOH在高温下发生了固态化合反应,生成了硅酸铁、硅酸铝。焙烧温度从200℃升到650℃,温度越高反应越充分,越有利于酸浸后聚合成为PAFZS.红外谱图表明,在1053cm-1附近存在一个较窄的吸收峰,表明PAFZS中铝、铁、锌连接的羟基(Al-OH-Al、Fe-OH-Fe和Zn-OH-Zn)伸缩振动形成的,并且随着ZnO的加入量的增加,透光率变得更低,说明ZnO的加入有利于Zn-OH-Zn的生成,而阻止聚硅酸胶凝,增加了PAFZS稳定性。在444cm-1附近的吸收峰表明,此处的铝、铁、锌离子与羟基结合共聚的作用加强,将聚铝、聚铁和聚硅基团用羟基键连接反应,从而形成无机高分子PAFZS。
     3)通过对浊度、聚合物含量去除率研究了PAFZS处理含聚采出水的絮凝性能,聚硅酸铝铁锌絮凝剂(PAFZS)适宜的处理pH范围为5-7。PAFZS处理较低浓度(73.14mg/L)和较高浓度(560mg/L)聚合物废水的处理效果都相对较好;处理较低聚合物浓度(73.14mg/L)的含聚采出水,PAFZS的加药量达到1000mg/L时,聚合物废水的剩余浊度降到1NTU以下,聚合物浓度降到5mg/L以下;处理较高聚合物浓度(560mg/L)的含聚采出水时,PAFZS的加药量达到1400mg/L时,聚合物废水的剩余浊度降到20NTU以下,聚合物浓度降到450mg/L以下;
     4)通过表面张力、ζ电位的变化研究了PAFZS絮凝机理,发现PAFZS与水中残留聚合物通过电吸附改变含聚采出水ζ电位、表面张力。并且随着PAFZS加量增加,ζ电位绝对值下降。而表面张力先下降,后又上升。在达到表面张力最低点之前,PAFZS处理含聚采出水机理是电中和与吸附卷扫联合作用;在达到表面张力最低点之后,PAFZS处理含聚采出水机理主要是吸附卷扫作用。
     2.电絮凝处理含聚采出水研究
     1)研究了多种电极材料电絮凝处理含聚采出水对聚合物、浊度的去除效果,分别筛选出两级电絮凝电极材料,第一级极板材料为不锈钢-不锈钢,中间填充铁屑,第二级铝为消耗性阳极极板材料。以油、浊度、聚合物的去除效果优化电絮凝参数,确定电絮凝时间20min,极板间距2cm,电絮凝电压6V,水样初始pH为6,脉冲频率0.3KHz,占空比0.4。最价操作条件下,电絮凝模拟含聚采出水聚合物去除率达99.9%,浊度降为0.62。
     2)电絮凝与化学絮凝联合处理含聚采出水研究。研究了多种因素对电絮凝与化学絮凝联合处理含聚采出水去除油、浊度、聚合物的影响,在最佳条件下,二者联用处理模拟含聚采出水可以达到:油1mg/l,悬浮固体5mg/l,聚合物30mg/l。说明电絮凝与化学絮凝联合处理含聚采出水具有一定的可行性。
     3.含聚采出水电絮凝机理研究
     1)通过循环伏安图研究了电极电化学反应机理。测量、比较了多种电极材料的氧化还原电位,认为不锈钢-不锈钢(中间添加铁屑)电极还原电势较高,有利于氧化,作为第一级电絮凝电极对破乳有利。Al氧化还原峰电势较低,有利于产生Al离子,起电中和作用,作为第二级电絮凝电极有利于电中和、电吸附作用。
     2)通过XRD、场发射扫描电镜、红外光谱等表征手段,研究了电絮凝含聚采出水絮体形貌、结构特征、元素成分及相成分等微观形成机理,XRD确认电絮凝絮体产物主要成分为氢氧化铝;场发射扫描电镜发现与电絮凝水驱采出水产生的片状、柱状晶状结构不同,电絮凝含聚采出水形成的絮体为球团结构;红外光谱发现聚合物通过氢键与氢氧化铝结合。根据以上结果推测出电絮凝含聚采出水机理模型是在阳极产生铝离子,铝离子水解成为氢氧化铝,通过范德华力或氢键与水中HPAM发生吸附,形成球团结构,球团结构再通过HPAM相互连接成为团聚体。
     4.电絮凝与化学絮凝联合处理可行性研究
     通过制成套小型试验设备在油田现场试验,研究了现场条件下电絮凝与化学絮凝联合处理可行性。含聚采出水处理工艺流程:原水→电絮凝器→缓冲罐→加药混凝沉降器→缓冲罐→改性纤维球过滤器→出水。处理油田实际含聚采出水达到油含量小于5mg/L、悬浮物含量在小于1mg/L,聚合物含量小于15mg/l水平,达到了《碎屑岩油藏注水水质推荐指标及分析方法》(SY5329-94) Al级标准,可满足含聚污水回注低渗透油层要求。
Coagulating sedimentation and filtration were wildly used in treatment of oilfield produced water. With the extension and application of polymer flooding in oil field, polymer flooding wastewater is complex and difficult to deal with. The water quality problems have become increasingly prominent. The existing conventional technology to deal with oil field produced water, such as coagulation sedimentation and filtration technology, has been unable to meet the requirements of normal production of oilfield. Therefore, to develop an effective, stable and cheap treatment and recycling technology has become an urgent problem to be solved. New technology to deal with produced water including polyethylene has a significant practical value and good environmental benefits. Fly ash coagulant with electric flocculation, coupled to the pulse electric flocculation electric neutralization, electric compression strength with fly ash adsorption of inorganic polymer coagulant multicore, enmeshment advantages combined, become a pulse electric flocculated colloid stability off-vortex coagulation reaction two-way settlement separation, are one of the effective treatment methods. In this paper, the preparation of fly ash coagulant, electrolytic flocculation treatment, mechanism of chemical flocculation and electric flocculation several aspects were conducted, main research content includes the following aspects:
