用户名: 密码: 验证码:
基于误差分离技术的超精密测量及校正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新材料、超精密加工技术的发展,被测对象的尺寸越来越大,超精密加工的加工精度和表面质量越来越高,导致通用的测量仪器所能提供的硬基准的精度不能超过加工精度,测量检测难度比加工难度更大。在此背景下,产生了应用某一特定的测量系统和相应的软件的组合去分离硬基准固有的误差,以此来提供一个比硬基准精度更高的虚拟软基准的测量技术,即误差分离技术。
     应用误差分离技术的超精密形状(误差)测量能够使测量精度达到目前所能达到精度的极限。这对提供最高计量标准的国家标准研究所和计量测试技术研究所来说是必不可少的技术。其次,对机床等加工机械进行数值补偿是机械运动的形状测量的另一大目的,可信度高,实施快捷简单的校正方法将是必不可缺的。最后,应用误差分离技术的形状测量能够以更低的硬件投资达到所需要的测量精度,符合建立节约型社会的目标。因此,超精密测量方法中的误差分离技术作为方法论的核心和基础技术,对它的理论研究是现代加工和测量技术的不可或缺的关键技术。而应用此技术的测量方法和校正方法也具有广阔的市场前景。
     本文依托国家自然科学基金资助项目“超精密形状误差测量中的误差分离技术研究”(项目编号:50905116)和校企合作项目“电梯轿厢导轨直线度及角度位置关系检测系统”(合同编号:H3007144)开展研究工作,以超精密加工和测量为应用环境,结合项目中电梯轿厢导轨直线度检测的需要,对超精密测量相关的误差分离技术中的若干问题进行系统研究。
     首先,论文介绍了本研究的背景、目的和意义。指出了开展以基于误差分离技术的超精密测量方法为研究对象的重要性,分析了包括多步法、自校正法和多探头法的误差分离技术的国内外研究现状及存在的问题,并在此基础上,提出了本论文的主要研究内容。
     接着,论文对基于线性方程组的自校正方法进行了系统的研究。从二维工作台定位误差自校正算法的提出,再扩展到三维空间精度自校正法,形成了从二维到三维自校正法的初步体系化。相较原有的基于傅里叶变换的自校正法,基于线性方程组的自校正方法可方便地进行理论误差传播率的推导、具有良好的噪声抑制能力、可对三位姿以上的组合进行自校正计算。
     通过本文的自校正研究,取得了以下成果:1)提出了基于线性方程组的二维工作台定位误差自校正算法;推导了测量噪声传递到重构结果的误差传播率,理论表明本算法重构结果的不确定度值小于测量噪声的标准差;2)对五位姿以下的组合测量进行了仿真实验,确认了本算法在不计测量噪声的情况下可实现无误差重构;在考虑测量噪声情况下,重构误差是处于统计学意义上的置信区间内的;3)提出了基于线性方程组的三维空间精度自校正算法,推导了误差传播率,并进行了仿真实验,其理论特性和仿真结果与上述二维的情况一致;4)利用视觉影像仪对镜头误差进行初步的自校正实验表明以上实验结果合理,同时也证明了本文所提出的自校正算法的有效性。
     其次,针对超精密长尺度加工件的直线度(轮廓形状)测量问题,论文对多探头法中的变间距2组2点法进行了深入研究。本文在既有的基于傅里叶变换的变间距2组2点法的基础上,重新推导了此方法的计算条件;接着,定量推导了传感器间零点误差对系统造成影响,进而提出了改良的变间距2组2点法,采用蒙特卡罗法计算了该方法的不确定度。与此同时,本文将基于线性方程组的多探头算法应用到变间距2组2点法上,推导了基于线性方程组的变间距2组2点法;并对基于线性方程组的方法与基于傅里叶变换的方法进行了比较。最后,搭建了测量系统进行了实验研究。
     通过本文的变间距2组2点法研究,取得了以下成果:1)根据既有的基于傅里叶变换的变间距2组2点法算法,重新推导了参数条件。新的参数条件使传感器间距设置不再直接受限于测量点数,扩大了传感器间距的的实际选择范围。2)定量分析了传感器测头间的零点误差对重构结果造成的影响,提出了改良的傅里叶变换算法;在不计测量噪声的情况下改良算法消除零点误差带来的影响,实现无误差重构;在测量噪声的情况下,推导了一种加权平均最优估计解。3)采用蒙特卡罗法对上述最优估计解的不确定度进行了定量计算。结果表明处于形状中间部分的不确定度与测量噪声是同一数量级的。4)推导了基于线性方程组的变间距2组2点算法,建立了相应的线性方程组模型并计算了该方法的理论不确定度。在不计测量噪声的情况下,本算法可完全消除零点误差带来的影响,实现无误差重构;在考虑测量噪声的情况下,最小二乘解的精度在理论上与零点误差的大小无关,只取决于测量噪声的大小。5)将基于傅里叶变换的方法与基于线性方程组的方法进行了全面比较。6)实验结果表明,对同一测量数据采用2种不同算法得到的重构结果几乎一致,结果表明除计算速度和内存消耗的劣势以外,基于线性方程组的方法在各方面都优于基于傅里叶变换的方法。
     再次,针对长导轨直线度测量问题,论文对基于反转和多探头法融合的混合多探头法进行了深入研究。本文在详细说明了GAO的反转六探头法的测量原理的基础上提出的反转四探头法少用两个探头同样实现直线度重构功能。在实验室内搭建了3米长的验证系统,设计了可脱离PC机运行的传感器组数据采集方案,编写了可处理连续扫描数据和异常数据的实用化程序。实验表明,反转六探头法和反转四探头法在不同扫描速度和采样间隔测量条件下的重构结果的重复性在30μm以下。使用法如激光跟踪仪对同一导轨进行了测量,其结果和反转四探头法的重构结果的差在50μm以下,从而有力证明了本论文提出的反转四探头法的有效性。
     最后,对整个论文的工作和研究成果进行了总结,并提出了下一步的研究展望。精密测量法中的误差分离技术作为方法论的核心和基础技术,一直以来在多样化的形状测量领域占有一席之地。而随着超精密测量需求越来越多,误差分离技术也将得到越来越多的实际应用。
With the development of new materials and ultra-precision machining technology, the size ofthe tested object is turn larger and larger, machining accuracy and surface quality is turn higherand higher. common measuring instruments can not provide hard benchmarks accuracy exceedingthe ultra-precision machining accuracy. Measurement and detect are more difficult than machining.In this background, error separation technology, which is a kind of measurement technique of avirtual soft benchmark accuracy higher than the hard baseline accuracy by application of aparticular measurement system and the appropriate combination of software to separate the errorinherent in the hard benchmark, has produced.
     Ultra-precision shape (error) measurements of the application of error separation technologymake the measurement accuracy achieve the current limit of achievable accuracy. To the NationalInstitute of Standards and Measurement and Testing Technology Research Institute, this is theessential technology to provide the highest standards of measurement. Secondly, the numericalcompensation of machine tools and other processing machinery is another major purpose of theshape of the mechanical movement of the measurement. High reliability, quick and simplecalibration method is essential. Finally, the shape of the application of error separation techniquescan to invest lower hardware to achieve the required measurement accuracy, in line with goals toestablish saving society. Therefore, as the core and foundation of the methodology, theoreticalstudy of the error separation techniques in ultra-precision measurement method is the keytechnology of modern processing and measurement techniques indispensable. The methods ofmeasurement and calibration for the application of this technology also have broad marketprospects.
     Supported by the Nature Science Fund of China (NSFC)(Project Number:50905116), theCooperation Project of University-enterprise (Contract No. H3007144) under the ultra-precisionmachining and measurement applications environment, combined with the project for the needs ofthe elevator car guide rail detection, ultra-precision measurement error separation techniques arestudied systematically. Theoretical research on the ultra-precise two-dimensional platformpositioning error self-calibration methods are conducted and optimized. The measuring device ofthe elevator car guide rail straightness has been developed.
     The main content and contributions of this thesis are summarized as follows:
     Firstly, the background, purpose and importance are introduced based on collecting and mastering a large amount of documents and references on error separation technology. Theimportance of research on ultra-precision measurement based on error separation techniques ispointed out. The research status and existing problems of error separation techniques, such asmultistep method, self-calibration method and multiple probe method are analyzed. The mainresearch content is based on this analysis.
     Secondly, the systematic research on self-calibration method based on linear equations isdone. From the proposing of error self-calibration algorithm for2D workbench location, expandsto3D space precision self-calibration method is deduced, self-calibration method from2D to3D ispreliminarily systematized. Compared with the existing self-calibration method based on Fouriertransform, the self-calibration method based on linear equations has advantages of convenientdeduction of theoretical error propagation rate, good capability of noise elimination and realizationof self-calibration for combination with more than3orientations.
     The achievements gained in the research of self-calibration method are summarized as below:1)2D self-calibration algorithm based on linear equations is proposed; error propagation rate thattransmitted to reconfiguration result by measured noise is deduced. Theory indicates that theuncertainty value of reconfiguration result for this algorithm is smaller than the standard deviationof measured noise.2)The realization of error free reconfiguration without considering measurednoise by simulation experiments for combination with less than5orientations; while consideringmeasured noise is confirmed, the reconfiguration error is in the statistic confidence interval.3)3Dspace precision self-calibration algorithm based on linear equations is proposed, the errorpropagation rate is deduced and simulation experiment is proceed; the theoretical character andsimulation result same with2D case stated before is found.4) Preliminary self-calibrationexperiment for shot error with visual image instrument is proved to be rational and also theeffectiveness of the proposed self-calibration algorithm is confirmed.
     Thirdly, focused on the measuring problem for ultra-precise long feet products, deeplyresearched the two sets of2-point with changing distance measuring method. From the existingtwo sets of2-point method that based on Fourier transform, the thesis deduces the calculationcondition and expands the parameters choosing area successfully. In this way, application for thismethod became easier. Also, influence to system brought by zero point error is deducedquantificationally. Then optimization of two sets of2-point method is proposed to eliminate theinfluence of zero point error in the situation completely without considering influence ofmeasurement noise. While considering measurement noise, the optimal estimation solution isdeduced to minimize the influence brought by zero point error. And by Monte Carlo Method, theuncertainty of this method is calculated. At the same time, multiple probe method based on linearequations was applied to the two sets of2-point method, and the method based on linear equationswas formed. Two sets of2-point method based on Fourier transform and linear equations arecompared. Finally experiment research is completed.
     The achievements gained from research of two sets of2-point method are listed as:1) Fromthe existing two sets of2-point method with changing distance that based on Fourier transform,the thesis deduced the calculation condition. The new condition avoids the situation in which theseparation distance between probes, in order to expand the real choosing interval of probeseparation.2) Influence to system brought by zero point error is deduced quantificationally. Thenoptimization of two sets of2-point method is proposed to completely eliminate the influence ofzero point error in the situation without considering influence of measurement noise. Theoretically,the precision of this solution not only depends on the volume of the measurement noise but alsohas no relation with zero point error.3) By Monte Carlo method, the uncertainty of this method iscalculated. The result, that the uncertainty of mid range on the measurement shape had the sameorder of magnitude with measurement noise, is proved.4) Two sets of2-point method which isbased on linear equations is deduced, linear equation system modeling and calculated theuncertainty of this algorithm has been finished. Without considering influence of measurementnoise, influence brought by zero point error can be eliminated to avoid influence to reconstruction.While considering the influence brought by measurement noise, the theoretical precision of thebest least square solution depends not only on the noise volume but not the zero point error.5) Acomprehensive comparison is made for two sets of2-point algorithm based on Fourier transformand linear equations respectively.6) It’s shown that, the algorithm based on linear equations isbetter than the algorithm based on Fourier transform only except for lower computing speed andlager memory.
     Fourthly, aiming at the measuring problems of longer guide rail straightness, further researchon compounded multiple probe method which was based on combination of reversal and multipleprobe method is proposed. In this thesis, based on the measuring principle of reversal6-probemeasuring method proposed by GAO, a reversal4probe measuring method is proposed whichcould also realize straightness reconstruction but using less probes. By modeling a3m longverification system, the sensor data collecting program which could run without PC is designed.Also, the practical program used for dealing with continuous scanning data and unusual data iscompiled. It is proved by experiment that the repeatability of reconstruction result was below30μm when reversal4-probe method and reversal6-probe method are applied under differentsituation of scanning speed and sampling interval. While using laser tracker to measure the sameguide rail, the difference of result was below50μm compared with reversal4-probe measurementmethod, which is also a credible proof of effectiveness of reversal4-probe measurement method.
     At the end of the thesis, the research achievements and the work were summarized, and thefollowing research is proposed. In the diversified shape measuring field of precise measuring,error separation technology plays an important role as the core and fundamental technology. Errorseparation technology will have more and more practical usage as the ultra-precision measuringneed grows.
引文
[1] Taniguchi, N.: Current Status in, and Future Trends of, Ultra-precision Machining andUltrafine Materials Processing, CIRP Annals,32(2),573-582,1983
    [2]庞滔,郭大春,庞楠编:超精密加工技术,国防工业出版社,2000
    [3] Schwenke H, et al.: Geometric error measurement and compensation of machines—Anupdate, Annals of the CIRP,57(2),660-675,2008
    [4] Whitehouse DJ: Some theoretical aspects of error separation technique in surface metrology,J Phys E Sci Instrum,9,531-536,1976
    [5] Evans CJ, Hocken RJ, Estler WT: Self-calibration reversal, redundancy, error separationand’absolute testing’, Annals of the CIRP,45(2),617–634,1996
    [6]花国梁:精密测量技术,中国计量出版社,1990
    [7]宁延平,刘战锋:国内外高精度直线度测量技术的研究现状,现代制造工程,6,82-84,2005
    [8]张国雄:三坐标测量机,天津大学出版社,1999
    [9]万德安:激光基准高精度测量技术,国防工业出版社,1999
    [10] Shyh-Tsong Lin: A laser interferometer for measuring straightness, Optics&LaserTechnology,33,195-199,2001
    [11] C.Yin, W.Z.Chen: Two-dimensional automatic straightness measurement system based onoptical activity, Optical Engineering,304,480-482,1991
    [12] T.R. Armstrong, M.P. Fitzgerald: An autocollimator based on the laser head of a compact discplayer, Measurement Sci.3,1072-1076,1992
    [13] Campbell A.: Measurement of lathe Z-slide straightness and parallelism using a flat land,Precision Engineering,17(3),207-210,1995
    [14] Yokohama Y. and Hoshina N.: A new straightness testing instrument, Proc.spring Mtg ofJapan Soc. For Precision Engineering,32,7,1968
    [15] Bryan J., Clouser R and Holland E.: Spindle accuracy, American Machinist,12(4),149-164,1967
    [16] Thwaite E.G.: A Method for Obtaining an Error Free Reference Line for the Measurement ofStraightness, Messtechnik,81(10),317-318,1973
    [17] S.P Zhu, J.C Fang: A New Noncontact Flatness Measuring System of Large2-D FlatWorkpiece, Instrumentation and Measurement, IEEE Transactions,57(12),2891-2904,2008
    [18] Schreiner R, Schwider J, Lindlein N, et al.: Absolute testing of the reference surface of aFizeau interferometer through even/odd decompositions, Applied Optics,47(32),6134-6141,2008
    [19] Bernard S Frit z.: Absolute calibration of an optical flat, OPTICAL ENGINEERING,23(4),379-383,1984
    [20] Gunter Schulz, Jurgen Grzanna: Absolute flatness testing by the rotation method with optimalmeasuring-error compensation, APPLIED OPTICS,31(19),3767-3780,1992
    [21]赵静,张月平:带旋转的三面互检法,计测技术,27(4),14-16,2007
    [22] Hansen, H.N., Carneiro, K., Haitjema, H. and De Chiffre, L.: Dimensional micro and nanometrology, Cirp Annals,55(2),721-743,2006
    [23]林彬,张晓峰:石英陶瓷在精密平台中的应用,光学精密工程,13(1),73-80,2005
    [24]朱喜林,高鹏,袁哲俊:超精密机床工作台运行误差的测量于补偿,兵工学报,20(1),97-99,1999
    [25] Lu XM, Tran HD: Self-calibration for2-dimensional precision stages based on circle closureprinciple, PROCEEDINGS OF THE FIFTEENTH ANNUAL MEETING OF THEAMERICAN SOCIETY FOR PRECISION ENGINEERING,434-437,2000
    [26] Lu XM: Real-time self-calibration and geometry error measurement in nm level multi-axisprecision machines based on multiX-Y encoder integration,[PhD Thesis], AlbuquerqueUniversity of New Mexico,2004
    [27] Raugh, M.R.: Absolute Two-dimensional Sub-micron Metrology for Electron BeamLithography, Precision Engineering,7(1),3-13,1985
    [28] Ye, J., Takac, M., Berglund, C.N., Owen, G. and Pease, R.F.: An exact algorithm forself-calibration of two-dimensional precision metrology stages, Precision Engineering,20(1),16-32,1997
    [29] Yoo, S.B. and Kim, S.W.: Self-calibration algorithm for testing out-of-plane errors oftwo-dimensional profiling stages, International Journal of Machine Tools&Manufacture,44(7),767-774,2004
    [30] Xu M., Dziomba T., Dai G. and Koenders L.: Self-calibration of scanning probe microscope:mapping the errors of the instrument, Measurement Science&Technology,19(2),025105,6pp,2008
    [31]朱立伟,朱煜,尹文生:超精密二维工作台自标定技术研究,中国机械工程,16(20),1787-1790,2005
    [32]朱立伟,朱煜,尹文生:二维超精密工作台自标定算法,工具技术,40(7),12-16,2006
    [33]朱立伟,朱煜,尹文生:超精密工作台自标定不确定度定量评价,清华大学学报,46(8),1384-1387,2006
    [34]朱煜,朱立伟,尹文生,段广洪:IC加工及检测装备超精密工作台自标定技术研究,电子工业专用设备,122(5),20-24,2005
    [35] Wiegmann Axel, Stavridis Manuel, Walzel Monika: Accuracy evaluation for sub-apertureinterferometry measurements of a synchrotron mirror using virtual experiments, PRECISIONENGINEERING,35(2),183-190,2011
    [36] Wiegmann Axel, Schulz Michael, Elster Clemens: Absolute Profile Measurement of OpticalSurfaces with Multiple Sensor Systems, TM-TECHNISCHES MESSEN,78(4),184-189,2011
    [37] Wiegmann Axel, Schulz Michael, Elster Clemens: Improving the lateral resolution of amulti-sensor profile measurement method by non-equidistant sensor spacing, OPTICSEXPRESS,18(15),15807-15819,2010
    [38] Wiegmann Axel, Schulz Michael, Elster Clemens: Suppression of aliasing in multi-sensorscanning absolute profile measurement, OPTICS EXPRESS,17(13),11098-11106,2009
    [39] Wiegmann A., Schulz M., Elster C.: Absolute profile measurement of large moderately flatoptical surfaces with high dynamic range, OPTICS EXPRESS,16(16),11975-11986,2008
    [40]廖念钊,彭睁琪:误差分离技术在直线度误差测量中的应用,计量技术(专辑),1985
    [41]谭久彬:精密测量中的误差补偿技术,哈尔滨工业大学出版社,1995
    [42]李圣怡,谭捷,潘培元:精密三点法—在线测量精密机床直线度的新方法,国防科技大学学报,15(3),1993
    [43]王宪平,李圣怡:直线度误差分离方法的误差分析,仪器仪表学报,21(3),2000
    [44]洪迈生,钟志峰,李济顺:临床分离工件直线度和工作台直行运动误差的新方法,宇航计测技术,18(4),1-6,1998
    [45]洪迈生,魏元雷,李自军,祝斌:形状误差分离技术的统一理论,宇航计测技术,21(6),1-12,2001
    [46]洪迈生,蔡萍:多位法误差分离技术的统一方程及可操作性,纳米技术与精密工程,2(1),59-64,2004
    [47] Kiyono Satoshi: Profile Measurement Using Software Datum, Journal of the Japan Society ofPrecision Engineering,61(8),1059-1063,1995
    [48] Tanaka H, Tozawa K, Sato H, Ohori M: Application of a New Straightness MeasurementMethod to Large Machine Tool, Annals of the CIRP,30(1),455-459,1981
    [49]张镭,张玉:时域二点法和三点法直线度EST的误差分析,仪器仪表学报,19(1),106-108,1998
    [50]孙宝寿,詹圣望:三点法测量直线度误差应用研究,华东冶金学院学报,17(3),217-220,2000
    [51] Gao W, et al.: Self-zero-adjustment of probes in the methods constructing software datum forlarge profile measurement, Int. J. JSPE,30(4),337-42,1996
    [52] Fujimoto Ikumatsu, Nishimura Kunitoshi: Autonomous calibration method of thezero-difference without using a standard gauge for a straightness-measuring machine,PRECISION ENGINEERING,35(1),153-163,2010
    [53] Tozawa K, Sato H and O-hori M: A new method for the measurement of the straightness ofmachine tools and machined work,[J]Trans.A SME Mech.Design,104,587-92,1982
    [54] H.Tanaka and H.Sato: Extensive Analysis and Development of Straightness Measurement bySequential-Two-Points Method, Trans.ASME J. Engng Industry108,176-182,1986
    [55] H Su, M S Hong, Z J Li, Y L Weil and S B Xiong: The error analysis and online measurementof linear slide motion error in machine tools, Meas.Sci.Technol.,13,895-902,2002
    [56] Estler WT: Calibration and use of optical straightedges in the metrology of precisionmachines, Optical Engineering,24(3),372-9,1985
    [57] Ennos AE, Virdee MS: High accuracy profile measurement for quasi-conical mirror surfacesby laser autocollimation, Prec Eng,4(1),5-8,1982
    [58] Ennos AE, Virdee MS: Precision measurement of surface form by laser profilometry, Wear,109,275-286,1986
    [59] Omar B. A., Holloway A. J. and Emmony D. C.: Differential phase quadrature surfaceprofiling interferometer, Appl Optics,29,4715-4719,1990
    [60] Kiyono S and Gao Wei: Profile measurement of machined surface with a new diferentialmethod, Precision Engng16,212-218,1994
    [61] Li C J, Li S and Yu J: High resolution error separation technique for in-situ straightnessmeasurement of machine tools and workpiece, Mechatronics6,337-347,1996
    [62] Kiyono S, Asakawa Y, Inamoto M, Kamada O.: A differential laser autocollimation profile foron-machine measurement. Precision Eng,15(2),68-76,1993
    [63] Gao W., Arai Y., Shibuya A., Kiyono S. and Park C.H.: Measurement of multi degree offreedom error motions of a precision linear air-bearing stage, Precision Engineering,30(1),96-103,2006
    [64] Gao, W. and Kiyono, S.: Development of an optical probe for profile measurement of mirrorsurfaces. Optical Engineering,36(12),3360-3366,1997
    [65] Gao W., Kiyono S. and Nomura T.: New multiprobe method of roundness measurements.Precision Engineering,19,37-45,1996
    [66] Gao W., Kiyono S. and Sugawara T.: High-accuracy roundness measurement by a new errorseparation method. Precision Engineering,21(2-3),123-133,1997
    [67] Gao W, Kiyono S.: Development of an optical probe for profile measurement of mirrorsurfaces. Opt Eng,36(12),3360-3366,1997
    [68] Makosch G, Drollinger B: Surface profile measurement with a scanning differential acinterferometer, Applied Optics,24,4544-53,1984
    [69] Rimmer M P, et al.: Evaluation of large aberrations using a lateral shear interferometerhanving variable, App.Opt.x,14(1),142-150,1984
    [70] Wei Gao, Jun Yokoyama, Hidetoshi Kojima,Satoshi Kiyono: Precision measurement ofcylinder straightness using a scanning multi-probe system, Precision Eng,26,279-288,2002
    [71] Yamaguchi J.: Measurement of straight motion accuracy using the improved sequentialthree-point method. J JSPE,59(5),773–8,1993(in Japanese).
    [72] Eric H K Fung,S M Yang: An error separation technique for measuring straightness motionerror of a linear slide, Meas. Sci. Technol.11,2000
    [73] Eric H K Fung, S M Yang: An approach to on-machine motion error measurement of a linearslider, Measurement,29,51-62,2001
    [74] Fung Eric H. K., Wong W. O., Zhu M: An On-machine Separation Method for Straightness,Yawing and Rolling Errors of a Linear Slide, ASME International Mechanical EngineeringCongress and Exposition,4,105-114,2010
    [75] Muralikrishnan B, Venkatachalam S, Raja J, Malburg M: A note on the three-point methodfor roundness measurement, Prec Eng,29(2),257-260,2005
    [76] S M Yang, Eric H K Fung, WM Chiu: Uncertainty analysis of on-machine motion and profilemeasurement with sensor reading errors, Meas. Sci. Technol.13,1937-1945,2002
    [77] Elster C: Recovering wavefronts from difference measurements in lateral shearinginterferometry, J Comput Appl Math,110,177–180,1999
    [78] Elster C. and Weingartner I.: Exact wave-front reconstruction from two lateral shearinginterferograms. Journal of the Optical Society of America a-Optics Image Science and Vision,16(9),2281-2285,1999
    [79] Elster, C. and Weingartner, I.: Solution to the shearing problem. Applied Optics,38(23),5024-5031,1999
    [80] Schulz M, Weingartner I: Avoidance and elimination of errors in optical scanning, Proc. SPIE3823,133-141,1999
    [81] Geckeler R.D.: Error minimization in high-accuracy scanning deflectometry. InterferometryXIII: Applications, Proc SPIE,1-12,2007
    [82] Geckeler R.D. and Weingartner, I.: Sub-nm topography measurement by deflectometry:Flatness standard and wafer nanotopography, Proc SPIE,1-12,2002
    [83] Chen X., Kotani K. and Takamasu K.: Study on spatial frequency domain2-point method,Journal of the Japan Society of Precision Engineering,653-658,2007(in japanese)
    [84] Yin Z.Q. and Li S.Y.: Exact straightness reconstruction for on-machine measuring precisionworkpiece, Precision Engineering,29(4),456-466,2005
    [85] Yin Z.Q.: Exact wavefront recovery with tilt from lateral shear interferograms, AppliedOptics,48(14),2760-2766,2009
    [86]李圣怡,尹自强:超精密工件在线直线度多传感器测量方法,纳米技术与精密工程,2(1),71-75,2004
    [87]尹自强,李圣怡,王卓:直线度的高精度测量,计算机测量与控制,12(2),110-114,2004
    [88] Takamasu Kiyoshi, Takahashi Satoru, Chen Xin: Uncertainty Estimation in IntelligentCoordinate and Profile Measurement, ADVANCED PRECISION ENGINEERING,447-448,564-568,2010
    [89] Yang Ping, Takamura Tomohiko, Takahashi Satoru: Multi-probe scanning system comprisingthree laser interferometers and one autocollimator for measuring flat bar mirror profile withnanometer accuracy, PRECISION ENGINEERING,35(4),686-692,2011
    [90] Yang Ping, Takamura Tomohiko, Takahashi Satoru: Development of high-precisionmicro-coordinate measuring machine: Multi-probe measurement system for measuring yawand straightness motion error of XY linear stage, PRECISION ENGINEERING,35(3),424-430,2011
    [91] Liu S., Watanabe K., Chen X., Takahashi S. and Takamasu K.: Profile measurement of awide-area resist surface using a multi-ball cantilever system, Precision Engineering,33(1),50-55,2009
    [92] Weingartner I, Elster C: System of four distance sensors for high accuracy measurement oftopography, Precis Eng,28(2),164–170,2004
    [93] Elster C, Weing rtner I: Coupled distance sensor systems for high-accuracy topographymeasurement, Prec Eng,30(1),32–38,2006
    [94] Schulz M, Gerhardt J, