用户名: 密码: 验证码:
Mg-11Y-5Gd-2Zn-0.5Zr(wt.%)铸造耐热镁合金高温变形、强化及断裂机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于当今对汽车轻量化的强烈需求,研发能够在高温下长期稳定服役的耐热镁合金,使其可以应用于动力系统(powertrain),已经成为现阶段镁合金研究领域的热点和难点。而研发可应用于动力系统核心部件(如发动机活塞等)的高性能耐热镁合金(耐热温度≥300℃)是其中的最前沿。目前国内外针对上述应用温度条件的镁合金的研究还较少,尤其是对稀土镁合金的高温塑性变形、强化以及断裂机制的系统研究则更为欠缺。
     Mg-11Y-5Gd-2Zn-0.5Zr(WGZ1152,wt.%)合金是由笔者所在课题组新近开发的高性能重力铸造耐热镁合金,前期的研究结果表明其具有应用于300℃及以上温度的潜力。因此,本文以WGZ1152合金为对象,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD).图像分析(image analysis)以及位错滑移迹线分析(slip trace analysis)等手段,通过显微硬度、室高温变速率瞬态拉伸实验、高温拉伸蠕变实验、原位(in-situ)瞬态拉伸和原位拉伸蠕变实验,系统研究了该合金:1)在25-400℃(0.33~0.75Tm,Tm为熔点)和1E-4~1E-2s-1应变速率条件下的瞬态拉伸变形和断裂行为;2)在250~340℃(0.58~0.68Tm)不口30~140MPa (0.1-0.6R0.2,R0.2为300℃屈服强度)应力条件下的拉伸蠕变变形和断裂行为。在此基础上探讨了该合金的高温变形、强化以及断裂机制。此外,还成功地进行了镁合金发动机活塞的工业试制和发动机台架试验。
     时效态WGZ1152-T6合金的室高温力学性能研究表明:1)在25-400℃范围内,WGZ1152-T6合金的抗拉及屈服强度均要显著优于商用耐热镁合金WE54-T6和活塞用耐热铝合金AC8A-T6.其在300℃(0.64Tm)的抗拉和屈服强度分别高于250MPa和225MPa,为室温强度的86%和95%。2)在300℃相同应力条件下,其最小蠕变速率比WE54-T6低两个数量级,比AC8A-T6低一个数量级以上,与应用温度最高的HZ32-T5耐热镁合金相当(由于Th的放射性,此合金已逐渐被淘汰)。
     WGZ1152-T6合金高温瞬态拉伸实验的研究结果如下:
     1)变速率拉伸实验结果显示:在250-400℃和1E-4-1E-2s-1应变速率范围内,T6合金的变形本构方程可用双曲正弦函数ε=A[sinh(ασ)]nexp(-Q/RT)描述,应力指数n=7.7±0.7,激活能Q=274±10kJ/mol,n和Q值表明位错交滑移(dislocation cross-slip)为速率控制机制,变形后样品表面出现的波浪形的滑移线(通常由交滑移所致),进一步证实了上述观点。
     2)通过原位SEM、EBSD和位错滑移迹线分析,定量研究了T6合金在瞬态拉伸过程中位错滑移的激活规律,结果表明:滑移模式从室温下的基面滑移(100%)主导,先是变为250℃下的基面(73%)和棱柱面滑移(16%)共同主导,再逐渐转变为350℃下的基面(67%)和角锥面滑移(25%)共同主导;在中等温度(200~250℃),棱柱面滑移在高应变量时更为活跃,而角锥面滑移则在高温(≥300℃)和高应变量时更为活跃;上述结果在200-250℃与Mg单晶的临界剪切应力随温度的变化规律高度吻合,但当温度高于250℃时,则与Barnett利用全约束Taylor模型对AZ31合金的模拟结果在一定程度上吻合。
     3)通过原位SEM研究了T6合金在瞬态拉伸过程中的断裂机制,结果表明:在室温下,试样为穿晶断裂(transgranular fracture)(40%)和沿晶断裂(intergranular fracture)(60%)混合模式,粗化的滑移带是穿晶断裂的主要裂纹萌生位置;在200~350℃,沿晶断裂变为主要断裂模式,明显的裂纹出现于变形的中后期,这些裂纹优先起源于与应力垂直的晶界处或者晶界第二相与α-Mg基体的界面处。
     铸态、固溶T4态和时效T6态WGZ1152合金拉伸蠕变变形行为的研究结果如下(T=250-325℃,σ=50~140MPa):
     1)第三阶段主导蠕变(extended tertiary creep)是此合金蠕变的主要特征,这与一些镍基工程合金类似,析出相β’和β的粗化是导致第三阶段主导蠕变的重要原因之一。
     2)在300℃,较低应力条件下(σ<50MPa),铸态、T4态和T6态合金的最小蠕变速率没有显著区别;而在较高应力条件下(σ≥50MPa), T6态合金的最小蠕变速率略低于铸态合金,而T4态合金的最小蠕变速率最高。
     3)三种状态的WGZ1152合金的应力指数n介于4.4~6.0之间,这一数值接近于5表明位错蠕变(dislocation process creep)是主要的蠕变机制;平均蠕变激活能Q介于221~266kJ/mol之间,远高于纯Mg的自扩散激活能(135kJ/mol),高的蠕变激活能与非基面滑移和交滑移密切相关,并且交滑移很可能是蠕变的速率控制机制;表面观察结果(暗示交滑移被激活)和滑移迹线分析结果(证实12-25%的非基面滑移被激活)进一步证明了上述观点。
     4)通过原位SEM、EBSD和位错滑移迹线分析,定量研究了T6合金在拉伸蠕变过程中位错滑移的激活规律,结果表明:在低温高应力下(T=250℃,σ=120MPa),基面
滑移占主导(88%),非基面滑移被激活,包括9%的棱柱面和3%的角锥面滑移。基面滑移先于非基面滑移出现,随着蠕变时间的增加,非基面滑移的比例逐渐增加;在高温低应力条件下(T=340℃,σ=75MPa),则变为基面(75%)和角锥面滑移(16%)共同主导,并且在蠕变的早期阶段,即发现较高比例的非基面滑移。
     分析表明WGZ1152合金的强化机制包括:1)晶内:垂直于基面、沿三个棱柱面呈三角分布的盘片状β’和β析出相可以有效地阻碍基面位错滑移,而LPSO相则可以有效地阻碍位错的攀移、交滑移和非基面滑移。2)晶界:高硬度(比基体高92~112%)、高体积分数(16~24%)和高热稳定性的晶界X相和共晶相Mg24(GdYZn)5可以有效地钉扎和强化晶界。
     通过原位SEM研究了T6合金在拉伸蠕变过程中的断裂机制,结果表明:
     1)在所有测试条件下(T=250-340℃,σ=50~120MPa),蠕变断裂方式均为沿晶断裂,明显的晶界裂纹和蠕变空洞在蠕变中后期(0.4~0.65tr)出现,并且优先起源于与应力垂直的晶界处或者晶界第二相与α-Mg基体的界面处。
     2)在低温高应力下(T=250℃,σ=120MPa),晶界滑动是裂纹萌生及扩展的主要方式,裂纹边缘平整。
     3)在高温低应力条件下(T=280-340℃,σ=50~75MPa),孤立的蠕变空洞的长大和合并是晶界微裂纹萌生的主要方式,在微裂纹形成之后,晶界滑移在裂纹扩展过程中起到了重要作用,裂纹边缘呈锯齿状。
     4)空洞平均直径D与蠕变速率ε满足经验关系D=k·εa,蠕变空洞的长大速率与蠕变速率呈正相关关系,上述关系暗示蠕变空洞的长大机制很可能符合受约束扩散长大模型。
     在T=250~325℃和σ=50~140MPa下,三种状态的WGZ1152合金的蠕变损伤容限λ位于1.2~2.5之间,最小蠕变速率及断裂时间符合Monkman-Grant关系,表明蠕变空洞和微裂纹在蠕变断裂中会起到重要作用,这与上述原位观察的结果相吻合。
     本研究进一步完善了镁合金高温力学性能数据库,加深了对复杂体系镁合金高温变形、强化及断裂机制的理解,为新型高性能耐热镁合金的开发和应用提供了理论和实践基础。
Due to the strong demand for weight-reduction in automotive industry, research and development of creep-resistant Mg alloys, which can be long-time well served for powertrain applications at elevated temperatures, has progressed considerably in the last decade. Particularly, research and development of the high-performance creep-resistant Mg alloys for the key components of powertrain applications (≥300℃), such as engine piston, are at the forefront. However, research on those Mg alloys, especially for systematic research on the elevated-temperature deformation, strengthening and fracture mechanisms in Mg alloys containing rare-earth elements is limited.
     Mg-11Y-5Gd-2Zn-0.5Zr (WGZ1152, wt.%) is a gravity-casting high-performance creep-resistant Mg alloy developed by our group recently. Previous work showed that this alloy exhibited potential for elevated-temperature applications (≥300℃). Thus, the present work focused on this alloy. The tensile behavior at25~400℃(0.33-0.75Tm, Tm is the melting point) and strain rate ranges of1E-4-1E-2s-1, as well as the tensile-creep behavior at250~340℃(0.58~0.68Tm) and stress ranges of30~140MPa (0.1-0.6Ro2,R0.2is the yield stress at300℃) were investigated. The important characterization methods and techniques included scanning electron microscope (SEM), transmission electron microscope (TEM), electron backscatter diffraction (EBSD), image analysis, slip trace analysis, and in-situ SEM. Based on above results, the elevated-temperature deformation, strengthening and fracture mechanisms were discussed. What's more, the industry trials of Mg alloy piston by gravity casting as well as the engine bench test were performed successfully.
     The room-and elevated-temperature properties of the peak-aged WGZ1152-T6alloy were investigated, and the results showed:1) the tensile strength and yield strength of the WGZ1152-T6alloy were considerably superior to those of WE54-T6(the most successful commercial heat-resistant Mg alloy) and AC8A-T6(the most widely used commercial Al alloy for engine piston) at25~400℃. At300℃(0.64Tm), the tensile strength and yield strength of the T6alloy were above250MPa and225MPa, respectively, which maintained86%and95%of those for room temperature.2) At300℃and the same stress, the minimum creep rate of the WGZ1152-T6alloy was almost two orders of magnitude lower than that for WE54-T6, and was more than one order of magnitude lower than that for AC8A-T6, and was comparable to that of HZ32-T5(the structure Mg alloy has the highest service temperature, but it being phased out because of radioactivity).
     The results of elevated-temperature tensile deformation and fracture behavior of WGZ1152-T6alloy are as follows:
     1) The flow behavior of WGZ1152-T6alloy was investigated at250~400℃and at strain rate ranges of1E-4~1E-2s-1, and the results showed:the constitution equation could be described by ε=A[sinh(ασ)]nexp(-Q/RT). The stress exponent n=7.7±0.7and the activation energy of deformation Q=274±10kJ/mol. The values of n and Q indicated that dislocation cross-slip was the rate-controlling mechanism. The observed wavy slip traces, which suggested cross-slip was active, supported the above viewpoint.
     2) The activities of slip modes during tensile deformation for the T6alloy were investigated quantitatively by in-situ SEM, slip trace analysis, and EBSD. The results showed:the dominate slip modes transited from basal
slip (100%) to basal slip (73%) combined with prismatic slip (16%) from25℃to250℃. As the temperature further increased up to350℃, the combination of basal slip (67%) and pyramidal slip (25%) became the dominate slip modes; the prismatic slip was more active at higher strains for moderate temperatures (200~250℃), while the pyramidal slip was more active at higher strains and temperatures; the above results were consistent with temperature dependence of the critical resolved shear stress (CRSS) of Mg single crystal at200~250℃, but when the temperature was above250℃, they were consistent with the simulation results for AZ31alloy used the full-constraint Taylor model by Barnett to a certain extent.
     3) The fracture mechanisms during tensile deformation for the T6alloy were investigated by in-situ SEM, and the results showed:the specimen fractured by both transgranular cracking (40%) and intergranular cracking (60%) at25℃; the coarsened slip band was important for the transgranular cracking nucleation; at200~350℃, the dominant fracture mode became intergranular cracking. The onset of obvious cracks was from the middle-to late-deformation stage. The intergranular cracking nucleation site tended to be located at grain boundary which was perpendicular to the load direction and the interface between the a-Mg matrix and the large intermetallic grain boundary phase.
     The results of tensile-creep deformation behavior of the as-cast, solution treated T4, and peak-aged T6alloys are as follows (T=250-325℃,σ=50~140MPa):
     1) The alloy exhibited an extended tertiary creep stage, which was similar to Ni-Cr-base superalloys. Such creep characteristic was believed to be associated with the β'and β precipitate coarsening.
     2) For300℃condition, at lower stresses (σ<50MPa), there was not a significant difference in the minimum creep rates among the T6, T4and as-cast alloys. At higher stresses (σ≥50MPa), the T6alloy exhibited lower minimum creep rates than the as-cast alloy, while the T4alloy exhibited the highest creep rates.
     3) The creep stress exponent values were4.4~6.0implying that dislocation process creep was the creep mechanism. The measured average activation energy (221~266kJ/mol) was significantly greater than that for lattice self-diffusion of Mg (135kJ/mol). This was considered to be a result of the activation of non-basal slip and cross-slip, and probably cross-slip was the rate-controlling mechanism. This was consistent with the slip traces analysis which confirmed that12~25%non-basal slip was active and the deformation observations which suggested that cross-slip became more active at higher temperatures.
     4) The activities of slip modes during tensile-creep for the T6alloy were investigated quantitatively by in-situ SEM, slip trace analysis, and EBSD. The results showed:at low temperature and high stress (T=250℃,σ=120MPa), the dominate slip modes were basal
slip (88%), and non-basal slip was active including prismatic slip (9%) and pyramidal slip (3%). The basal slip was observed before non-basal slip during creep deformation, and the relative contribution of basal slip decreased with increasing creep time; at high temperature and low stress (T=340℃, σ=75MPa), the dominate slip modes became basal slip (75%) combined with pyramidal slip (16%), and high amount of non-basal slip were found in the early stage of creep.
     The important grain-interior strengthening mechanisms were:the prismatic orientated, plate-shaped, and densely-distributed β' and β precipitates were most effective obstacles for basal slip, while the long period stacking ordered (LPSO) phases can suppress the non-basal slip, dislocation climb and cross-slip. The grain-boundary X phase and eutectic Mg24(GdYZn)5with high hardness (92~112%higher than matrix), high volume fraction (16~24%), and high thermal stability can pin the grain boundaries and strengthen the boundaries effectively.
     The fracture mechanisms during tensile-creep for the T6alloy were investigated by in-situ SEM, and the results showed:
     1) At all the conditions tested (T=250~340℃,σ=50~120MPa), intergranular fracture was the dominant creep fracture mechanism for all the tested conditions. The onset of obvious cracks and creep cavities were from the middle-to late-creep stage (0.4~0.65tr), and they tended to nucleate at grain boundary which was perpendicular to the load direction and the interface between the α-Mg matrix and the large intermetallic grain boundary phase.
     2) At low temperature and high stress (T=250℃,σ=120MPa), the crack nucleated and propagated by grain-boundary sliding, and edge of the crack was smooth.
     3) At high temperature and low stress (T=280~340℃,σ=50~75MPa), the coalescence and growth of isolated cavities and their linkage formed the microcrack, and then grain-boundary sliding played an important role in the propagation of the microcrack. Edge of this kind of crack was serrate.
     4) The mean cavity diameter D and creep rate followed the empirical relationship D=k·εa, and the growth rate of creep cavity was proportional to creep rate;5) these findings indicated that the growth of creep cavity might be consistent with the constrained diffusional cavity growth mechanism.
     At T=250~325℃and a=50-140MPa, the creep damage tolerance parameter λ ranged between1.2and2.5. The minimum creep rate and fracture followed the original Monkman-Grant relationship. The λ values and Monkman-Grant relationship indicated that creep cavity and intergranular crack played important role in creep fracture, and these were consistent with the in-situ observations.
     The present work can contribute to a better understanding for the elevated-temperature deformation, strengthening and fracture mechanisms in complex Mg alloy, and provide both theoretical and practical fundamentals for further research and development of high-performance creep-resistant Mg alloys.
引文
[1] Kulekci M K. Magnesium and its alloys applications in automotive industry. The International Journalof Advanced Manufacturing Technology[J].2008,39(9):851-865.
    [2] Eliezer D, Aghion E, Froes F H. Magnesium science, technology and applications. AdvancedPerformance Materials[J].1998,5(3):201-212.
    [3]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景.航空工程与维修[J].2002,4:41-42.
    [4]陈振华.耐热镁合金.化学工业出版社,2007.
    [5] Friedrich H E, Mordike B L. Magnesium Technology. Springer,2006:677.
    [6] Kainer K U. Magnesium Alloys and Technologies. Wiley-VCH,2003:293.
    [7] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications. New York: Wiley,2000:816.
    [8]陈振华.变形镁合金.化学工业出版社,2005.
    [9] Arruebarrena G, Hurtado I, V A In O L A J, et al. Development of investment-casting process ofmg-alloys for aerospace applications. Advanced Engineering Materials[J].2007,9(9):751-756.
    [10] Carpenter J A, Jackman J, Li N Y, et al. Automotive mg research and development in north america.Materials Science Forum[J].2007,546:11-24.
    [11] Blawert C, Hort N, Kainer K U. Automotive applications of magnesium and its alloys. Trans. IndianInst. Met[J].2004,57(4):397-408.
    [12] Pollock T M. Weight loss with magnesium alloys. Science[J].2010,328(5981):986-987.
    [13]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展.世界科技研究与发展[J].2004,26(3):39-46.
    [14]王渠东,丁文江.镁合金研究开发现状与展望.世界有色金属[J].2004(7):8-11.
    [15] Luo A A. Recent magnesium alloy development for elevated temperature applications. InternationalMaterials Reviews[J].2004,49(1):13-30.
    [16] Pekguleryuz M O, Kaya A A. Creep resistant magnesium alloys for powertrain applications.Advanced Engineering Materials[J].2003,5(12):866-878.
    [17] Aghion E, Bronfin B, Von Buch F, et al. Newly developed magnesium alloys for powertrainapplications. JOM[J].2003,55(11): A30-A33.
    [18] Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated-temperature applications. Journal ofMaterials Science[J].1994,29(20):5259-5271.
    [19] Mordike B L. Creep-resistant magnesium alloys. Materials Science and Engineering A[J].2002,324(1-2):103-112.
    [20] Mordike B L, Ebert T. Magnesium Properties-applications-potential. Materials Science andEngineering A[J].2001,302:37-45.
    [21] Das S. Magnesium for automotive applications: Primary production cost assessment. JOM[J].2003,55(11): A22-A26.
    [22] Powell B R. The usamp magnesium powertrain cast components project. JOM[J].2002,54(2):49-50.
    [23] Watarai H. Trend of research and development for magnesium alloys-reducing the weight of structuralmaterials in motor vehicles. Science and Technology Trends[J].2006,18.
    [24] Pekguleryuz M, Celikin M. Creep resistance in magnesium alloys. International Materials Reviews[J].2010,55(4):197-217.
    [25] Hu H, Yu A, Li N Y, et al. Potential magnesium alloys for high temperature die cast automotiveapplications: a review. Materials and Manufacturing Processes[J].2003,18(5):687-717.
    [26] Beals R S, Tissington C, Zhang X M, et al. Magnesium global development: Outcomes from the TMS2007annual meeting. JOM[J].2007,59(8):39-42.
    [27] Yan J L, Sun Y S, Xue F, et al. Creep deformation mechanism of magnesium-based alloys. Journal ofMaterials Science[J].2008,43(21):6952-6959.
    [28] Luo A A, Balogh M P, Powell B R. Creep and microstructure of magnesium-aluminum-calcium basedalloys. Metallurgical and Materials Transactions A[J].2001,33:567-574.
    [29] Zhu S, Nie J, Mordike B. Creep and rupture properties of a squeeze-cast Mg-Al-Ca alloy.Metallurgical and Materials Transactions A[J].2006,37:1221-1229.
    [30] Backes B, Durst K, Amberger D, et al. Particle Hardening in Creep-Resistant Mg-Alloy MRI230DProbed by Nanoindenting Atomic Force Microscopy. Metallurgical and Materials Transactions A[J].2009,40(2):257-261.
    [31] Dargusch M S, Zhu S M, Nie J F, et al. Microstructural analysis of the improved creep resistance of adie-cast magnesium--aluminium--rare earth alloy by strontium additions. Scripta Materialia[J].2009,60(2):116-119.
    [32]郑江. Mg-Sm-Zn-Zr合金的微观组织、力学性能和蠕变机制研究.[博士论文].上海:上海交通大学.2010.
    [33]赵鹏. Mg-Al-Sr/Ca耐热镁合金组织、性能及其蠕变行为研究.[博士论文].上海:上海交通大学.2007.
    [34]刘满平. Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究.[博士论文].上海:上海交通大学.2004.
    [35] Janik V, Yin D D, Wang Q D, et al. The Elevated-Temperature Mechanical Behavior of peak-agedMg-10Gd-3Y-0.4Zr Alloy. Materials Science and Engineering A[J].2011,528:3105-3122.
    [36] Okamoto K, Sasaki M, Takahashi N, et al. Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons.Magnesium Technology.2011.73-78.
    [37] Yin D D, Wang Q D, Boehlert C J, et al. Creep and fracture behavior of peak-agedMg-11Y-5Gd-2Zn-0.5Zr (wt pct). Metallurgical and Materials Transactions A[J].2012,43(9):3338-3350.
    [38] Yin D D, Wang Q D, Gao Y, et al. Effects of heat treatments on microstructure and mechanicalproperties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. Journal of Alloys and Compounds[J].2011,509(5):1696-1704.
    [39] Yin D D, Wang Q D, Boehlert C J, et al. Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) at573K.Materials Science and Engineering A[J].2012,546:239-247.
    [40] Yin D D, Wang Q D, Boehlert C J, et al. Creep and fracture behavior of as-castMg-11Y-5Gd-2Zn-0.5Zr (wt.%). Journal of Materials Science[J].2012,47(17):6263-6275.
    [41]高岩. Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究.[博士论文].上海:上海交通大学.2009.
    [42]何上明. Mg-Gd-Y-Zr (-Ca)合金的微观组织演变、性能和断裂行为研究.[博士论文].上海:上海交通大学.2007.
    [43] Boehlert C J. The tensile and creep behavior of Mg-Zn alloys with and without Y and Zr as ternaryelements. Journal of Materials Science[J].2007,42(10):3675-3684.
    [44] Boehlert C J, Knittel K. The microstructure, tensile properties, and creep behavior of Mg-Zn alloyscontaining0-4.4wt.%Zn. Materials Science and Engineering A[J].2006,417(1-2):315-321.
    [45] Wang J G, Hsiung L M, Nieh T G, et al. Creep of a heat treated Mg-4Y-3RE alloy. Materials Scienceand Engineering A[J].2001,315(1-2):81-88.
    [46] Suzuki M, Sato H, Maruyama K, et al. Creep behavior and deformation microstructures of Mg-Yalloys at550K. Materials Science and Engineering A[J].1998,252(2):248-255.
    [47] Anyanwu I A, Kamado S, Kojima Y. Creep properties of Mg-Gd-Y-Zr alloys. MaterialsTransactions[J].2001,42(7):1212-1218.
    [48] Suzuki M, Sato H, Maruyama K, et al. Creep deformation behavior and dislocation substructures ofMg-Y binary alloys. Materials Science and Engineering A[J].2001,319-321(""):751-755.