     1. Preparation of coagulant using fly ash by solid state reaction
     1) The reaction conditions of coagulant preparation were studied. The conditions were changed to discuss the effection of stability include the mass ratio of raw materials, calcination temperature, calcination time, solid liquid ratio and pickling time. The mass ratio of ZnO/fly ash was0.3:1, and the mass ratio NaOH/fly-ash is0.6:1, calcination2h under600℃, solid liquid ratio is0.155g/mL, pickling time for2h, the product was poly aluminum silicate zinc iron (PAFZS) flocculant.
     2) XRD and FT-IR characterization were applied to probe the mechanism. The results showed that, ferric metasilicate and akluminium silicate were obtained. With the calcination temperature varied from200to650℃, the reaction was more and more suficient and benefit to the aggregation. FT-IR results presented that there was a narrow peak at about1053cm-1, which was the stretching vibration of-OH, such as Al-OH-Al, Fe-OH-Fe and Zn-OH-Zn. The transmittance became lower with more ZnO added, and the stability of PAFZS was increased. The peak at above444cm-1indicated the copolymerazation of Al3+, Fe3+, Zn2+and-OH.
     3) The properties of PAFZS were researched based on the turbidity and polymer content. The feasible pH range was5-7. The processing effects were good no matter the polymer concentration was lower(73.14mg/L) or higher(560mg/L). When the concentration was low, the PAFZS dosage was1000mg/L, the residual turbidity was below1NTU and the residual polmer concentration was under5mg/L. While the concentration was high, the PAFZS dosage was1400mg/L, the residual turbidity was below20NTU and the residual polmer concentration was under450mg/L.
     4) The surface tension and ζ potential change was studied to research the Flocculation mechanism of PAFZS. The results showed the acting force was elecr-adsorption. The ζ potential decreased with PAFZS dosage increased. The surface tension firstly declined and then increased with PAFZS dosage increased. Before lowest surface tension, the mechanism was the combination of electrical neutralization and adsorption volume sweep. After lowest surface tension, the mechanism was mainly adsorption volume sweep.
     2. Research of produced water containing polyethylene treated by the electrolytic flocculation
     1) Many materials were studied for electrolytic flocculation of polymer flooding wastewater. The polar materials were stainless steel-stainless steel and soluble aluminum anode, and the iron was filled in the middle. The electrolytic flocculation parameters were oil content, the turbidity and removal rate of polymer. In electric flocculation conditions of electric flocculation time20min, plate spacing2cm, electric flocculation voltage6v, initial pH value6, the pulse frequency0.3KHz, duty ratio0.4, the removal rate of polymer reached99.9%and the turbidity fell to0.62.
     2) The combination of electrolytic flocculation and chemical flocculation. Many factors were considered. Under optimum conditions, the oil content was below lmg/1, the suspended solid was below5mg/l and polymer30mg/1. The results indicated the feasibility of combination.
     3. Mechanism research of electrolytic flocculation
     1) The electrochemical reaction mechanism was studied by cyclic voltammetry. The redox potential of polar materials were measured and compared. The reduction potential of stainless steel-stainless steel higher, and benefit to oxidation and demulsification. The redox peak of aluminum was lower, and good to produce Al3+. As secondary electrode material, Al3+was conductive to electro-neutralization and electro-adsorption.
     2) XRD(x-ray diffraction), field emission scanning electron microscopy (fsem) and infrared spectroscopy characterizations were carried out. From the results, the electrotic flocculation mechanism of polymer flooding wastewater was analyzed. The XRD indicated the product of Al(OH)3. From the FSEM results, it could be found that the product of electrolytic flocculation were of different structures. FT-IR presented the hydrogen bonding between polymer and Al(OH)3. In conclusion, the mechanism was as follows:aluminum ion generated in the anode, and hydrolyzed to Al(OH)3. The Al(OH)3adsorbed HP AM by Vander Waals force or hydrogen bonding, and then formed pellets. Finally, these pellets connected together and aggregate.
     4. Feasibility study of electrolytic flocculation and chemical flocculation combination
     The oilfield test was carried out through simulation test equipment to study the feasibility of electrolytic flocculation and chemical flocculation combination. Treatment process of the produced water:raw water→electrical flocculator→buffer tank→dosing coagulation settler→the buffer tank→modified fiber ball filter→water. In produced water after treatment, oil content is less than5mg/L, the suspended solids content is less than1mg/L, polymer content is less than15mg/L levels, produced water after treatment reached A1standard of (SY5329-94).
引文
[l]宋考平,杨二龙,王锦梅,等.聚合物驱提高驱油效率机理及驱油效果分析[J].石油学报,2004,25(3):71-74.
    [2]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发,2004,23(5):94-96,125.
    [3]李圣勇,李圣涛,陈馥.聚合物驱提高采收率发展现状与趋势[J].化工时刊,2005,19(8):40-42.
    [4]姚胜林,陈明强,王克伟,等.提高采收率研究的现状[J].石油化工应用,2009,28(4):1-3.
    [5]庞丽丽,宁宇清.三次采油化学驱油技术发展现状[J].内蒙古石油化工,2010,(8):142-145.
    [6]Melo M, Schluter H, Ferreira J, et al. Advanced performance evaluation of a reverse osmosis treatment for oilfield produced water aiming reuse[J]. Desalination,2010,250(3):p.1016-1018.
    [7]杨云霞,张晓健.我国油田采出水处理回注的现状及技术发展[J].给水排水,2000,26(7):32-35.
    [8]张金波,傅绍斌,曾玉彬.油田采出水回注处理技术进展[J].工业水处理,2000,20(10):5-8.
    [9]陈绍炳,李学军.部分水解聚丙烯酰胺的水溶液性质[J].油田地面工程,1991,10(5):36-40.
    [10]姚同玉,刘庆刚,刘卫东,等.部分水解聚丙烯酰胺的结构形貌研究[J].石油学报,2005,26(5):81-84.
    [11]姚同玉,刘庆刚,刘卫东,等.部分水解聚丙烯酰胺浓度对结构形貌的影响[J].化学研究与应用,2005,17(2):209-211.
    [12]唐洪明,黎菁,张建,等.聚合物驱采出液中HP AM的分子参数、结构及形貌研究[J].油田化学,2011,28(1):49-53.
    [13]邓述波,周抚生.聚丙烯酰胺对聚合物驱含油污水中油珠沉降分离的影响[J].环境科学,2002,23(2):69-72.
    [14]卢磊.油田聚合物驱采油污水处理药剂及工艺研究:[D].山东:山东大学,2008.
