用户名: 密码: 验证码:
钛合金TC17力学性能及其切削加工特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金材料具有优异的力学性能、低密度以及良好的耐蚀性,是航空航天工业最主要的消费材料。然而,由于具有导热系数低、高温化学活性高和弹性模量小特点,钛合金又是一种典型的难加工材料。在切削加工过程中,容易产生很高的切削温度,导致刀具磨损加快、表面质量难以控制,而低的切削速度导致加工效率难以提高。同时,由于航空钛合金零部件的整体结构件设计特点,大量的材料需要从整块坯料中去除,造成切削成本较高。因此,实现钛合金材料的高效、高速加工成为航空航天制造业亟需解决的问题。本文针对航空钛合金TC17,基于其动态力学性能特征研究,结合切削实验,对钛合金TC17的切屑形貌特征、切削力、切削温度、刀具寿命及磨损机理和表面粗糙度等切削加工特性问题及其影响规律进行系统研究,为生产实际中高效、高速切削加工提供理论与技术支持。
     材料在快速变化载荷作用下的动态响应,对于分析材料的切削机理具有很重要的作用。论文通过准静态压缩实验及分离式霍普金森压杆实验,获得应变率10-3/s~104/s,温度25℃~800℃范围内,钛合金TC17的塑性变形特征。实验表明在高温下TC17材料表现出明显的温度软化特征,随着温度的升高,流动应力减小。温度在700℃以上,准静态条件下钛合金TC17表现出明显的流变软化。通过高加载率下的冲击压缩实验表明,TC17材料的屈服强度和流动应力随着应变率增大而增大,TC17材料的动态响应是应变强化、应变率强化和温度软化三种效应的耦合作用。同时拟合回归得到TC17合金材料在比较宽的温度和应变率范围内的本构方程。
     通过直角切削获得不同切削参数下的TC17材料的切屑形貌,基于热粘塑性材料本构失稳条件,建立材料流变参数Ψ与切削速度vc,进给量f间的关系,获得切屑由连续带状切屑向锯齿状转变的临界切削条件,及材料的临界流变参数Ψ的值。采用锯齿形切屑的齿距、切削比、锯齿化程度和剪切带倾角来表征锯齿状切屑的几何特征,研究切削参数对切屑几何特征的影响,结果表明:随着切削速度和进给量的增大,锯齿状切屑的齿距和锯齿化程度增加,剪切带带倾角减小;随着切削速度增大,剪切带内的显微硬度增大。
     建立了基于材料本构关系的切削力理论预测模型,通过三因素三水平的正交回归实验极差分析,发现斜角切削加工TC17中,切削深度对切削合力影响最大,其次是切削速度,进给量对切削合力的影响最小。切削速度vc对切削温度的影响最显著,进给量f的影响次之,切削深度αp对切削温度的影响最小。
     研究了PVD TiAlN涂层硬质合金刀具车削加工钛合金TC17的刀具寿命随切削参数的变化规律,表明切削速度vc对刀具寿命具有显著性影响,其次是进给量f,而切削深度影响较弱。建立了刀具寿命经验模型,分析了刀具寿命与切削效率间的关系,借助SEM观察和能谱分析EDS等手段,对钛合金TC17切削加工刀具的磨损机理进行分析。研究表明钛合金TC17切削加工刀具磨损和失效的主要机理是粘结磨损,同时伴随有磨粒磨损、氧化磨损、扩散磨损。
     通过正交回归实验法得到车削和面铣加工钛合金TC17的表面粗糙度经验公式。基于表面粗糙度的经验模型,进行表面粗糙度对各个切削参数响应的灵敏度分析,获得得到平稳表面粗糙度的切削参数区间,并结合刀具寿命-切削效率间的关系获得高效车削加工TC17材料切削参数区间。
     (?)本课题得到国家基础研究发展计划(973)(2009CB724401)的资助。
Titanium alloys have been widely used in aircraft industry due to their high specific strength and excellent corrosion resistance. However, titanium alloys are typical difficult-to-machine materials due to their poor thermal conductivity, low elastic modulus and high chemical activation. High cutting temperature generated in titanium alloy machining usually leads to rapid tool wear and poor surface quality. On the other hand, most materials need to be removed from roughcast due to the design characteristics of components used in the aircraft industry. Therefore, the improvement of the efficiency of material removal for titanium alloy machining has been an urgent problem to be solved in aerospace manufacturing. The response of TC17alloy under dynamic loading with different strain rates and temperatures is investigated in this dissertation. The characteristics during machining TC17alloys, systematically analyzes the chip morphology, cutting forces, cutting temperature, tool life and wear mechanism, and surface roughness, using the method of combining theoretical analysis and experimental research, are focused in order to provide theoretical and practical support in high efficiency and high speed machining TC17.