    [49] Maruyama K, Suzuki M, Sato H. Creep strength of magnesium-based alloys. Metallurgical andMaterials Transactions A[J].2002,33(3):875-882.
    [50] Zhang M X, Kelly P M. Morphology and crystallography of Mg24Y5precipitate in Mg-Y alloy. ScriptaMaterialia[J].2003,48(4):379-384.
    [51] Suzuki M, Kimura T, Koike J, et al. Strengthening effect of Zn in heat resistant Mg-Y-Zn solidsolution alloys. Scripta Materialia[J].2003,48(8):997-1002.
    [52] Janík V, Hnilica F, Zuna P, et al. Cavitation and grain boundary sliding during creep ofMg-Y-Nd-Zn-Mn alloy. Transactions of Nonferrous Metals Society of China[J].2008,18(Supplement1):s64-s68.
    [53] Morgan J E, Mordike B L. An investigation into creep-resistant, as-cast magnesium alloys containingyttrium, zinc, neodymium and zirconium. Metallurgical and Materials Transactions A[J].1981,12(9):1581-1585.
    [54] Gao L, Chen R S, Han E H. Effects of rare-earth elements Gd and Y on the solid solutionstrengthening of Mg alloys. Journal of Alloys and Compounds[J].2009,481(1-2):379-384.
    [55] Hnilica F, Janik V, Smola B, et al. Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1alloy.Materials Science and Engineering A[J].2008,489(1-2):93-98.
    [56] Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hotextrusion. Scripta Materialia[J].2009,61(6):644-647.
    [57] Smola B, Stulikova I, Pelcov A J, et al. Significance of stable and metastable phases in hightemperature creep resistant magnesium-rare earth base alloys. Journal of alloys and compounds[J].2004,378(1-2):196-201.
    [58] Chang S Y, Nakagaido T, Hong S K, et al. Effect of yttrium on high temperature strength ofmagnesium. Materials Transactions[J].2001,42(7):1332-1338.
    [59] Nie J F, Gao X, Zhu S M. Enhanced age hardening response and creep resistance of Mg-Gd alloyscontaining Zn. Scripta Materialia[J].2005,53(9):1049-1053.
    [60] Zhu S M, Nie J F. Serrated flow and tensile properties of a Mg-Y-Nd alloy. Scripta Materialia[J].2004,50(1):51-55.
    [61] Yang Z L J P. Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zralloy. Materials Science and Engineering A[J].2007,454-455:274-280.
    [62] Yamada K, Okubo Y, Shiono M, et al. Alloy development of high toughness Mg-Gd-Y-Zn-Zr alloys.Materials Transactions[J].2006,47(4):1066-1070.
    [63] Anyanwu I A, Kamado S, Kojima Y. Aging characteristics and high temperature tensile properties ofMg-Gd-Y-Zr alloys. Materials Transactions[J].2001,42(7):1206-1211.
    [64] Wang J, Zhang D P, Fang D Q, et al. Effect of Y for enhanced age hardening response and mechanicalproperties of Mg-Ho-Y-Zr alloys. Journal of Alloys and Compounds[J].2008,454(1-2):194-200.
    [65] Socjusz-Podosek M, Litynska L. Effect of yttrium on structure and mechanical properties of Mg alloys.Materials Chemistry and Physics[J].2003,80(2):472-475.
    [66] Liu X B C R. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloyswith and without Zn additions. Journal of Alloys and Compounds[J].2008,465(1-2):232-238.
    [67] Wang Q D, Li D Q, Blandin J J, et al. Microstructure and creep behavior of the extrudedMg-4Y-4Sm-0.5Zr alloy. Materials Science and Engineering A[J].2009,516(1-2):189-192.
    [68] Deng Z Z, Zhang X M, Deng Y L, et al. Aging Behavior of Mg-9Gd-4Y-0.6Mn Alloy. MaterialsScience Forum[J].2007,546-549:425-428.
    [69] Zhu Y M, Morton A J, Nie J F. Improvement in the age-hardening response of Mg-Y-Zn alloys by Agadditions. Scripta Materialia[J].2008,58(7):525-528.
    [70] Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg--7Gd alloy containing Y.Journal of alloys and compounds[J].2007,430(1):252-256.
    [71] Polmear I J. Magnesium alloys and applications. Materials science and technology[J].1994,10(1):1-16.
    [72] Yang Z, Li J P, Guo Y C, et al. Precipitation process and effect on mechanical properties ofMg-9Gd-3Y-0.6Zn-0.5Zr alloy. Materials Science and Engineering: A[J].2007,454:274-280.
    [73] Kielbus A, Rzychon T. Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesiumalloy.2011.
    [74] Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strengthwrought Mg alloys. Scripta Materialia[J].2010,63(7):710-715.
    [75] Li R G, Nie J F, Huang G J, et al. Development of high-strength magnesium alloys via combinedprocesses of extrusion, rolling and ageing. Scripta Materialia[J].2011,64(10):950-953.
    [76] Smola B, Stul kova I, von Buch F, et al. Structural aspects of high performance mg alloys design.Materials Science and Engineering A[J].2002,324(1-2):113-117.
    [77] Sun M, Wu G, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosionresistance of Mg--10Gd--3Y magnesium alloy. Materials Science and Engineering: A[J].2009,523(1):145-151.
    [78] Sun M, Wu G, Dai J, et al. Grain refinement behavior of potassium fluozirconate salts mixtureintroduced into Mg--10Gd--3Y magnesium alloy. Journal of Alloys and Compounds[J].2010,494(1):426-433.
    [79] Sun M, Easton M A, Stjohn D H, et al. Grain Refinement of Magnesium Alloys by Mg--Zr MasterAlloys: The Role of Alloy Chemistry and Zr Particle Number Density. Advanced Engineering Materials[J].2012.
    [80] Rokhlin L L. Magnesium alloys containing rare earth metals: structure and properties. CRC,2003.
    [81]付彭怀. Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究.[博士论文].上海:上海交通大学.2008.
    [82] Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3RE alloy. ActaMaterialia[J].2003,51(18):5335-5348.
    [83] Nie J F, Muddle B. Precipitation in magnesium alloy WE54during isothermal ageing at250°C.Scripta Materialia[J].1999,40(10):1089-1094.
    [84] Apps P J, Lorimer G W, Karimzadeh H, et al. Precipitation Processes in Magnesium-Heavy RareEarth Alloys during Ageing at300°C. In Magnesium Alloys and Their Applications, Wiley-VCH VerlagGmbH&Co. KGaA,2006,53-58.
    [85] Mordike B L, Stulíková I, Smola B. Mechanisms of creep deformation in Mg-Sc-based alloys.Metallurgical and Materials Transactions A[J].2005,36:1729-1736.
    [86] King J F. Development of practical high temperature magnesium casting alloys. In Magnesium Alloysand Their Applications, New York:Wiley,2000,14-22.
    [87] Barucca G, Ferragut R, Lussana D, et al. Phase transformations in QE22Mg alloy. Acta Materialia[J].2009,57(15):4416-4425.
    [88] Janik V, Wang Q, Yin D, et al. Influence of Thermal and Thermo-mechanical Processing on the CreepResistance of Mg-10Gd-3Y-0.4Zr Alloy. Materials Science Forum[J].2011,675-677:487-490.
    [89] Drits M E, Sviderskaya Z A, Rokhlin L L, et al. Effect of alloying on the properties of Mg-Gd alloys.Metal Science and Heat Treatment[J].1979,21(11):887-889.
    [90] He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strengthMg-10Gd-2Y-0.5Zr alloy. Journal of Alloys and Compounds[J].2007,427(1-2):316-323.
    [91] He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy duringisothermal ageing at250°c. Journal of Alloys and Compounds[J].2006,421(1-2):309-313.
    [92] Gao Y, Wang Q D, Gu J H, et al. Effects of heat treatments on microstructure and mechanicalproperties of Mg-15Gd-5Y-0.5Zr alloy. Journal of Rare Earths[J].2008,26(2):298-302.
    [93] Arzt E, G hring E. A model for dispersion strengthening of ordered intermetallics at hightemperatures. Acta Materialia[J].1998,46(18):6575-6584.
    [94] Arzt E, G hring E. Effects of order on dispersion strengthening at high temperatures: A first model.Scripta Metallurgica et Materialia[J].1993,28(7):843-848.
    [95] Chino Y, Mabuchi M, Hagiwara S, et al. Novel equilibrium two phase Mg alloy with the long-periodordered structure. Scripta Materialia[J].2004,51(7):711-714.
    [96] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plasticflow of magnesium and magnesium alloy. Materials Transactions[J].2003,44(4):426-435.
    [97] Grobner J, Kozlov A, Fang X Y, et al. Phase equilibria and transformations in ternary Mg-richMg--Y--Zn alloys. Acta Materialia[J].2012.
    [98] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening ofMg-2.0Gd-1.2Y-0.2Zr alloys. Acta Materialia[J].2007,55(12):4137-4150.
    [99] Itoi T, Seimiya T, Kawamura Y, et al. Long period stacking structures observed in Mg97Zn1Y2alloy.Scripta Materialia[J].2004,51(2):107-111.
    [100] Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2alloys withexcellent tensile yield strength above600MPa. Materials Transactions[J].2001,42(7):1172-1176.
    [101] Liu K, Zhang J, Lu H, et al. Effect of the long periodic stacking structure and W-phase on themicrostructures and mechanical properties of the Mg–8Gd–xZn–0.4Zr alloys. Materials&Design[J].2010,31(1):210-219.
    [102] Matsuda M, Ii S, Kawamura Y, et al. Interaction between long period stacking order phase anddeformation twin in rapidly solidified Mg97Zn1Y2alloy. Materials Science and Engineering A[J].2004,386(1-2):447-452.
    [103] Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloywith coherent14H long periodic stacking ordered structure precipitate. Scripta Materialia[J].2005,53(7):799-803.
    [104] Yamasaki M, Sasaki M, Nishijima M, et al. Formation of14H long period stacking ordered structureand profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature. ActaMaterialia[J].2007,55(20):6798-6805.
    [105] Gao Y, Wang Q D, Gu J H, et al. Comparison of microstructure in Mg-10Y-5Gd-0.5Zr andMg-10Y-5Gd-2Zn-0.5Zr alloys by conventional casting. Journal of Alloys and Compounds[J].2009,477:374-378.
    [106] Gao Y, Wang Q D, Gu J H, et al. Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatmentfrom500to540°c. Materials Science and Engineering A[J].2007,459(1-2):117-123.
    [107] Wang Q D, Gao Y, Yin D D, et al. Characterization of phases in Mg-10Y-5Gd-2Zn-0.5Zr alloyprocessed by heat treatment. Transactions of Nonferrous Metals Society of China[J].2010,20:2076-2080.
    [108] Luo Z P, Zhang S Q. High-resolution electron microscopy on the X-Mg12ZnY phase in a high strengthMg-Zn-Zr-Y magnesium alloy. Journal of Materials Science Letters[J].2000,19(9):813-815.
    [109] Luo Z P, Zhang S Q, Tang Y L, et al. Microstructures of Mg-Zn-Zr-RE alloys with high RE and lowZn contents. Journal of Alloys and Compounds[J].1994,209(1-2):275-278.
    [110] Zhu Y M, Morton A J, Nie J F. The18R and14H long-period stacking ordered structures in Mg-Y-Znalloys. Acta Materialia[J].2010,58(8):2936-2947.
    [111] Nie J F, Muddle B. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. ActaMaterialia[J].2000,48(8):1691-1703.
    [112] Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys.Scripta Materialia[J].2003,48(8):1009-1015.
    [113] Li N. Automotive magnesium applications and life cycle environmental assessment.3rd InternationalConference on SF6and the environment. Scottsdale, AZ.2004.
    [114] Pekguleryuz M O. Magnesium materials development: a global overview. McGill University,2007.http://people.mcgill.ca/files/mihriban.pekguleryuz/M_Broad_Horizons.pdf.
    [115] Beals R S, Liu Z K, Wayne Jones J, et al. Usamp magnesium powertrain cast components:fundamental research summary. JOM[J].2007,59(8):43-48.
    [116] Beals R S, Tissington C, Zhang X, et al. Magnesium global development: outcomes from the tms2007annual meeting. JOM[J].2007,59(8):39-42.
    [117] Von Mises R. Mechanics of Plastic Deformation in Crystals. Z. Angew. Math. Mech[J].1928,6:85.
    [118] Obara T., Yoshinga H., Morozumi S.{1122}〈1123〉 slip system in magnesium. ActaMetallurgica[J].1973,21(7):845-853.
    [119] Couret A, Caillard D. An in situ study of prismatic glide in magnesium--i. The rate controllingmechanism. Acta Metallurgica[J].1985,33(8):1447-1454.
    [120] Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressedmagnesium single crystals. Acta Materialia[J].2011,59(5):1986-1994.
    [121] Agnew S R, Horton J A, Yoo M H. Transmission electron microscopy investigation of dislocations in Mg and alpha-solid solution Mg-Li alloys. Metallurgical and Materials Transactions A[J].2002,33(3):851-858.
    [122] Hutchinson W B, Barnett M R. Effective values of critical resolved shear stress for slip inpolycrystalline magnesium and other hcp metals. Scripta Materialia[J].2010,63(7):737-740.
    [123] Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical and MaterialsTransactions A[J].1981,12(3):409-418.
    [124] Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of hcp metals and alloys: role ofdislocation source and mobility. Metallurgical and Materials Transactions A[J].2002,33(3):813-822.
    [125] Yoo M H, Agnew S R, Morris J R, et al. Non-basal slip systems in hcp metals and alloys: sourcemechanisms. Materials Science and Engineering A[J].2001,319:87-92.
    [126] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery atroom temperature in fine-grained az31b magnesium alloys. Acta Materialia[J].2003,51(7):2055-2065.
    [127] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium single crystals--ii the effect ofsolute on the ease of prismatic slip. Acta Metallurgica[J].1969,17(11):1351-1356.
    [128] Reed-Hill R E, Robertson W D. Acta Metall[J].1957,5:728-737.
    [129] Yoshinaga H, Horiuchi R. Trans JIM[J].1964,5:14.
    [130] Ward Flynn P, Mote J, Dorn J E. Trans. TMS-AIME[J].1961,221:1148-1154.
    [131] Wonziewicz B C, Backofen W A. Plasticity of Magnesium Crystals. Trans AIME[J].1967,239:1422.
    [132] Dieter G E. Mechanical metallurgy.3rd ed. New York: McGraw-Hill,1986:67.
    [133] Shi L, Northwood D. Recent progress in the modeling of high-temperature creep and its application toalloy development. Journal of Materials Engineering and Performance[J].1995,4(2):196-211.
    [134] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge University Press,2009.
    [135] Langdon T G. The role of grain boundaries in high temperature deformation. Materials Science andEngineering A[J].1993,166(1-2):67-79.
    [136] Langdon T. Grain boundary sliding revisited: Developments in sliding over four decades. Journal ofMaterials Science[J].2006,41:597-609.
    [137] Gifkins R C. Grain-boundary participation in high-temperature deformation: An historical review.Materials Characterization[J].1994,32(2):59-77.
    [138] Stanford N, Sotoudeh K, Bate P S. Deformation mechanisms and plastic anisotropy in magnesiumalloy AZ31. Acta Materialia[J].2011.
    [139] Kottada R S, Chokshi A H. Grain boundary sliding during diffusion and dislocation creep in a Mg-0.7pct Al alloy. Metallurgical and Materials Transactions A[J].2007,38(8):1743-1749.
    [140] Raynor G V. The physical metallurgy of magnesium and its alloys. Pergamon,1959.
    [141] Cadek J. Creep in Metallic Materials. Amsterdam:1988.
    [142]张俊善.材料的高温变形与断裂.北京:科学出版社,2007.
    [143]平修二.金属材料的高温强度.北京:科学出版社,1995:535.
    [144] Kassner M E, Perez-Prado M T. Five-Power-Law Creep in Single Phase Metals and Alloys. Progressin Materials Science[J].2000,45(1):1-102.
    [145] Kassner M, Perez-Prado M. Fundamentals of Creep in Metals and Alloys. ELSEVIER,2004:288.
    [146] Ashby M F, Gandhi C, Taplin D. Fracture-Mechanism Maps and their Construction for Fcc Metalsand Alloys. Acta Metallurgica[J].1979,27(5):699-729.
    [147] Gandhi C, Ashby M F. Fracture-Mechanism Maps for Materials Which Cleave-Fcc, Bcc and HcpMetals and Ceramics. Acta Metallurgica[J].1979,27(10):1565-1602.
    [148] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-I. creepbehavior of magnesium. Acta Metallurgica[J].1981,29(12):1969-1982.
    [149] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-II.creep behavior of a Mg-0.8-percent Al solid solution alloy. Acta Metallurgica[J].1982,30(6):1157-1170.
    [150] Zhu S M, Nie J F, Gibson M A, et al. Microstructure and Creep Behavior of High-Pressure Die-CastMagnesium Alloy AE44. Metallurgical and Materials Transactions A[J].2012:1-8.
    [151] Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: role ofdislocation source and mobility. Metallurgical and Materials Transactions A[J].2002,33(3):813-822.
    [152] Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature. Progress inMaterials Science[J].1968,13(7):323-390.
    [153] Sandl bes S, Friak M, Zaefferer S, et al. The relation between ductility and stacking fault energies inMg and Mg-Y alloys. Acta Materialia[J].2012.
    [154] Yasi J A, Hector L G, Trinkle D R. Prediction of thermal cross-slip stress in magnesium alloys from ageometric interaction model. Acta Materialia[J].2012,60(5):2350-2358.
    [155] Yasi J A, Hector L G, Trinkle D R. Prediction of thermal cross-slip stress in magnesium alloys fromdirect first-principles data. Acta Materialia[J].2011,59(14):5652-5660.
    [156] Milika K, Adek J, Ry P. High temperature creep mechanisms in magnesium. Acta Metallurgica[J].1970,18(10):1071-1082.
    [157] P U Schl W. Models for dislocation cross-slip in close-packed crystal structures: a critical review.Progress in Materials Science[J].2002,47(4):415-461.
    [158] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Materialia[J].1996,44(11):4611-4618.
    [159] Spigarelli S, Regev M, Evangelista E, et al. Review of creep behavior of AZ91magnesium alloyproduced by different technologies. Materials Science and Technology[J].2001,17:627-638.
    [160] Blum W, Li Y, Zeng X, et al. Creep deformation mechanisms in high-pressure die-castmagnesium-aluminum-base alloys. Metallurgical and Materials Transactions A[J].2005,36:1721-1728.
    [161] Morento I P, Nandy T K, Jones J W, et al. Microstructural stability and creep of rare-earth containingmagnesium alloys. Scripta Materialia[J].2003,48:1029-1034.
    [162] Apps P J, Karimzadeh H, King J F, et al. Precipitation reactions in magnesium-rare earth alloyscontaining yttrium, gadolinium or dysprosium. Scripta materialia[J].2003,48(8):1023-1028.
    [163] Stanford N, Geng J, Chun Y B, et al. Effect of plate-shaped particle distributions on the deformationbehaviour of magnesium alloy AZ91in tension and compression. Acta Materialia[J].2012,60(1):218-228.
    [164] Clark J B. Age hardening in a Mg-9wt.%Al alloy. Acta Metallurgica[J].1968,16(2):141-152.
    [165] Clark J B. Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy. ActaMetallurgica[J].1965,13(12):1281-1289.
    [166] Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strengthnanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. ActaMaterialia[J].2002,50(15):3845-3857.
    [167] Wu Y J, Lin D L, Zeng X Q, et al. Formation of a lamellar14h-type long period stacking orderedstructure in an as-cast Mg-Gd-Zn-Zr alloy. Journal of Materials Science[J].2009,44(6):1607-1612.
    [168] Wu Y J, Zeng X Q, Lin D L, et al. The microstructure evolution with lamellar14H-type LPSOstructure in an Mg96.5Gd2.5Zn1alloy during solid solution heat treatment at773K. Journal of Alloys andCompounds[J].2009,477(1-2):193-197.
    [169] Ding W J, Wu Y J, Peng L M, et al. Formation of14h-type long period stacking ordered structure inthe as-cast and solid solution treated Mg-Gd-Zn-Zr alloys. Journal of Materials Research[J].2009,24(05):1842-1854.
    [170] Wu Y J, Peng L M, Zeng X Q, et al. A high-strength extruded Mg-Gd-Zn-Zr alloy with superplasticity.Journal of Material Research[J].2009,18(12):19.
    [171]吴玉娟. Mg-Gd-Zn(-Zr)镁合金中长周期堆垛有序结构的形成及强韧化机理研究.[博士论文].上海:上海交通大学.2009.
    [172] Ashby M F, Dyson B F. Creep damage mechanics and micromechanisms. In Advances in fractureresearch, Valluri R S, Oxford and New York:Pergamon Press,1984:1,3-30.
    [173] Zheng K Y, Zeng X Q, Dong J, et al. Effect of initial temper on the creep behavior of a Mg-Gd-Nd-Zralloy. Materials Science and Engineering A[J].2008,492(1-2):185-190.
    [174]郑开云. Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究.[博士论文].上海交通大学.2008.
    [1] Friedrich H E, Mordike B L. Magnesium Technology. Springer,2006:83.
    [2]吕宜振. Mg-Al-Zn合金组织、性能、变形和断裂行为研究.[博士论文].上海:上海交通大学.2001.
    [3]袁广银.铋和锑对镁铝基合金显微组织和力学性能的影响.[博士论文].南京:东南大学.1999.
    [4]刘满平. Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究.[博士论文].上海:上海交通大学.2004.
    [5] Yin D D, Wang Q D, Gao Y, et al. Effects of heat treatments on microstructure and mechanicalproperties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. Journal of Alloys and Compounds[J].2011,509(5):1696-1704.
    [6]高岩. Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究.[博士论文].上海:上海交通大学.2009.
    [7] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications. New York: Wiley,2000:816.
    [8] Mordike B L, StulíkováI, Smola B. Mechanisms of creep deformation in Mg-Sc-based alloys.Metallurgical and Materials Transactions A[J].2005,36:1729-1736.
    [9]陈振华.耐热镁合金.化学工业出版社,2007.
    [10]郭国庆,谢敬佩,王杰芳等.内燃机活塞材料及其相关技术.拖拉机与农用运输车[J].2004(3):9-11.
    [11] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications. New York: Wiley,2000:35-39.
    [12] Okamoto K, Sasaki M, Takahashi N, et al. Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons.Magnesium Technology.2011.73-78.
    [13]屠海令,干勇.金属材料理化测试全书.化学工业出版社,2007.
    [14]郑江. Mg-Sm-Zn-Zr合金的微观组织、力学性能和蠕变机制研究.[博士论文].上海:上海交通大学.2010.
    [15] Boehlert C J, Cowen C J, Tamirisakandala S, et al. In situ scanning electron microscopy observations oftensile deformation in a boron-modified Ti-6Al-4V alloy. Scripta Materialia[J].2006,55(5):465-468.
    [16] Boehlert C J, Li H, Wang L, et al. Slip system characterization of inconel718: using in-situ scanningelectron microscopy. Advanced Materials&Processes[J].2010,168(11):41-45.
    [17] Quast J P, Boehlert C J. Comparison of the microstructure, tensile, and creep behavior forTi-24Al-17Nb-0.66Mo (Atomic Percent) and Ti-24Al-17Nb-2.3Mo (Atomic Percent) alloys. Metallurgicaland Materials Transactions A[J].2007,38(3):529-536.