    [15]Deng S B, Bai R B, Chen J P, et al. Produced water from polymer flooding process in crude oil extraction: characterization and treatment by a novel crossflow oil-water separator[J]. Separation and Purification Technology, 2002,29(3):p.207-216.
    [16]孙成金.聚合物驱采出液和含油污水油水分离研究:[D].北京:中国地质大学(北京),2007.
    [17]张春刚.聚合物驱采出液和含油污水的油水分离研究:[D].大庆:大庆石油学院,2007.
    [18]Zhang L H, Xiao H, Zhang H T, et al. Optimal design of a novel oil-water separator for raw oil produced from ASP flooding[J]. Journal of Peroleum Science and Engineering,2007,59(3-4):p.213-218.
    [19]Cheng L H, Bi X J, Liu C Q, et al. ICEET:2009 International Conference on Energy and Environment Technology, Guilin, China, October 16-18,2009.
    [20]Smyth I C, Roberts J, Ahmad N. Amer Filtrat & Separat Soc:12th Annual National Technical Conference of the American-Filtration-and-Separation-Society on Advancing Filtration and Separation Solutions for the Millennium, Boston,MA,1999.
    [21]Jiang M G, Zhao L X, Li F, et al. OMAE:Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, CA, United states.2007.
    [22]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理,2002,(2):14-16,62.
    [23]刘书孟,张振家,董喜贵,等.气携式水力旋流器处理含聚合物污水研究[J].工业用水与废水,2006,(5):78-80.
    [24]沈建国.水力旋流器处理含聚合物污水试验[J].油气田地面工程,2012,(11):49.
    [25]柏松林.含聚污水石英砂过滤罐的结构优化[J].油气田地面工程,2011,(5):38-39.
    [26]姚明修,祝威,桂召龙.油田含聚污水聚结气浮处理工艺实验研究[J].石油化工应用,2011,30(1):80-82.
    [27]崔月岭,董健,李毅,等.聚结式溶气气浮工艺用于油田含聚污水除油效果分析[J].科学咨询(决策管理),2007,(12):52.
    [28]张海水,王传新,张华峰,等.溶气气浮工艺应用于含聚污水处理[J].油气田地面工程,201 0,(1):42-43.
    [29]李小兵.基于微泡浮选的多流态强化油水分离研究:[D].徐州:中国矿业大学,2011.
    [30]方健,刘振国,董洋,等.旋流加气浮选器处理渤海S油田含聚污水[J].油气田地面工程,2012,(4):36-37.
    [31]刘国荣,徐群,左海强.油田含聚污水絮凝处理技术研究[J].流体机械,2005,33(10):13-15.
    [32]杨洪升,陈次昌.新型含聚污水处理剂的研制及作用机理分析[J].石油钻采工艺,2011,33(2):108-110.
    [33]吕志凤,王宗贤,战风涛,等.阳离子聚丙烯酰胺(CHM-1)用于孤岛油田含聚污水除油研究[J].油田化学,2009,26(2):161-164.
    [34]严忠,陈玉萍,张茂胜,等.新疆油田含聚污水处理技术应用研究[J].油气田环境保护,2009,19(2):18-21,60-61.
    [35]Fakhru'L-Razi A, Pendashteh A, Abidin, Z Z, et al. Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use[J]. Bioresource Technology,2010,101(18):p. 6942-6949.
    [36]Freire DDC, Cammarota M C, Sant'Anna G L. Biological treatment of oil field wastewater in a sequencing batch reactor[J]. Environment Technology,2001,22(10):p.1125-1135.
    [37]Pendashteh A R, Fakhru'L-Razi A, Chuah, T G, et al. Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms[J]. Environment Technology,2010,31(11):p. 1229-1239.
    [38]Tellez G T, Nirmalakhandan N, Gardea-Torresdey J L. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water[J]. Advances in Environmental Reseach,2002,6(4):p.455-470.
    [39]包木太,骆克峻,陈庆国,等.生物接触氧化法处理油田含聚污水室内模拟实验[J].西安石油大学学报(自然科学版),2009,24(1):79-84,113-114.
    [40]初旭,陈晓亮,洪海.喇嘛甸油田微生物处理含聚污水试验[J].油气田地面工程,2011,(8):49-50.
    [41]惠云博.生物法处理含聚污水[J].油气田地面工程,2012,(2):74.
    [42]魏泽钢.生物法处理含聚污水效果分析[J].中国石油和化工标准与质量,2011,(7):77.
    [43]Li GY, An T C, Nie X P, et al. Mutagenicity assessment of produced water during photoelectrocatalytic degradation[J]. Environmental Toxicology and Chemistry,2007,26(3):p.416-423.
    [44]刘金库,王健,鲁红升,等.光助Fen ton氧化-混凝法联合处理含聚合物油田污水技术[J].精细石油化工进展,2005,(4):4-7.
    [45]陈忠喜,舒志明,金国双,等.物化法处理油田外排含聚含油污水[J].油气田地面工程,2005,(9):18-19.
    [46]马敬环,李强,裴孝君,等.电絮凝法处理含聚采油污水的研究[J].天津科技大学学报,2009,24(4):54-57.
    [47]付继彤.电絮凝-气浮工艺处理含聚采油污水及配聚应用试验[J].石油天然气学报,2012,(12):157-160, 10.
    [48]郝红英,郝红元.PASS的絮凝性能及其絮凝机理初探[J].沈阳化工学院学报,2000,14(3):191-193.
    [49]林更,于先进.利用硫酸铝及其废渣生产聚硅酸硫酸铝的研究[J].无机盐工业,2009,41(1):51-54.
    [50]孙建.新型无机絮凝剂聚硅酸铝的制备及其模拟净水试验[J].贵州化工,2004,29(3):27-29.
    [51]刘颖,张代钧.聚合硅酸硫酸铝形态的研究[J].西南交通大学学报,2004,39(6):809-814.
    [52]姚剑军,张立武.聚合硅酸硫酸铝的絮凝性能及改性研究[J].胶体与聚合物,2007,25(3):30-32.
    [53]高宝玉,王炳建,岳钦艳.聚合硅酸铝铁絮凝剂中铁的形态分布与转化[J].环境科学研究,2002,15(1):13-15.
    [54]郑怀礼,黄小红,何强等.以TEOS为硅源的聚硅硫酸铁中铁的形态分布研究[J].光谱学与光谱分析,2008,28(3):543-546.
    [55]马晓鸥,康思琦,刘小军,等.含硼聚硅酸硫酸铁混凝剂的制备及性能研究[J].现代化工,2000,20(11):42-44.
    [56]刘小军,田宜灵,马晓鸥,等.新型混凝剂含硼聚硅硫酸铁的性能研究[J].化学工业与工程,2002,19(1):12-15.
    [57]胡忠于,罗道成.用废铁渣制备高效絮凝剂聚硅酸铁及其絮凝性能研究[J].湖南科技大学学报(自然科学版),2006,21(2):77-80.
    [58]Fan M H, Brown R C, Wheelock T D, et al. Production of a complex coagulant from fly ash[J]. Chemical Engineering Journal,2005,106(3):p.269-277.
    [59]朱秀珍,孙建之.用赤泥和粉煤灰制备聚合氯化铝铁絮凝剂和SiO2[J].化工环保,2012,32(5):444-447.
    [60]景红霞,李巧玲,王亚昆,等.从粉煤灰中制备聚硅酸铝铁絮凝剂及应用研究[J].化学工程师,2006,(1):9-11.
    [61]李晔,吴飞,胡海,等.粉煤灰制备PAFCS絮凝剂[J].有色金属,2002,54(4):114-116.
    [62]郭旭颖,白润才.粉煤灰制备絮凝剂聚硅酸铝铁工艺条件研究[J].应用化工,2009,38(3):369-371,374.
    [63]章兴华,孙传敏,龚国洪,等.含钙聚硅酸铝铁的表征与絮凝研究[J].矿物学报,2005,25(3):249-256.
    [64]刘海燕,李峻青,刘冰等,一种新型高效净水剂-聚合硅酸铝铁的制备及性质[J].高师理科学刊,2006,26(3):56-58.
    [65]方月梅,赵旭德,张晓玲.复合絮凝剂聚硅酸铝铁的形貌结构及性能研究[J].工业安全与环保,2007,33(10):22-24.
    [66]王炳建,高宝玉,岳钦艳.无机高分子絮凝剂聚合硅酸铝铁的研究[J].环境化学,2002,21(6):533-538.
    [67]方月梅.新型絮凝剂含硼聚硅铝铁的制备和性能研究[J].环境工程学报,2008(12):1667-1671.
    [68]罗序燕,徐祥斌,张玲文.新型含硼聚硅酸铝铁锌絮凝剂的制备及絮凝性能[J].工业水处理,2009,29(8):45-48.
    [69]Zeng Y B, Yang Ch Zh, Pu W H, et al. Removal of silica from heavy oil wastewater to be reused in a boiler by combining magnesium and zinc compounds with coagulation[J]. Desalination,2007,216(1-3), p.147-159.
    [70]丛丽娜,刘艳娟,郝斌.聚硅酸氯化铝锌絮凝剂的制备及在含油废水处理中的应用研究[J].化学工程师,2011,(1):5-9.
    [71]蒋鑫焱,翟建平,陈晨.粉煤灰基絮凝剂的制备及对含油废水的处理[J].粉煤灰综合利用,2007,(6):24-25.
    [72]王趁义.用粉煤灰制备聚硅酸硫酸铝混凝剂的实验条件及其应用[J].湖州师范学院学报,2008,30(2):38-40.
    [73]于泊蕖,张波,吕树芳,等.粉煤灰基新型无机高分子复合絮凝剂的制备[J].中国高新技术企业,2008,(17):81-82.
    [74]王贤纲.粉煤灰基絮凝剂处理洗煤废水的效果及作用机制[J].湿法冶金,2011,30(3):245-247.
    [75]贾淑颖,张巧玲.用粉煤灰净化采油污水的研究[J].陕西化工,1992,(3):41-44.
    [76]王富华,张祎徽,王力.粉煤灰的特性及其在油田开发中的研究与应用现状[J].中外能源,2007,12(1):92-96.
    [77]刘伟.粉煤灰制备聚硅酸铝铁絮凝剂及其对油田注水的处理研究[D].西安科技大学,2007.
    [78]张俊瑾,周朝昕,杨祥,等.絮凝法处理华北油田采出水[J].油气田地面工程,2010,29(6):52-53.
    [79]孟晓龙,周朝昕,杨祥,等.电解法处理华北油田含油污水[J].油气田地面工程,2010,29(5):65-66.
    [80]申玉星,傅绍斌,徐德慧,等.三元复合驱采出污水处理影响因素研究[J].石油天然气学报,2006,28(6):169-171.
    [81]黄亮亮,王磊,周川.交变电絮凝处理某垃圾填埋场渗滤液的试验研究[J].中国新技术新产品,2011,(3):156-157.
    [82]林辉,甘复兴,田芳.脉冲电絮凝法处理餐饮废水的研究[J].武汉大学学报(理学版),2003,49(6):720-724.
    [83]沈健,陶贺,张海岩.用脉冲电絮凝法处理线切割乳化液废水[J].科技咨询导报,2007,(19):48.
    [84]石淑云.周期换向脉冲电絮凝法处理屠宰场废水[J].水处理技术,2010,36(4):104-107.
    [85]王丽,罗亚田,熊彩蕾.不同电极方式交变脉冲电絮凝法处理废水的比较研究[J].辽宁化工,2009,38(3):166-169.
    [86]邵坚,陆建红,邹仲勋,等.锌铝电极电絮凝法处理高氟饮用水的研究[J].中国给水排水,2009,25(15):100-102.
    [87]Costa C R, Botta C M R. Electrochemical treatment of tannery wastewater using DSA(?) electrodes[J]. Journal of Hazardous Materials,2008,153:p.616-627.
    [88]郭士元.复极性颗粒床电解槽处理有机废水改进研究:[D].大连:大连理工大学,2006.
    [89]杨松.复极性三维电极反应器的改进研究:[D].大连:大连理工大学,2004.
    [90]王雅琼,许文林.固定床电化学反应器研究进展[J].化工冶金,1995,16(3):263-269.
    [91]胡将军,邹鹏,王琼.活性炭颗粒填充三维电极电化学烟气脱硫的研究[J].环境污染与防治,2006.28(3):191-193.
    [92]孙彦平,张忠林,郝晓刚,等.流化床电化学反应器研究进展[J].现代化工,2007,27(1):18-22.
    [93]刘辉,吴晓翔,施汉昌,等.高压脉冲电絮凝与硅藻精土组合工艺处理电镀废水[J].中国给水排水,2008,24(2):58-60.
    [94]李智,张玉先.NaOH软化-电絮凝处理炼油厂RO外排浓水研究[J].给水排水,2009,35(11):189-192.
    [95]栗文明,吴浩汀.Fenton预氧化-高压脉冲电凝聚-混凝处理染料废水[J].水处理技术,2007,(12):88-90.
    [96]董慧茹,卢永康,毕鹏禹,等.电絮凝-气浮-H2O2法处理石化污水[J].水处理技术,2006,(9):66-69.
    [97]张晓艳,石淑云.超声协同脉冲电絮凝法处理屠宰场废水研究[J].安徽农业科学,2011,39(28):17405-17407.
    [98]Yetilmezsoy k, Sapci-Zengin F I Z. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process:A post-treatment study[J]. Journal of Hazardous Materials,2008,162:p. 120-132.
    [99]Nizares P C, Carlos F M I. Coagulation and electrocoagulation of oil-in-water emulsions[J]. Journal of Hazardous Materials,2008,151:p.44-51.
    [100]Nizares P C, Justo F M I. Break-up of oil-in-water emulsions by electrochemical techniques[J]. Journal of Hazardous Materials,2007,145:p.233-240.
    [101]Tir M, Moulai-Mostefa N. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method[J]. Journal of Hazardous Materials,2008,158(1):p.107-115.
    [102]Yang Ch L. Electrochemical coagulation for oily water demulsification[J]. Separation and Purification Technology,2007,54:p.388-395.
    [103]王亭沂,周海刚.含油污水电化学绿色处理技术应用与评价[J].中国科技信息,2006,(15):49-51,53.
    [104]张莹,龚泰石.直流电絮凝法处理油田采出水试验研究[J].中国给水排水,2008,24(5):61-64.
    [105]胡海,邱于斌,李强,等.脉冲电絮凝处理三次采油污水研究[J].环境科学与技术,2012,35(2):173-177,181.
    [106]杨永军,郑树贵,朱成君,等.用化学组合工艺处理油田含油污水[J].石油化工腐蚀与防护,2006,(2):1-5.
    [107]宋志德.电化学絮凝与化学絮凝法联合处理油田污水的实验分析[J].现代经济信息,2009,(15):314,316.
    [108]战征,蔡奇峰,汤晟,等.塔河油田腐蚀原因分析与防护对策[J].腐蚀科学与防护技术,2008,20(02):152-154.
    [109]杨敬彪.油田含聚介质加热炉结垢原因分析及技术进展[J].科技与企业,2012,(15):198-199.
    [110]SY/T 5329-1994,碎屑岩油藏注水水质推荐指标及分析方法[S].
    [111]ISO7027-1999, Water quality-Determination of turbidity[S].
    [112]马庆霞,张忠智,苗建生,等.淀粉-碘化镉测定部分水解聚丙烯酰胺浓度的影响因素分析[J].化学与生物工程,2010,27(6):80-82.
    [113]季伟,范剑明,吉仁塔布,等.聚硅酸铝铁絮凝剂的制备及其性能研究[J].矿产保护与利用,2012,4(4):37-40.
    [114]章莉娟,郑忠编.胶体与界面化学[M].第二版.广州:华南理工大学出版社,2006.112-189.
    [115]刘立新,赵晓飞,胡仪等.电化学絮凝与化学絮凝法联合处理油田污水的实验分析[J].大庆石油学院学报,2009,33(1):49-51,122.
    [116]蔡称心,陈洪渊.快扫描循环伏安法及其在电化学中的应用[J].分析科学学报,1993,9(04):56-62.
    [117]Smiechowski M F, Lvovich V F. Electrochemical monitoring of water-surfactant interactions in industrial lubricants[J]. Journal of Electroanalytical Chemistry,2002,534(2):171-180.
    [118]陶映初,陶举洲.环境电化学[M].北京:化学工业出版社,2003.194-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700