     This study has investigated the mechanical response of TC17alloy under quasi-static and dynamic loading with different strain rates and temperatures. The results have shown that the stress-strain response of TC17is highly sensitive to both the strain rate and the temperature. TC17has evident heat softening effect, strain rate strengthening effect and strain hardening effect. The flow stress decreases while temperature increases. Flow softening behavior has been observed above700℃under quasi-static loading. The constitutive model of TC17has been established, which has high precision in forecasting material flow stress. It is a foundation for research on deformation mechanism in TC17machining process.
     The serrated chip formation in orthogonal cutting TC17is studied. A flow localization parameter is expressed in terms of associated cutting conditions and properties of TC17. The effect of cutting conditions on the formation of sawtooth chip in TC17machining is investigated. It is found that the critical value during machining TC17is0.0032m2/min, at which the serrated chip is observed. Intervals of segments, cutting ratio, degree of serrated chip and the inclination angle of shear band are used to characterize the geometric characterization. Microhardness of shear band is used to characterize the mechanical properties characterization. By orthogonal cutting experiments, the relationship among cutting parameters, geometric characterization, and mechanical properties characterization are explored. It is found that, intervals of segments, degree of serrated chip and microhardness of shear band increase with the increase of the cutting speed and feed rate, the inclination angle of shear band decreases with the cutting speed and feed rate increasing.
     Cutting force and temperature are influenced by the mechanical properties of workpiece. Based on Oxley cutting theory, the mathematic models of stress, strain, strain rate, temperature in shear zone and orthogonal cutting forces are proposed, which is tenable under cutting condition. From the view point of controlling of cutting forces and cutting temperature, appropriate cutting speed, larger depth of cut, medium feed rate are preferred.
     Systematic researches have been conducted on tool wear patterns and wear mechanisms with TiAlN coated carbides. Adhesive wear is the main failure mechanism, accompanied by abrasive wear, oxidation wear, and diffusion wear. The empirical formula of tool life when turning TC17using coated carbide tool has been founded. The results show that cutting speed and feed rate have a great influence on the tool life. Finally, tool life-cutting efficiency relationship is developed.
     The effects of cutting conditions on surface roughness when turning and face milling TC17are researched by experiments. The empirical formula has been founded. The sensitivity analysis for the cutting parameters show that the surface roughness is most sensitive to the feed rate, and less sensitive to the cutting speed and cutting depth for turning operations. The surface roughness in face milling process is most sensitive to cutting speed, and less sensitive to the feed per tooth and cutting depth.
引文
[1]工业和信息化部,民用航空工业中长期发展规划[R],2013,05,23
    [2]赵树萍,吕双坤.钛合金在航空航天领域中的应用[J].钛工业进展,2002,,19(6):18-21
    [3]Leyens C,Peters M. Titanium and titanium alloys [M]. Wiley-VCH Verlag GmbH&Co.KGaA, 2003
    [4]张伟.航空发动机[M].航空工业出版社,2008
    [5]Masafumi K. The use of cutting temperature to evaluate the machinability of titanium alloys [J]. Acta Biomaterialia.2009,5 (2):770-775
    [6]Ezugwu E O, Bonney J, Yamane Y. An overview of the machinability of aeroengine alloys [J]. Journal of Materials Processing Technology.2003,134 (2):233-253
    [7]谢成本.钛及钛合金铸造[M].北京:机械工业出版社,2005:8-25
    [8]张春江.钛合金切削加工技术[M].西安:西北工业大学出版社,1986:1-25
    [9]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005,04
    [10]International Titanium Association. Titanium Today. Industrial edition, March 2013
    [11]黄旭,朱知寿,王红红.先进航空钛合金材料与应用[M].北京:国防工业出版社,2012,05
    [12]Valentin N. Moiseyev.Titanium Alloys-Russian Aircraft and Aerospace Applications[M]. Taylor & Francis Group, LLC,2006
    [13]Ezugwu E O. Key improvements in the machining of difficult-to-cut aerospace superalloys [J]. International Journal of Machine Tools and Manufacture.2005, (45):1353-1367
    [14]Schulz H,Moriwaki T. High speed maching [J]. Annals of CIRP.1992,42(2):637-643
    [15]Nemat-assers,GuoWGThermomeehanical response of DH-36 structural steel over a wide range of strain rates and temperatures.Meehanies of Materials,2003,35:1023-104
    [16]Nemat-assers,Guo W G,Thermomeehanical response of HSLA-65 steel Plates:experiments and modeling.Meehanies of Materials,2005,37:379-405
    [17]Nemat-Nasser S,Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys.Acta Materialia,1997,45:907-919
    [18]Nemat-Nassers, Guo W G, Liu M Q. Experimentally-based micromechanical modeling of dynamic response of molybdenum.Scripta Mat.,1999,40:859-872
    [19]Nemat-Nassers, Guo W G Flow stress of commercially pure niobium over abroad range of temperatures and strain rates.Mat.Sci.Eng.A,1999,284:202-210
    [20]Liang R Q, Khan A S.A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J].International Journal of Plasticity1999,15:963-980
    [21]Dhua S K,Mukerjee D,Sarma D S.Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plate[J].Metall.Trans.A,2001,32A:2259-2270
    [22]Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the Seventh International Symposium on Ballistic, Hague, Netherlands,1983.541-547
    [23]Zerilli F J,Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics.1987,61(5):1816-1825
    [24]Follansbee P S,Kocks. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metall.1988, 36(1):81-93
    [25]Meyers M A.Dynamic behavior of Materials.America:John Wiley & Sons Incoporation,1994:323-381
    [26]Khan A S,Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104s-1[J]. International Journal of Plasticity.1992, (8):397-424
    [27]Huang S,Khan A S. Modeling the mechanical behavior of 1100-0 aluminum at different strain rates by the Bodner-Partom model [J]. International Journal of Plasticity.1992, (8):501-517
    [28]Bodner S R,Partom Y. Constitutive equations for elastic±viscoplastic strain-hardening materials [J]. Journal of Applied Mechanics.1975, (June):385-389
    [29]Kolsky H. An investigation of the mechanical properties of materials very high rates of loading [J]. Proc Phys Soc 1994, B63:676-700
    [30]Lee W S,Lin C F. High-temperature deformation behavior of Ti6Al4V alloy evaluated by high strain-rate compression tests [J]. Jounal of Material Processing Technology 1998, (75):127-136
    [31]Lennon A M,Ramesh K T. A technique for measuring the dynamic behavior of materials at high temperatures [J]. International Journal of Plasticity 1998,14(12):1279-1292
    [32]杨勇.钛合金航空整体结构件铣削加工变形的预测理论及方法研究[D].杭州:浙江大学博士学位论文,2007
    [33]Ceretti E F P, Wu W T, Altan T. Application of 2D FEM to chip formation inorthogonal cutting [J]. Journal of Materials Processing Technology.1996,59(2):169-180
    [34]Ceretti E L M, Altan T. FEM simulation of orthogonal cutting:serrated chip formation [J]. Journal of Materials Processing Technology.1999,95(1):17-26
    [35]Ceretti E L C, Menegardo L,Altan T. Turning simulation using a three-dimension FEM code [J]. Journal of Materials Processong Technology.2000,98(1):99-103
    [36]Ceretti E T E, Altan T. Simulation of metal flow and fracture application in orthogonalcutting, blanking and cold extrusion [J]. Annals of CIRP.1997,46(1):187-190
    [37]Shatla M K C, Altan T. Process modeling in machining. Part Ⅰ:determination of flow stress data [J]. International Journal of Machine Tools and Manufacture.2001,41(10):1511-1534
    [38]Shatla M. Prediction of forces, flow stresses,temperatures and tool wear in Metal Cutting [D]. Ohio State University,1999
    [39]Zener C,Hollomon J H. Problems in non-elastic deformation of metals [J]. Journal of Applied Physics.1946,17(2):69-82
    [40]Komanduri R, Brown R. On the mechanics of chip segmentation in machining [J]. Journal of Engineering for Industry.1981, (103):33-51
    [41]Komanduri R,Turkovich B F V. New observations on the mechanism of chip formation when machining titanium alloys [J]. Wear.1981, (69):179-188
    [42]Hou Z B.Komanduri R. On a thermo-mechanical model of shear instability in machining [J]. Annals of the CIRP.1995,44(1):69-73
    [43]Hou Z B,Komanduri R. Modeling of thermomechanical shear instability in machining [J]. International Journal of Mechanical Science.1997, (39):1273-1314
    [44]Komanduri R,Hou Z B. On thermoplastic shear instability in the machining of a titanium alloy (Ti-6A1-4V) [J]. Metallurgical and materials transactions.2002, (33):2995-3010
    [45]Recht R. Catastrophic thermoplastic shear [J]. Transactions of ASME, Journal of applied Mechanics.1964,186(31):189-193
    [46]He N,Pan L X,Wang M. Chip Formation Model of Titanium Alloy [J]. Transaction of Nanjing University of Aeronautics and Astronautics.1998,15(2):211-215
    [47]He N,Li L,Wang M. Cutting Equation for High Speed Cutting of Difficult-to-cut Materials [J]. Chinese Journal of Mechanical Engineering.2002, (15):207-210
    [48]Davies M A,Burns T J,Evans C J. On the dynamics of chip formation in machining hard metals [J]. Annals of the CIRP.1997, (46):25-30
    [49]Shaw M C.Vyas A. Chip formation in machining hardened steels [J]. Annals of the CIRP.1998, (47):29-32
    [50]Vyas A,Shaw M C. Mechanics of saw-tooth chip formation in metal cutting [J]. ASME Transition:Journal of Manufacturing Science and Engineering.1999, (121):163-172
    [51]Gente A,Hoffmeister H W. Chip formation in machining Ti6A14V at extremely high cutting speeds [J]. Annals of CIRP.2001, (50):49-52
    [52]Shivpuri R,Hua J,Mittal P,et al. Microstructure-Mechanics Interactions in Modeling Chip Segmentation during Titanium Machining [J]. CIRP Annals-Manufacturing Technology.2002, 51(1):71-74
    [53]胡八一,董庆东.TC4钛合金及40Cr钢破片中绝热剪切带的TEM分析[J].高压物理学报.1996,(10):37-43
    [54]Liao S C,Duffy J. Adiabatic shear bands in a Ti6A14V titanium alloy [J]. Journal of the Mechanics and Physics of Solids 1998, (46):1190-1120
    [55]Motonishi S,Hara Y,Isoda S, et al. Study on machining of titanium and its alloys [J]. Kobelco Technology Review.1987, (2):28-31
    [56]Shahan A R,Taheri A K. Adiabatic shear bands in titanium and titanium alloys:a critical review [J]. Materials & Design.1993, (14):243-250
    [57]Huang J,Aifantis E C. On the Shear Instability in Chip Formation in Orthogonal Machining [J]. Journal of the Mechanical Behavior of Materials.1996, (7):279-292
    [58]刘鹏等.PCD刀具高速铣削TA15钛合金切削力的研究[J].南京航空航天大学学报,2010,04(42):224-229
    [59]陈日曜.金属切削原理[M].北京:机械工业出版社,2007,01
    [60]周泽华.金属切削理论[M].北京:机械工业出版社,1992,165-195
    [61]W.J.Endres,R.E.Devor,S.G. Kapoor. A dual-mechanism approach to the prediction of machining forces, Part 1:model development [J].Journal of Engineering for Industry,1995,117:526-533
    [62]G.V. Stabler. The chip flow law and its consequences [J]. Advances in Machine Tool Design and Research,1964,243-251
    [63]E.J.A. Armarego, R.C. Whitefield. Computer based modeling of popular machine operations forces and power predictions [J]. Ann. CIRP,1985,34:65-69
    [64]Y.Altinats. manufacturing automation-metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge:Cambridge University Press,2000
    [65]A. Moufki, A. Devillez, D. Dudzinski, et al. Thermomechanical modelling of oblique cutting and experimental validation[J]. International Journal of Machine Tools & Manufacture,2004,44: 971-989
    [66]臼井英治著,高希正,刘德忠译.切削磨削加工学[M].北京:机械工业出版社,1982,12
    [67]刘战强,黄传真,万熠等.切削温度测量方法综述[J].工具技术.2002,36(3):3-6
    [68]耿国盛,徐九华,傅玉灿.高速铣削近α钛合金的切削温度研究[J].机械科学与技术.2006,25(3):329:332
    [69]史兴宽,杨巧风,张明贤.钛合金TC4高速铣削表面的温度场研究[J].航空制造技术,2002(1):34-37
    [70]Y.K,Potdar, A.T.Zehnder. Measurements and simulations of temperature and deformation fields in transient metal cutting[J]. Journal of Manufacturing Science and Engineering,2003, 125:645:655
    [71]M. Armendia, A. Garay.High bandwidth temperature measurement in interrupted cutting of difficult to machine materials[J].CIRP Annals-Manufacturing Technology 59 (2010) 97-100
    [72]侯镇冰,何绍杰,李恕先.固体热传导[M].上海:上海科学技术出版社,1984
    [73]R.Komanduri, Z.B. Hou. On thermoplastic shear instability in the machining of a titanium alloy(Ti-6Al-4V) [J]. Metallurgial and Materials Tranactions,2002,33A (9):2995-3010
    [74]Z.B. Hou, R.Komanduri. Modeling of thermomechanical shear instability in machining[J]. International Journal of Mechanical Science,1997,39(11):1273-1314
    [75]Hao Chunshui, Zhang Dong,Shi Gengru, et al.Study on formation mechanism of adhering layer formed on tool face[J]. Chinese Journal of Mechanical Engineering,1994,8(1)
    [76]刘飞,康戈文,徐宗俊.带圆弧卷屑槽刀具的直角干切削动态传热模型[J].重庆大学学报,1997,20(3):83-88
    [77]I. Lazoglu, Y. Altintas. Prediction of tool and chip temperature in continuous and interrupted machining[J]. International Journal of Machine Tools & Manufacture,2002,42:1011-1022
    [78]Y. Dogu, E. Aslan, N. Camuscu. A numerical model to determine temperature distribution in orthogonal metal cutting[J]. Journal of Materials Processing Technology,2006,171:1-9
    [79]W. Grzesik. Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique[J]. International Journal of Machine Tools & Manufacture,2006, 46:651-658
    [80]W. Grzesik, M. Bartoszuk, P. Nieslony. Finite element modelling of temperature distribution in the cutting zone in turning processes with differently coated tools[J]. Journal of Materials Processing Technology,2005,164-165:1204-1211
    [81]L. Filice, D. Umbrello, S. Beccari.et al. On the FE codes capability for tool temperature calculation in machining processes[J]. Journal of Materials Processing Technology,2006, (174):286-292
    [82]Chen Ming,Sun Fanghong,Wang Haili,etal.Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling[J]. Journal of Materials Processing Technology,2003,138:468-471
    [83]陈明,袁人炜,凡孝勇等.三维有限元分析在高速铣削温度研究中的应用[J].机械工程学报,2002,38(7):76-79
    [84]Venugopal K A, Paul S, Chattopadhyay A B. Growth of tool wear in turning of Ti-6A1-4V alloy under cryogenic cooling [J]. Wear.2007,262 (9-10):1071-1078
    [85]Cheharon C H, Ginting A, Arshad H. Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloys Ti-6242S [J]. Journal of Materials Processing Technology.2007,185 (1-3):77-82
    [86]M. Nouari, A. Ginting. Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy[J].Surface & Coatings Technology 200 (2006)5663-5676
    [87]耿国盛.钛合金高速铣削技术的基础研究[D].南京航空航天大学,2006
    [88]任开强.高强度钛合金的高速铣削研究[D].南京航空航天大学,2003
    [89]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东大学,2009
    [90]牟涛.高速铣削钛合金Ti6A14V的刀具磨损研究[D].山东大学,2009
    [91]Ezugwu E O,Silva R B D, Bonney J. Evaluation of the Performance of CBN Tools When Turning Ti-6Al-4V Alloy with High Pressure Coolant Supplies [J]. International Journal of Machine Tool and Manufacture 2005, (45):1009-1014
    [92]Wang Z G,Wong Y S,Rahman M. High-speed miling of titanium alloys using binderless CBN tools [J]. International Journal of Machine Tools and Manufacture.2005, (45):105-114
    [93]Wang Z G,Rahman M,Wong Y S. Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys [J]. Wear.2005, (258):752-758
    [94]Ezugwu E O,Bonneya J,Silvab R B D,et al.Surface integrity of finished turned Ti-6A1-4V alloy with PCD tools using conventional and high pressure coolant supplies [J]. International Journal of Machine Tools and Manufacture.2007, (47):884-891
    [95]Amin N A K M, Ismail A F,Khairusshima. Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy Ti-6A1-4V [J]. Journal of Materials Processing Technology. 2007, (4):1-12
    [96]H.Paris,G. Peigne,R.Mayer.Surface shape prediction in high speed milling[J].International Journal of Machine Tools & Manufacture,2004,44:1567-1576
    [97]E.O.Ezugwu,R.B.Da Silva,J.Bonney,A. R.Machado.Evaluation of the performance of CBN tools when turning Ti-6A1-4V alloy with high pressure coolant supplies.International Journal of Machine Tools&Manufacture.2005,45:1009-1014
    [98]Nikos C. Tsourveloudis.Predictive Modeling of the Ti6A14V Alloy Surface Roughness[J]. J Intell Robot Syst (2010) 60:513-530
    [99]Azlan Mohd Zain, Habibollah Haron, Safian Sharif. Prediction of surface roughness in the end milling machining using Artificial Neural Network[J]. Expert Systems with Applications 37 (2010) 1755-1768
    [100]曲迪,PCD刀具加工钛合金的实验研究[D].大连:大连理工大学硕士学位论文,2008,12,01
    [101]刘晓志,陶华,李茂伟.钛合金TC18铣削表面粗糙度预测模型的研究[J].信息技术,2010,07
    [102]Rodney Boyer,Gerhard Welsch,et al.Materials Properties Handbook:Titanium Alloys[M].ASM International the Materials Information Society.1994
    [103]Stephan M.Russ. Effect of LCF on HCF crack growth of Ti-17[J]. International Journal of Fatigue2005 (27):1628-1636
    [104]P.Tarin,A.L.Fernandez,etc.Transformations in the Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy and mechanical and microstructural characteristics[J]. Materials Science and Engineering A 2006 (438-440):364-368
    [105]S.Freoura,D.Gloaguen.Application of inverse models and XRD analysis to the determination of Ti-17 β-phase coefcients of thermal expansion[J]. Scripta Materialia 54 (2006) 1475-1478
    [106]A.Cadario,B.Alfredsson.Fatigue growthof short cracks in Ti-17:Experiments and simulations[J]. Engineering Fracture Mechanics 2007 (74) 2293-2310
    [107]Li Qiang, Xu Yongbo, M.N. Bassim. Dynamic mechanical properties in relation to adiabatic shear band formation in titanium alloy Ti-17. Materials Science and Engineering A. 2003(358):128-133
    [108]周军,Ti17钛合金片状组织球化规律研究[D].西安:西北工业大学硕士学位论文,2005,03,01
    [109]任军学,姚倡锋,田卫军.球头铣刀结构参数对钛合金铣削表面完整性的影响[J].航空制造技术,2010,01:81-84
    [110]王鑫,钛合金TC11和TC17的铣削加工性研究[D].济南:山东大学硕士学位论文,2010,04,25
    [111]George E. Dieter,Howard A. Kuhn,S. Lee Semiatin.Handbook of Workability and Process Design[M].ASM International,2003
    [112]陈良生,徐有容,王德英等.高铝不锈钢加工特性与综合流变应力模型[J].钢铁2000,35(5):55-59
    [113]程晓茹,李虎兴,葛樊琦.管线钢X65高温变形动态再结晶研究[J].金属学报,1997,33(12):1275-1276
    [114]Hofmann U, Blum W. M icrostru ctural evolu tion during h igh temperature deformation of lamellar T-i48A-12Nb-2Cr[J]. Intermetallics,1999, (7):351-361
    [115]孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究[D].北京:清华大学博士学位论文,1999
    [116]Semiatin S L, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6A1-4V with a colony alpha microstructure[J].Materials Science and Engineering,1999, A263:257-271
    [117]宋小龙,安继儒.新编中外金属材料手册(第2版)[M].北京:化学工业出版社,2012,08,01
    [118]郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007
    [119]Sharpe.Springer Handbook of Experimental Solid Mechanics[M]. Springer Science+Business Media, LLC New York,2008
    [120]李玉龙,索涛,郭伟国.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击,2005,25(6):487-482
    [121]余同希,邱信明.冲击动力学[M].北京:清华大学出版社,2011
    [122]鲁世红.高速切削锯齿形切屑的实验研究与本构建模[D].南京:南京航空航天大学博士学位论文,2009
    [123]WoeiShyan Lee, ChiFeng Lin, et al. Effects of strain rate and temperature on mechanical behaviour of Ti-15Mo-5Zr-3Al alloy. Journal of the mechanical behavior of biomedical materials 1,2008,336-344
    [124]Wei, X., Renyu, F., Li, L.Tensile deformation behavior of cold-rooled TRIP-aided steel over large range of strain rates. Mater. Sci. Eng. A..2007,465:260-266
    [125]M.Hokka, T.Leemet, et al. Characterization and numerical modeling of high strain rate mechanical behavior of Ti-15-3 alloy for machining simulations. Materials Science and Engineering A,2012,550:350-357
    [126]包卫平,赵昱臻,李春明,任学平.纯铁高温高应变率下的动态本构关系试验研究[J].机械工程学报,2010,46(4):74-79
    [127]张庆明,刘彦等译.材料的动力学行为[M].北京:国防工业出版社,2006,10
    [128]郭伟国.BCC金属的塑性流动行为及其本构关系研究[D].西安:西北工业大学博士学位论文,2007
    [129]Shen,W.Q.,Jones,N.A failure criterion for beams under impulsive loading[J],Int.J.Impact Engng.,1992,12,101-121
    [130]S.Akhtar. Khan,Yeong Sung Suh,et al.Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. International Journal of Plasticity,2004 (20):2233-2248
    [131]G.R. Johnson. Strength and fracture characteristics of a titanium alloy (.06A1.04V) Subjected to Various Strains, Strain Rates, Temperatures and Pressures[R]. NSWC TR 86-144, Dahlgren, VA,Nov.1985
    [132]A.Gentel,H.-W.Hoffmeiste. Chip Formation in Machining Ti6A14V at Extremely High Cutting Speeds[J]. CIRP Annals-Manufacturing Technology,2001,50(1):49-52
    [133]MEYERS M A. Dynamic Behavior of Materials [M]. USA:John Wiley & Sons Inc.1994
    [134]Hou,Z.B,Komanduri,R.On a thermo-mechanical model of shear instability in machining[J].Annals of the CIRP.1995,44(1):69-73
    [135]俞汉清.金属塑性成形原理[M].北京:机械工业出版社,1999
    [136]王礼立.绝热剪切—材料在冲击载荷下的本构失稳[M].冲击动力学进展,合肥:中国科技大学出版社,1999:10-11
    [137]Cowie,J.G.Tuler,F.R.Flow localization models-a review[J].Materials Science and Engineering,1987,95:93
    [138]Xie J Q,Bayoumi A E,Zbib H M.A study on shear banding in chip formation of orthogonal machining[J].International Journal of Machine Tools and Manufacture.1996,36(7):835-847
    [139]Lee D. The effect of cutting speed on chip formation under orthogonal machining[J]. Journal of Engineering for Industry.1985,107:55-63
    [140]Huang J, Kalaitzidou K, Sutherland J W. Validation of a Predictive Model for Adiabatic Shear Band Formation in chip produced via orthogonal machining [J].Journal of Mechanical Behavior of Materials.2007,18(4):243-264
    [141]苏国胜.高速切削锯齿形切屑形成过程与形成机理研究[D]济南:.山东大学博士学位论文,2011
    [142]Loewen E G,Shaw M C. On the analysis of cutting tool temperature [J].Transaction of ASME. 1954,76:217-231
    [143]Schulz H., Abele E. et al. Material aspects of chip formation in HSC machining. CIRP Vol.50/1,2001:45-48
    [144]张慧萍,李振加,刘二亮,等.高速切削切屑折断界限变化规律[J].机械工程学报,2008,44(5):124-130
    [145]王敏杰,谷丽瑶.高速切削过程绝热剪切局部化断裂判据[J].机械工程学报,2013,49(1):156-163
    [146]Herbert Schulz, Eberhard Abele,何宁.高速加工理论与应用[M].北京:科学出版社,2010
    [147]Merchant M E.Mechanics of the metal cutting process[J] I.J Appl Phy,1945,16(5):267-275
    [148]Lee E H,Shaffer B W. The theory of plasticity applied to a problem of machining[J].J Appl Mech,1951,73:405-413
    [149]M.C.Shaw.Metal cutting principles[M].Oxford University Press.1984
    [150]AltintasY.Manufacturingautomation.Cambridge:CambridgeUniversityPress,2000
    [151]P.L.B.Oxley.Mechanics of metal cutting[J]. International Journal of Machine Tool Design and Research.1961,1(1-2):89-97.
    [152]S. Bahi, M. Nouari,et al.A new friction law for sticking and sliding contacts in machining[J]. Tribology International 2011,44(7):764-761
    [153]Y.Bai,C.Cheng,and S.Yu,Acta Mech. Sinica,1986 (2),1
    [154]N.A. Abukhsjim, P.T. Mativenga, M.A. Sheikh, Heat generation and temperature predicationin metal cutting:A review and implication for high speed machining[J]. International Journal of Machine Tools & Manufacture,2006,46:782-800.
    [155]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003
    [156]Loewen E G,Shaw M C. On the analysis of cutting tool temperature [J].Transaction of ASME. 1954,76:217-231
    [157]Zorev NN, Massey HSH. Metal cutting mechanics. Pergamon Press:1966
    [158]T.H.C. Childs. Friction modelling in metal cutting. Wear,2006,260:310-318
    [159]G.Sutter,N.Ranc. Temperature fields in a chip during high-speed orthogonal cutting-An experimental investigation[J]. International Journal of Machine Tools & Manufacture2007 (47): 1507-1517
    [160]Songwon Seo, Oakkey Min,et al.Constitutive equation for Ti-6A1-4V at high temperatures measured using the SHPB technique[J] International Journal of Impact Engineering 2005(31):735-754
    [161]M Alauddin,M A E Baradie. M S J Hashmi. Prediction of tool life in end milling by response surface methodology[J].Journal of Matefials Processing Technology,1997,(71):456-465
    [162]林小东,宋绪丁,傅高升.复合工艺制备TiAIN薄膜及其高温抗氧化性能研究[J].表面技术,2010,39(6):22-25
    [163]李友生,邓建新,张辉,等.高速车削钛合金的硬质合金刀具磨损机理研究[J].摩擦学 报,2008,28(5):443-447
    [164]李清斌,王晓春.合金中的扩散性相变与合金热力学[M].沈阳:辽宁科学技术出版社,1984
    [165]王欣玲,郎岩梅,等.GB/T3505-2009,产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数[S].2009,03,16
    [166]Qu J, Shih AJ (2003) Analytical surface roughness parameters of a theoretical profile consisting of elliptical arcs. J Mach Sci Technol 7(2):281-294
    [167]Choudhury IA, EI-Baradie MA Surface roughness prediction in the turning of high-strength steel by factorial design of experiments[J]. J Mater Technol 1997,67:55-56
    [168]K.L.Johnson. Contact Mechanics[M].Cambridge University Press,1985
    [169]全永昕,施高义.摩擦磨损原理[M].浙江:浙江大学出版社,1988
    [170]杨桂通.弹性力学[M].北京:高等教育出版社,2005,02
    [171]袁哲俊.金属切削实验技术[M].北京:机械工业出版社,1988
    [172]梁醒培.结构优化设计的解析灵敏度算法[J].机械强度,1998,20(02):156-159
    [173]钱文学,尹晓伟,何雪宏等.压气机轮盘疲劳寿命影响参量的灵敏度分析[J].东北大学学报:自然科学版,2006,127(6):677-680
    [174]田荣鑫,姚倡锋等.面向加工表面粗糙度的钛合金高速铣削工艺参数区间敏感性及优选[J].航空学报,2010,31(12):2464—2470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700