    [18] Dieter G E. Mechanical metallurgy.3rd ed. New York: McGraw-Hill,1986:67.
    [1] Henry S D, Sanders B R, Hrivnak N, et al. ASM Specialty Handbook: Aluminum and AluminumAlloys.1993:41.
    [2] Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated-temperature applications. Journal ofMaterials Science[J].1994,29(20):5259-5271.
    [3] Mordike B L, Stulíková I, Smola B. Mechanisms of creep deformation in Mg-Sc-based alloys.Metallurgical and Materials Transactions A[J].2005,36:1729-1736.
    [4] King J F. Development of practical high temperature magnesium casting alloys. In Magnesium Alloysand Their Applications, New York:Wiley,2000,14-22.
    [5]陈振华.耐热镁合金.化学工业出版社,2007.
    [6]高岩. Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究.[博士论文].上海:上海交通大学.2009.
    [7] Okamoto K, Sasaki M, Takahashi N, et al. Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons.Magnesium Technology.2011.73-78.
    [8]郭国庆,谢敬佩,王杰芳等.内燃机活塞材料及其相关技术.拖拉机与农用运输车[J].2004(3):9-11.
    [9]陈长江,王渠东,尹冬弟等.内燃机活塞材料的研究进展.材料导报[J].2009,23(15):62-65.
    [10] Dieter G E. Mechanical metallurgy.3rd ed. New York: McGraw-Hill,1986:67.
    [11] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge University Press,2009.
    [12]平修二.金属材料的高温强度.北京:科学出版社,1995:535.
    [13] Sellars C M, Mctegart W J. On the mechanism of hot deformation. Acta Metallurgica[J].1966,14(9):1136-1138.
    [14] Evangelista E, Spigarelli S. Constitutive equations for creep and plasticity of aluminum alloys producedby powder metallurgy and aluminum-based metal matrix composites. Metallurgical and MaterialsTransactions A[J].2002,33(2):373-381.
    [15] Urcola J J, Sellars C M. Effect of changing strain rate on stress-strain behavior during high-temperaturedeformation. Acta Metallurgica[J].1987,35(11):2637-2647.
    [16] Sellars C M, Tegart W J. Hot workability. International Materials Reviews[J].1972,17(1):1-24.
    [17] Yin D D, Wang Q D, Boehlert C J, et al. Creep and fracture behavior of peak-agedMg-11Y-5Gd-2Zn-0.5Zr (wt pct). Metallurgical and Materials Transactions A[J].2012,43(9):3338-3350.
    [18] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-I. creepbehavior of magnesium. Acta Metallurgica[J].1981,29(12):1969-1982.
    [19] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallizationin magnesium alloy ZK60. Acta Materialia[J].2001,49(7):1199-1207.
    [20] Jones R B, Harris J E. Creep deformation of polycrystalline magnesium. Archive: Proceedings of theInstitution of Mechanical Engineers, Conference Proceedings1964-1970(Vols178-184)[J].1963,178(31):1-8.
    [21] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-II. creepbehavior of a Mg-0.8-percent Al solid solution alloy. Acta Metallurgica[J].1982,30(6):1157-1170.
    [22] Boehlert C J, Cowen C J, Tamirisakandala S, et al. In situ scanning electron microscopy observations oftensile deformation in a boron-modified Ti-6Al-4V alloy. Scripta Materialia[J].2006,55(5):465-468.
    [23] Boehlert C J, Li H, Wang L, et al. Slip system characterization of inconel718: using in-situ scanningelectron microscopy. Advanced Materials&Processes[J].2010,168(11):41-45.
    [24]张俊善.材料的高温变形与断裂.北京:科学出版社,2007.
    [25] Williams D B, Carter C B. Transmission Electron Microscopy: A textbook for Materials Science.Springer,1996:729.
    [26] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery atroom temperature in fine-grained AZ31b magnesium alloys. Acta Materialia[J].2003,51(7):2055-2065.
    [27] Agnew S R, Horton J A, Yoo M H. Transmission electron microscopy investigation ofdislocations in mg and alpha-solid solution Mg-Li alloys. Metallurgical and Materials Transactions A[J].2002,33(3):851-858.
    [28] Obara T.,Yoshinga H.,Morozumi S.{112-2}〈1123〉slip system in magnesium. Acta Metallurgica[J].1973,21(7):845-853.
    [29] Couret A, Caillard D. An in situ study of prismatic glide in magnesium-i. The rate controllingmechanism. Acta Metallurgica[J].1985,33(8):1447-1454.
    [30] Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressedmagnesium single crystals. Acta Materialia[J].2011,59(5):1986-1994.
    [31] Hutchinson W B, Barnett M R. Effective values of critical resolved shear stress for slip inpolycrystalline magnesium and other HCP metals. Scripta Materialia[J].2010,63(7):737-740.
    [32] Boehlert C J, Chen Z, Guti E Rrez-Urrutia I, et al. In situ analysis of the tensile and tensile-creepdeformation mechanisms in rolled AZ31. Acta Materialia[J].2011,60:1889-1904.
    [33] Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3Al-1Zn. Scripta Materialia[J].2006,55(10):915-918.
    [34] Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of hcp metals and alloys: role ofdislocation source and mobility. Metallurgical and Materials Transactions A[J].2002,33(3):813-822.
    [35] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium single crystals—I alloyingbehaviour in basal slip. Acta Metallurgica[J].1969,17(11):1339-1349.
    [36] Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanicalbehavior of Mg and solid solution alloys containing Li or Y. Acta Materialia[J].2001,49(20):4277-4289.
    [37] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications. New York: Wiley,2000:816.
    [38] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plasticflow of magnesium and magnesium alloy. Materials Transactions[J].2003,44(4):426-435.
    [39] Suzuki M, Sato H, Maruyama K, et al. Creep deformation behavior and dislocation substructures ofMg-Y binary alloys. Materials Science and Engineering A[J].2001,319-321(2):751-755.
    [40] Xu Y, Hu L, Deng T, et al. Hot deformation behavior and processing map of as-cast AZ61magnesiumalloy. Materials Science and Engineering A[J].2012,559(0):528-533.
    [41] Frost H J, Ashby M F. Deformation-mechanism maps: the plasticity and creep of metals and ceramics.1st ed. Oxford: Pergamon Press,1982:166.
    [42] Yoo M H, Agnew S R, Morris J R, et al. Non-basal slip systems in hcp metals and alloys: sourcemechanisms. Materials Science and Engineering A[J].2001,319:87-92.
    [43] P U Schl W. Models for dislocation cross-slip in close-packed crystal structures: a critical review.Progress in Materials Science[J].2002,47(4):415-461.
    [44]丁汉林. AZ91镁合金高温变形行为的实验研究与数值模拟.[博士论文].上海交通大学.2007.
    [45]周海涛. Mg-6Al-1Zn镁合金高温塑性变形行为及管材热挤压研究.[博士论文].上海交通大学.2004.
    [46] Yu K, Li W, Zhao J, et al. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy. Scripta Materialia[J].2003,48(9):1319-1323.
    [47] Maksoud I A, Ahmed H, R O Del J. Investigation of the effect of strain rate and temperature on thedeformability and microstructure evolution of AZ31magnesium alloy. Materials Science and EngineeringA[J].2009,504(1):40-48.
    [48] Reed-Hill R E, Robertson W D. Acta Metall[J].1957,5:728-737.
    [49] Wonziewicz B C, Backofen W A. Plasticity of Magnesium Crystals. Trans AIME[J].1967,239:1422.
    [50] Ward Flynn P, Mote J, Dorn J E. Trans. TMS-AIME[J].1961,221:1148-1154.
    [51] Barnett M R. A taylor model based description of the proof stress of magnesium AZ31during hotworking. Metallurgical and Materials Transactions A[J].2003,34:1799-1806.
    [52] Boehlert C J, Chen Z, Chakkedath A, et al. In-situ analysis of the tensile deformation mechanisms inextruded Mg-1Mn-1Nd (wt.%). Philosophical Magazine[J].2012.
    [53] Koike J, Ohyama R. Geometrical criterion for the activation of prismatic slip in AZ61Mg alloy sheetsdeformed at room temperature. Acta Materialia[J].2005,53(7):1963-1972.
    [54] Barnett M R, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of a magnesiumalloy. Metallurgical and Materials Transactions A[J].2006,37(7):2283-2293.
    [55] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium single crystals--ii the effect ofsolute on the ease of prismatic slip. Acta Metallurgica[J].1969,17(11):1351-1356.
    [56] Poirier J. P.,关德林.晶体的高温塑性变形.大连:大连理工大学出版社,1989.
    [57] Minonishi Y. Plastic deformation of single crystals of Ti3Al with D019structure. PhilosophicalMagazine A[J].1991,63(5):1085-1093.
    [58] Parkhomenko T A, Pustovalov V V. The Low-Temperature Yield Stress Anomaly in Metals and Alloys.physica status solidi (a)[J].1982,74(1):11-42.
    [59] Suzuki T, Oya Y, Wee D M. Transition from positive to negative temperature dependence of thestrength in Ni3Ge-Fe3Ge solid solution. Acta Metallurgica[J].1980,28(3):301-310.
    [60] Dang M W, Noguchi O, Oya Y, et al. New Ll2ordered alloys having the positive temperaturedependence of strength. Transactions of the Japan Institute of Metals[J].1980, vol.21, no.4:237-247.
    [61] Takeuchi S, Kuramoto E. Temperature and orientation dependence of the yield stress in Ni{in3}Gasingle crystals. Acta Metallurgica[J].1973,21(4):415-425.
    [62] Smola B, Stul kova I, von Buch F, et al. Structural aspects of high performance mg alloys design.Materials Science and Engineering A[J].2002,324(1-2):113-117.
    [63]何上明. Mg-Gd-Y-Zr (-Ca)合金的微观组织演变、性能和断裂行为研究.[博士论文].上海:上海交通大学.2007.
    [64] Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys.Scripta Materialia[J].2003,48(8):1009-1015.
    [65] Yin D D, Wang Q D, Gao Y, et al. Effects of heat treatments on microstructure and mechanicalproperties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. Journal of Alloys and Compounds[J].2011,509(5):1696-1704.
    [1] Dieter G E. Mechanical metallurgy.3rd ed. New York: McGraw-Hill,1986:67.
    [2] Wilshire B, Burt H. Damage evolution during creep of steels. International Journal of Pressure Vesselsand Piping[J].2008,85(1-2):47-54.
    [3] Dyson B F, Gibbons T B. Tertiary creep in nickel-base superalloys: analysis of experimental data andtheoretical synthesis. Acta Metallurgica[J].1987,35(9):2355-2369.
    [4] Blum W, Li Y, Zeng X, et al. Creep deformation mechanisms in high-pressure die-castmagnesium-aluminum-base alloys. Metallurgical and Materials Transactions A[J].2005,36:1721-1728.
    [5] Yin D D, Wang Q D, Boehlert C J, et al. Creep and fracture behavior of peak-agedMg-11Y-5Gd-2Zn-0.5Zr (wt pct). Metallurgical and Materials Transactions A[J].2012,43(9):3338-3350.
    [6] Dunand D C, Han B Q, Jansen A M. Monkman-grant analysis of creep fracture indispersion-strengthened and particulate-reinforced aluminum. Metallurgical and Materials Transactions A[J].1999,30(3):829-838.
    [7] Pekguleryuz M, Celikin M. Creep resistance in magnesium alloys. International Materials Reviews[J].2010,55(4):197-217.
    [8] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-I. creepbehavior of magnesium. Acta Metallurgica[J].1981,29(12):1969-1982.
    [9] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-II. creepbehavior of a Mg-0.8-percent Al solid solution alloy. Acta Metallurgica[J].1982,30(6):1157-1170.
    [10] Ishikawa K, Watanabe H, Mukai T. High temperature compressive properties over a wide range ofstrain rates in an AZ31magnesium alloy. Journal of Materials Science[J].2005,40(7):1577-1582.
    [11] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge University Press,2009.
    [12] Levitin V. High Temperature Strain of Metals and Alloys: Physical Fundamentals. Wiley-VCH,2006:180.
    [13] Milika K, Adek J, Ry P. High temperature creep mechanisms in magnesium. Acta Metallurgica[J].1970,18(10):1071-1082.
    [14] Mordike B L. Creep-resistant magnesium alloys. Materials Science and Engineering A[J].2002,324(1-2):103-112.
    [15] Miannay D P. Time-dependent fracture mechanics. New York: Springer,2001:313.
    [16] Burt H, Wilshire B. Theoretical and practical implications of creep curve shape analyses for2124and2419. Metallurgical and Materials Transactions A[J].2004,35(6):1691-1701.
    [17] Ashby M F, Dyson B F. Creep damage mechanics and micromechanisms. In Advances in fractureresearch, Valluri R S, Oxford and New York:Pergamon Press,1984:1,3-30.
    [18] Burt H, Wilshire B. Theoretical and practical implications of creep curve shape analyses for7010and7075. Metallurgical and Materials Transactions A[J].2006,37(3):1005-1015.
    [19] Burt H, Wilshire B. Theoretical and practical implications of creep curve shape analyses for8090.Metallurgical and Materials Transactions A[J].2005,36(5):1219-1227.
    [20] Povolo F. Comments on the Monkman-Grant and the modified Monkman-Grant relationships. Journalof Materials Science[J].1985,20:2005-2010.
    [21] Sundararajan G. The Monkman-Grant relationship. Materials Science and Engineering A[J].1989,112:205-214.
    [22] Monkman F C, Grant N J. Proc. Astm.[J].1956,56:593-620.
    [23] Dobes F, Milicka K. Met. Sci.[J].1976,10:382-384.
    [24] Boehlert C J, Miracle B D. Part II. The creep behavior of Ti-AI-Nb O+Bcc orthorhombic alloys.Metallurgical and Materials Transactions A[J].1999,30(9):2349-2367.
    [25] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallizationin magnesium alloy Zk60. Acta Materialia[J].2001,49(7):1199-1207.
    [26] Jones R B, Harris J E. Creep deformation of polycrystalline magnesium. Archive: Proceedings of theInstitution of Mechanical Engineers, Conference Proceedings1964-1970(Vols178-184)[J].1963,178(31):1-8.
    [27] He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strengthMg-10Gd-2Y-0.5Zr alloy. Journal of Alloys and Compounds[J].2007,427(1-2):316-323.
    [28] Nie J F, Muddle B. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. ActaMaterialia[J].2000,48(8):1691-1703.
    [29] He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy duringisothermal ageing at250°c. Journal of Alloys and Compounds[J].2006,421(1-2):309-313.
    [30] Apps P J, Lorimer G W, Karimzadeh H, et al. Precipitation Processes in Magnesium-Heavy Rare EarthAlloys during Ageing at300°C. In Magnesium Alloys and Their Applications, Wiley-VCH Verlag GmbH&Co. KGaA,2006,53-58.
    [31] Yin D D, Wang Q D, Gao Y, et al. Effects of heat treatments on microstructure and mechanicalproperties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. Journal of Alloys and Compounds[J].2011,509(5):1696-1704.
    [32] Couret A, Caillard D. An in situ study of prismatic glide in magnesium--i. The rate controllingmechanism. Acta Metallurgica[J].1985,33(8):1447-1454.
    [33] Obara T.,Yoshinga H.,Morozumi S.{1122}〈1123〉slip system in magnesium. Acta Metallurgica[J].1973,21(7):845-853.
    [34] Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressedmagnesium single crystals. Acta Materialia[J].2011,59(5):1986-1994.
    [35] P U Schl W. Models for dislocation cross-slip in close-packed crystal structures: a critical review.Progress in Materials Science[J].2002,47(4):415-461.
    [36] Hutchinson W B, Barnett M R. Effective values of critical resolved shear stress for slip inpolycrystalline magnesium and other hcp metals. Scripta Materialia[J].2010,63(7):737-740.
    [37] Agnew S R, Horton J A, Yoo M H. Transmission electron microscopy investigation ofdislocations in mg and alpha-solid solution mg-li alloys. Metallurgical and Materials Transactions A[J].2002,33(3):851-858.
    [38] Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg–3Al–1Zn. ScriptaMaterialia[J].2006,55(10):915-918.
    [39] Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of hcp metals and alloys: role ofdislocation source and mobility. Metallurgical and Materials Transactions A[J].2002,33(3):813-822.
    [40] Couret A, Caillard D. An in situ study of prismatic glide in magnesium--ii. Microscopic activationparameters. Acta Metallurgica[J].1985,33(8):1455-1462.
    [41] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium single crystals--ii the effect ofsolute on the ease of prismatic slip. Acta Metallurgica[J].1969,17(11):1351-1356.
    [42] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium single crystals—I alloyingbehaviour in basal slip. Acta Metallurgica[J].1969,17(11):1339-1349.
    [43] Boehlert C J, Chen Z, Guti E Rrez-Urrutia I, et al. In situ analysis of the tensile and tensile-creepdeformation mechanisms in rolled AZ31. Acta Materialia[J].2011,60:1889-1904.
    [44] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery atroom temperature in fine-grained az31b magnesium alloys. Acta Materialia[J].2003,51(7):2055-2065.
    [45] Smallman R E, Bishop R J. Modern physical metallurgy and materials engineering.Butterworth-Heinemann,1999.
    [46] Liu T S, Fields R J, Fariborz S J, et al. Experimental observations and analysis of creep cavitation inAISI type304stainless steel. Acta Metallurgica[J].1988,36(9):2481-2491.
    [47] Delph T J. Some selected topics in creep cavitation. Metallurgical and Materials Transactions A[J].2002,33(2):383-390.
    [48] Chen I W, Argon A S. Creep cavitation in304stainless steel. Acta Metallurgica[J].1981,29(7):1321-1333.
    [1] Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated-temperature applications. Journal ofMaterials Science[J].1994,29(20):5259-5271.
    [2] Mordike B L, Stulíková I, Smola B. Mechanisms of creep deformation in Mg-Sc-based alloys.Metallurgical and Materials Transactions A[J].2005,36:1729-1736.
    [3]陈振华.耐热镁合金.化学工业出版社,2007.
    [4]高岩. Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究.[博士论文].上海:上海交通大学.2009.
    [5] King J F. Development of practical high temperature magnesium casting alloys. In Magnesium Alloysand Their Applications, New York:Wiley,2000,14-22.
    [6] Mordike B L. Creep-resistant magnesium alloys. Materials Science and Engineering A[J].2002,324(1-2):103-112.
    [7] Henry S D, Sanders B R, Hrivnak N, et al. ASM Specialty Handbook: Aluminum and AluminumAlloys.1993:41.
    [8] Okamoto K, Sasaki M, Takahashi N, et al. Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons.Magnesium Technology.2011.73-78.
    [9]郭国庆,谢敬佩,王杰芳等.内燃机活塞材料及其相关技术.拖拉机与农用运输车[J].2004(3):9-11.
    [10]陈长江,王渠东,尹冬弟等.内燃机活塞材料的研究进展.材料导报[J].2009,23(15):62-65.
    [11]任书坤.汽车发动机活塞用铝合金.汽车技术[J].1994(4):32-37.
    [12] Miannay D P. Time-dependent fracture mechanics. New York: Springer,2001:313.
    [13] Burt H, Wilshire B. Theoretical and practical implications of creep curve shape analyses for2124and2419. Metallurgical and Materials Transactions A[J].2004,35(6):1691-1701.
    [14] Ashby M F, Dyson B F. Creep damage mechanics and micromechanisms. In Advances in fractureresearch, Valluri R S, Oxford and New York:Pergamon Press,1984:1,3-30.
    [15] Zhu S, Nie J, Mordike B. Creep and rupture properties of a squeeze-cast Mg-Al-Ca alloy.Metallurgical and Materials Transactions A[J].2006,37:1221-1229.
    [16] Beals R S, Liu Z K, Wayne Jones J, et al. Usamp magnesium powertrain cast components:fundamental research summary. JOM[J].2007,59(8):43-48.
    [17] Aghion E, Bronfin B, Von Buch F, et al. Newly developed magnesium alloys for powertrainapplications. JOM[J].2003,55(11): A30-A33.
    [18] Yin D D, Wang Q D, Boehlert C J, et al. Creep and fracture behavior of peak-agedMg-11Y-5Gd-2Zn-0.5Zr (wt pct). Metallurgical and Materials Transactions A[J].2012,43(9):3338-3350.
    [19] Kassner M E, Perez-Prado M T. Five-Power-Law Creep in Single Phase Metals and Alloys. Progressin Materials Science[J].2000,45(1):1-102.
    [20] Dieter G E. Mechanical metallurgy.3rd ed. New York: McGraw-Hill,1986:67.
    [21] Pekguleryuz M, Celikin M. Creep resistance in magnesium alloys. International Materials Reviews[J].2010,55(4):197-217.
    [22] Shi L, Northwood D. Recent progress in the modeling of high-temperature creep and its application toalloy development. Journal of Materials Engineering and Performance[J].1995,4(2):196-211.
    [23] Blum W, Eisenlohr P, Breutinger F. Understanding Creep-A Review. Metallurgical and MaterialsTransactions A[J].2002,33(2):291-303.
    [24] Dyson B F, Gibbons T B. Tertiary creep in nickel-base superalloys: analysis of experimental data andtheoretical synthesis. Acta Metallurgica[J].1987,35(9):2355-2369.
    [25] Dyson B F, Mclean M. Particle-coarsening, σ0and tertiary creep. Acta Metallurgica[J].1983,31(1):17-27.
    [26] Wilshire B, Burt H. Damage evolution during creep of steels. International Journal of Pressure Vesselsand Piping[J].2008,85(1-2):47-54.
    [27] Williams K R, Wilshire B. Effects of microstructural instability on the creep and fracture behaviour offerritic steels. Materials Science and Engineering[J].1977,28(2):289-296.
    [28] Zhang P, Watzinger B, Blum W. Changes in Microstructure and Deformation Resistance during Creepof the Die-Cast Mg–Al-Base Alloy AZ91hp at Intermediate Temperatures up to150°C. Physica StatusSolidi (a)[J].1999,175(2):481-489.
    [29] Ashby M F, Gandhi C, Taplin D. Fracture-Mechanism Maps and their Construction for Fcc Metalsand Alloys. Acta Metallurgica[J].1979,27(5):699-729.
    [30] Gandhi C, Ashby M F. Fracture-Mechanism Maps for Materials Which Cleave-Fcc, Bcc and HcpMetals and Ceramics. Acta Metallurgica[J].1979,27(10):1565-1602.
    [31] Stevens R A, Flewitt P E J. The dependence of creep rate on microstructure in aγ' strengthenedsuperalloy. Acta Metallurgica[J].1981,29(5):867-882.
    [32] Smallman R E, Bishop R J. Modern physical metallurgy and materials engineering.Butterworth-Heinemann,1999.
    [33] Cahn R W, Haasen P. Physical Metallurgy Volume III.4th ed. Amsterdam: North-Holland,1996.
    [34] Levitin V. High Temperature Strain of Metals and Alloys: Physical Fundamentals. Wiley-VCH,2006:180.
    [35] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-I. creepbehavior of magnesium. Acta Metallurgica[J].1981,29(12):1969-1982.
    [36] Vagarali S S, Langdon T G. Deformation mechanisms in HCP metals at elevated temperatures-II.creep behavior of a Mg-0.8-percent Al solid solution alloy. Acta Metallurgica[J].1982,30(6):1157-1170.
    [37] Milika K, Adek J, Ry P. High temperature creep mechanisms in magnesium. Acta Metallurgica[J].1970,18(10):1071-1082.
    [38] Shi L, Northwood D O. Strain-hardening and recovery during the creep of pure polycrystallinemagnesium. Acta Metallurgica[J].1994,42(3):871-877.
    [39] Somekawa H, Hirai K, Watanabe H, et al. Dislocation creep behavior in Mg-Al-Zn alloys. MaterialsScience and Engineering a[J].2005,407(1-2):53-61.
    [40] Miller W K. Creep of die cast AZ91magnesium at room temperature and low stress. Metallurgical andMaterials Transactions a[J].1991,22(4):873-877.
    [41] Regev M, Aghion E, Berger S, et al. Dislocation analysis of crept AZ91D ingot castings. MaterialsScience and Engineering a[J].1998,257(2):349-352.
    [42] Regev M, Aghion E, Rosen A, et al. Creep studies of coarse-grained AZ91D magnesium castings.Materials Science and Engineering a[J].1998,252(1):6-16.
    [43] Zhao P, Wang Q, Zhai C, et al. Effects of strontium and titanium on the microstructure, tensileproperties and creep behavior of AM50alloys. Materials Science and Engineering A[J].2007,444(1-2):318-326.
    [44] Boehlert C J, Knittel K. The microstructure, tensile properties, and creep behavior of Mg-Zn alloyscontaining0-4.4wt.%Zn. Materials Science and Engineering A[J].2006,417(1-2):315-321.
    [45] Boehlert C J. The tensile and creep behavior of Mg-Zn alloys with and without Y and Zr as ternaryelements. Journal of Materials Science[J].2007,42(10):3675-3684.
    [46] Suzuki M, Sato H, Maruyama K, et al. Creep behavior and deformation microstructures of Mg-Yalloys at550K. Materials Science and Engineering A[J].1998,252(2):248-255.
    [47] Suzuki M, Sato H, Maruyama K, et al. Creep deformation behavior and dislocation substructures ofMg-Y binary alloys. Materials Science and Engineering A[J].2001,319-321(""):751-755.
    [48] Anyanwu I A, Kamado S, Kojima Y. Creep properties of Mg-Gd-Y-Zr alloys. MaterialsTransactions[J].2001,42(7):1212-1218.
    [49] Wang J G, Hsiung L M, Nieh T G, et al. Creep of a heat treated Mg-4Y-3RE alloy. Materials Scienceand Engineering a[J].2001,315(1-2):81-88.
    [50] Hnilica F, Jan K V, Smola B, et al. Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1alloy.Materials Science and Engineering A[J].2008,489(1-2):93-98.
    [51] Morgan J E, Mordike B L. An investigation into creep-resistant, as-cast magnesium alloys containingyttrium, zinc, neodymium and zirconium. Metallurgical and Materials Transactions A[J].1981,12(9):1581-1585.
    [52] Wang Q D, Li D Q, Blandin J J, et al. Microstructure and creep behavior of the extrudedMg-4Y-4Sm-0.5Zr alloy. Materials Science and Engineering A[J].2009,516(1-2):189-192.
    [53] Janik V, Yin D D, Wang Q D, et al. The Elevated-Temperature Mechanical Behavior of peak-agedMg-10Gd-3Y-0.4Zr Alloy. Materials Science and Engineering A[J].2011,528:3105-3122.
    [54] Raynor G V. The physical metallurgy of magnesium and its alloys. Pergamon,1959.
    [55] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications. New York: Wiley,2000:816.
    [56] Shi L, Northwood D O. Strain-hardening and recovery during the creep of pure polycrystallinemagnesium. Acta Metallurgica[J].1994,42(3):871-877.
    [57] Maruyama K, Suzuki M, Sato H. Creep strength of magnesium-based alloys. Metallurgical andMaterials Transactions A[J].2002,33(3):875-882.
    [58] Dunand D C, Han B Q, Jansen A M. Monkman-grant analysis of creep fracture indispersion-strengthened and particulate-reinforced aluminum. Metallurgical and Materials Transactions A[J].1999,30(3):829-838.
    [59] Zheng K Y, Zeng X Q, Dong J, et al. Effect of initial temper on the creep behavior of a Mg–Gd–Nd–Zr alloy. Materials Science and Engineering A[J].2008,492(1-2):185-190.
    [60] Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical and MaterialsTransactions A[J].1981,12(3):409-418.
    [61] Yoo M H M J. Nonbasal Deformation Modes of Hcp Metals and Alloys: Role of Dislocation Sourceand Mobility. Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science[J].2002,33(3):813-822.
    [62] Couret A, Caillard D. An in situ study of prismatic glide in magnesium--i. The rate controllingmechanism. Acta Metallurgica[J].1985,33(8):1447-1454.
    [63] P U Schl W. Models for dislocation cross-slip in close-packed crystal structures: a critical review.Progress in Materials Science[J].2002,47(4):415-461.
    [64] Cadek J. Creep in Metallic Materials. Amsterdam:1988.
    [65] Jansen A M, Dunand D C. Creep of metals containing high volume fractions of unshearabledispersoids.2. Experiments in the Al-Al2O3system and comparison to models. Acta Materialia[J].1997,45(11):4583-4592.
    [66] Dunand D C, Jansen A M. Creep of metals containing high volume fractions of unshearabledispersoids--Part I. Modeling the effect of dislocation pile-ups upon the detachment threshold stress. ActaMaterialia[J].1997,45(11):4569-4581.
    [67] Blum W, Li Y, Zeng X, et al. Creep deformation mechanisms in high-pressure die-castmagnesium-aluminum-base alloys. Metallurgical and Materials Transactions A[J].2005,36:1721-1728.
    [68] Ardell A J. Precipitation hardening. Metallurgical Transactions A[J].1985,16(12):2131-2165.
    [69] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge University Press,2009.
    [70] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Materialia[J].1996,44(11):4611-4618.
    [71] Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys.Scripta Materialia[J].2003,48(8):1009-1015.
    [72] Smola B, Stul kova I, von Buch F, et al. Structural aspects of high performance mg alloys design.Materials Science and Engineering A[J].2002,324(1-2):113-117.
    [73] Clark J B. Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy. ActaMetallurgica[J].1965,13(12):1281-1289.
    [74] Clark J B. Age hardening in a Mg-9wt.%Al alloy. Acta Metallurgica[J].1968,16(2):141-152.
    [75] Celotto S. TEM study of continuous precipitation in Mg-9Wt%Al-l Wt%Zn alloy. Acta Materialia[J].2000,48(8):1775-1787.
    [76] Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3RE alloy. ActaMaterialia[J].2003,51(18):5335-5348.
    [77] Wei L Y, Dunlop G L, Westengen H. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys.Metallurgical and Materials Transactions A[J].1995,26(7):1705-1716.
    [78] Zhu Y M, Morton A J, Nie J F. Improvement in the age-hardening response of Mg-Y-Zn alloys by Agadditions. Scripta Materialia[J].2008,58(7):525-528.
    [79] Luo A A. Recent magnesium alloy development for elevated temperature applications. InternationalMaterials Reviews[J].2004,49(1):13-30.
    [80] Pekguleryuz M O, Kaya A A. Creep resistant magnesium alloys for powertrain applications.Advanced Engineering Materials[J].2003,5(12):866-878.
    [81] Mordike B L, Ebert T. Magnesium Properties-applications-potential. Materials Science andEngineering A[J].2001,302:37-45.
    [82]何上明. Mg-Gd-Y-Zr (-Ca)合金的微观组织演变、性能和断裂行为研究.[博士论文].上海:上海交通大学.2007.
    [83] Kainer K U. Magnesium Alloys and Technologies. Wiley-VCH,2003:293.
    [84] Friedrich H E, Mordike B L. Magnesium Technology. Springer,2006:677.
    [85] He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strengthMg-10Gd-2Y-0.5Zr alloy. Journal of Alloys and Compounds[J].2007,427(1-2):316-323.
    [86] Zhang M X, Kelly P M. Morphology and crystallography of Mg24Y5precipitate in Mg-Y alloy. ScriptaMaterialia[J].2003,48(4):379-384.
    [87] Nie J F, Muddle B. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. ActaMaterialia[J].2000,48(8):1691-1703.
    [88] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening ofMg-2.0Gd-1.2Y-0.2Zr alloys. Acta Materialia[J].2007,55(12):4137-4150.
    [89] Smola B, Stulikova I, Pelcov A J, et al. Significance of stable and metastable phases in hightemperature creep resistant magnesium-rare earth base alloys. Journal of alloys and compounds[J].2004,378(1-2):196-201.
    [90] Liu H, Gao Y, Liu J Z, et al. A simulation study of the shape of β′precipitates in Mg–Y andMg–Gd alloys. Acta Materialia[J].2013,61(2):453-466.
    [91] Gao Y, Liu H, Shi R, et al. Simulation study of precipitation in an Mg--Y--Nd alloy. ActaMaterialia[J].2012,60(12):4819-4832.
    [92] Yin D D, Wang Q D, Gao Y, et al. Effects of heat treatments on microstructure and mechanicalproperties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. Journal of Alloys and Compounds[J].2011,509(5):1696-1704.
    [93] Gao X, He S M, Zeng X Q, et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy duringisothermal aging at250℃. Materials Science and Engineering A[J].2006,431(1-2):322-327.
    [94] Zheng L, Liu C, Wan Y, et al. Microstructures and mechanical properties ofMg-10Gd-6Y-2Zn-0.6Zr(wt.%) alloy. Journal of Alloys and Compounds[J].2011,509(35):8832-8839.
    [95] Gao L, Chen R S, Han E H. Microstructure and strengthening mechanisms of a cast Mg--1.48Gd--1.13Y--0.16Zr (at.\%) alloy. Journal of materials science[J].2009,44(16):4443-4454.
    [96] Apps P J, Karimzadeh H, King J F, et al. Precipitation reactions in magnesium-rare earth alloyscontaining yttrium, gadolinium or dysprosium. Scripta materialia[J].2003,48(8):1023-1028.
    [97] Zhu Y M, Morton A J, Nie J F. The18R and14H long-period stacking ordered structures in Mg-Y-Znalloys. Acta Materialia[J].2010,58(8):2936-2947.
    [98] Zhu Y M, Weyland M, Morton A J, et al. The building block of long-period structures in Mg-RE-Znalloys. Scripta Materialia[J].2009,60(11):980-983.
    [99] Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strengthnanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. ActaMaterialia[J].2002,50(15):3845-3857.
    [100] Gao Y, Wang Q D, Gu J H, et al. Comparison of microstructure in Mg-10Y-5Gd-0.5Zr andMg-10Y-5Gd-2Zn-0.5Zr alloys by conventional casting. Journal of Alloys and Compounds[J].2009,477:374-378.
    [101] Chino Y, Mabuchi M, Hagiwara S, et al. Novel equilibrium two phase Mg alloy with the long-periodordered structure. Scripta Materialia[J].2004,51(7):711-714.
    [102] Yamada K, Okubo Y, Shiono M, et al. Alloy development of high toughness Mg-Gd-Y-Zn-Zr alloys.Materials Transactions[J].2006,47(4):1066-1070.
    [103] Ping D H, Hono K, Kawamura Y, et al. Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1alloy. Philosophical magazine letters[J].2002,82(10):543-551.
    [104] Suzuki M, Kimura T, Koike J, et al. Strengthening effect of Zn in heat resistant Mg-Y-Zn solidsolution alloys. Scripta Materialia[J].2003,48(8):997-1002.
    [105] Suzuki M, Kimura T, Koike J, et al. Effects of zinc on creep strength and deformation substructures inMg-Y alloy. Materials Science and Engineering A[J].2004,387-389:706-709.
    [106] Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature. Progress inMaterials Science[J].1968,13(7):323-390.
    [107] Mohamed F A, Langdon T G. The transition from dislocation climb to viscous glide in creep of solidsolution alloys. Acta Metallurgica[J].1974,8(3):823-828.
    [108] Kong Q P, Li Y. Investigation of the climb of extended dislocations during high-temperature creep.Philosophical Magazine A[J].1993,68(1):113-119.
    [109] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plasticflow of magnesium and magnesium alloy. Materials Transactions[J].2003,44(4):426-435.
    [110] Stanford N, Geng J, Chun Y B, et al. Effect of plate-shaped particle distributions on the deformationbehaviour of magnesium alloy AZ91in tension and compression. Acta Materialia[J].2012,60(1):218-228.
    [111]张俊善.材料的高温变形与断裂.北京:科学出版社,2007.
    [112] Kassner M E, Pérez-Prado M T. Fundamentals of Creep in Metals and Alloys. ELSEVIER,2004:288.
    [113]平修二.金属材料的高温强度.北京:科学出版社,1995:535.
    [114] Yamasaki M, Sasaki M, Nishijima M, et al. Formation of14H long period stacking ordered structureand profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature. ActaMaterialia[J].2007,55(20):6798-6805.
    [115] Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidlysolidified Mg97Zn1Y2alloy. Materials Science and Engineering a[J].2005,393(1-2):269-274.
    [116] Itoi T, Seimiya T, Kawamura Y, et al. Long period stacking structures observed in Mg97Zn1Y2alloy.Scripta Materialia[J].2004,51(2):107-111.
    [117] Grobner J, Kozlov A, Fang X Y, et al. Phase equilibria and transformations in ternary Mg-richMg-Y-Zn alloys. Acta Materialia[J].2012.
    [118] Wu Y J, Zeng X Q, Lin D L, et al. The microstructure evolution with lamellar14H-type LPSOstructure in an Mg96.5Gd2.5Zn1alloy during solid solution heat treatment at773k. Journal of Alloys andCompounds[J].2009,477(1-2):193-197.
    [119] Wu Y J, Lin D L, Zeng X Q, et al. Formation of a lamellar14h-type long period stacking orderedstructure in an as-cast Mg-Gd-Zn-Zr alloy. Journal of Materials Science[J].2009,44(6):1607-1612.
    [120] Nishida M, Kawamura Y, Yamamuro T. Formation process of unique microstructure in rapidlysolidified Mg97Zn1Y2alloy. Materials Science and Engineering A[J].2004,375-377:1217-1223.
    [121] Luo Z P, Zhang S Q, Tang Y L, et al. Microstructures of Mg-Zn-Zr-RE alloys with high RE and lowZn contents. Journal of Alloys and Compounds[J].1994,209(1-2):275-278.
    [122] Langdon T G. The role of grain boundaries in high temperature deformation. Materials Science andEngineering A[J].1993,166(1-2):67-79.
    [123] Gifkins R C. Grain-boundary participation in high-temperature deformation: An historical review.Materials Characterization[J].1994,32(2):59-77.
    [124] Morento I P, Nandy T K, Jones J W, et al. Microstructural stability and creep of rare-earth containingmagnesium alloys. Scripta Materialia[J].2003,48:1029-1034.
    [125] Zhang J S, Li P E, Chen W X, et al. Grain boundary precipitation strengthening in high temperaturecreep of Fe-15Cr-25Ni alloys. Scripta Metallurgica[J].1989,23(4):547-551.
    [126] Sun W P, Jonas J J. Influence of dynamic precipitation on grain boundary sliding during hightemperature creep. Acta Metallurgica[J].1994,42(1):283-292.
    [127]屠海令,干勇.金属材料理化测试全书.化学工业出版社,2007.
    [128] Jing B, Yangshan S, Shan X, et al. Microstructure and tensile creep behavior of Mg-4Al basedmagnesium alloys with alkaline-earth elements Sr and Ca additions. Materials Science and Engineering:A[J].2006,419(1-2):181-188.
    [129] Srinivasan A, Swaminathan J, Gunjan M K, et al. Effect of intermetallic phases on the creep behaviorof AZ91magnesium alloy. Materials Science and Engineering: A[J].2010,527(6):1395-1403.
    [130] Spigarelli S, Regev M, Evangelista E, et al. Review of creep behavior of AZ91magnesium alloyproduced by different technologies. Materials Science and Technology[J].2001,17:627-638.
    [131] Luo A A, Balogh M P, Powell B R. Creep and microstructure of magnesium-aluminum-calcium basedalloys. Metallurgical and Materials Transactions A[J].2001,33:567-574.
    [132] Sedláek R, Blum W. Microstructure-based constitutive law of plastic deformation. ComputationalMaterials Science[J].2002,25(1-2):200-206.
    [133] Pandey A B, Mishra R S, Mahajan Y R. Steady state creep behaviour of silicon carbide particulatereinforced aluminium composites. Acta Metallurgica[J].1992,40(8):2045-2052.
    [134] Park K T, Lavernia E J, Mohamed F A. High temperature creep of silicon carbide particulatereinforced aluminum. Acta Metallurgica[J].1990,38(11):2149-2159.
    [135] Delph T J. Some selected topics in creep cavitation. Metallurgical and Materials Transactions A[J].2002,33(2):383-390.
    [136] Davanas K, Solomon A A. Theory of intergranular creep cavity nucleation, growth and interaction.Acta Metallurgica[J].1990,38(10):1905-1916.
    [137] Kassner M E, Hayes T A. Creep Cavitation in Metals. International Journal of Plasticity[J].2003,19(10):1715-1748.
    [138] Chen I W, Argon A S. Creep cavitation in304stainless steel. Acta Metallurgica[J].1981,29(7):1321-1333.
    [139] Raj R, Ashby M F. Intergranular fracture at elevated temperature. Acta Metallurgica[J].1975,23(6):653-666.
    [140] Svensson L E, Dunlop G L. Growth of intergranular creep cavities. International Metals Reviews[J].1981,26(1):109-131.
    [141] Shibutani T, Kitamura T, Ohtani R. Creep cavity growth under interaction between lattice diffusionand grain-boundary diffusion. Metallurgical and Materials Transactions A[J].1998,29(10):2533-2542.
    [142] Dyson B F. Constraints on diffusional cavity growth rates. Metal Science[J].1976,10(10):349-353.
    [143] Needleman A, Rice J R. Plastic creep flow effects in the diffusive cavitation of grain boundaries. ActaMetallurgica[J].1980,28(10):1315-1332.
    [144] Chen I W. Cavity growth on a sliding grain boundary. Metallurgical and Materials Transactions A[J].1983,14(11):2289-2293.
    [145] Chen I W, Argon A S. Diffusive growth of grain-boundary cavities. Acta Metallurgica[J].1981,29(10):1759-1768.
    [146] Rice J R. Constraints on the diffusive cavitation of isolated grain boundary facets in creepingpolycrystals. Acta Metallurgica[J].1981,29(4):675-681.
    [147] Langdon T. Grain boundary sliding revisited: Developments in sliding over four decades. Journal ofMaterials Science[J].2006,41:597-609.
    [148] Stanford N, Sotoudeh K, Bate P S. Deformation mechanisms and plastic anisotropy in magnesiumalloy AZ31. Acta Materialia[J].2011.
    [149] Janík V, Hnilica F, Zuna P, et al. Cavitation and grain boundary sliding during creep ofMg-Y-Nd-Zn-Mn alloy. Transactions of Nonferrous Metals Society of China[J].2008,18(Supplement1):s64-s68.
    [150] Kottada R S, Chokshi A H. Grain boundary sliding during diffusion and dislocation creep in a Mg-0.7pct Al alloy. Metallurgical and Materials Transactions A[J].2007,38(8):1743-1749.
    [151] Monkman F C, Grant N J. Proc. Astm.[J].1956,56:593-620.
    [152] Hnilica F, Janik V, Smola B, et al. Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1alloy.Materials Science and Engineering A[J].2008,489(1-2):93-98.
    [153] Sundararajan G. The Monkman-Grant relationship. Materials Science and Engineering A[J].1989,112(4):205-214.
    [154] Povolo F. Comments on the Monkman-Grant and the modified Monkman-Grant relationships. Journalof Materials Science[J].1985,20:2005-2010.
    [1]温树德.活塞设计及新型活塞材料.轻型汽车技术[J].1997(1):33-37.
    [2]陈长江.发动机活塞用耐热稀土镁合金的开发研究.[硕士论文].上海:上海交通大学.2010.
    [3] Shanghai Client Diesel Engine Co. L. http://cn.tradekey.com/selloffer_view/id/4456536.htm.
    [4]郭国庆,谢敬佩,王杰芳等.内燃机活塞材料及其相关技术.拖拉机与农用运输车[J].2004(3):9-11.
    [5] Avezou J. C.,薛献新.活塞材料的演变.柴油机[J].1983(2):14-23.
    [6]王渠东,尹冬弟,陈长江.耐热稀土镁合金发动机活塞的低压铸造制备方法[P]: ZL200910308916.2.
    [7]王渠东,尹冬弟,陈长江.耐热稀土镁合金发动机活塞的挤压铸造制备方法[P]: ZL200910308917.7.
    [8]王渠东,尹冬弟,陈长江等.铸造耐热稀土镁合金发动机活塞及其制备方法[P]:200910207042.1
    [9]王渠东,尹冬弟.内燃机用复合式活塞毛坯的制造方法[P]:201110107941.1
    [10]任书坤.汽车发动机活塞用铝合金.汽车技术[J].1994(4):32-37.
    [11]李鹏.汽车发动机活塞设计的现状及发展趋势.汽车工艺与材料[J].2008(1):5-8.
    [12]张秀芳.新型活塞材料.发动机配件技术[J].1996(3):8.
    [13]彭涛.内燃机活塞材料的发展与前景.山西科技[J].2007(3):91-92.
    [14]赖华清.活塞材料的应用及发展.上海汽车[J].2006(12):33-35.
    [15]李佳原.90年代的活塞新材料和新工艺.西南汽车科技[J].1994(003):49-52.
    [16]杨忠敏.谈现代汽车的材料及其轻量化技术.汽车研究与开发[J].2003,6:18.
    [17] Luo A A. Recent magnesium alloy development for elevated temperature applications. InternationalMaterials Reviews[J].2004,49(1):13-30.
    [18] Pekguleryuz M O, Kaya A A. Creep resistant magnesium alloys for powertrain applications. AdvancedEngineering Materials[J].2003,5(12):866-878.
    [19] Aghion E, Bronfin B, Von Buch F, et al. Newly developed magnesium alloys for powertrainapplications. JOM[J].2003,55(11): A30-A33.
    [20] Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated-temperature applications. Journal ofMaterials Science[J].1994,29(20):5259-5271.
    [21] Mordike B L. Creep-resistant magnesium alloys. Materials Science and Engineering A[J].2002,324(1-2):103-112.
    [22] Mordike B L, Ebert T. Magnesium Properties-applications-potential. Materials Science andEngineering A[J].2001,302:37-45.
    [23] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications. New York: Wiley,2000:816.
    [24] Kainer K U. Magnesium Alloys and Technologies. Wiley-VCH,2003:293.
    [25] Friedrich H E, Mordike B L. Magnesium Technology. Springer,2006:677.
    [26] Das S. Magnesium for automotive applications: Primary production cost assessment. JOM[J].2003,55(11): A22-A26.
    [27] Powell B R. The usamp magnesium powertrain cast components project. JOM[J].2002,54(2):49-50.
    [28] Okamoto K, Sasaki M, Takahashi N, et al. Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons.Magnesium Technology.2011.73-78.
    [29] Yin D D, Wang Q D, Boehlert C J, et al. Creep and fracture behavior of peak-agedMg-11Y-5Gd-2Zn-0.5Zr (wt pct). Metallurgical and Materials Transactions A[J].2012,43(9):3338-3350.
    [30] Henry S D, Sanders B R, Hrivnak N, et al. ASM Specialty Handbook: Aluminum and AluminumAlloys.1993:41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700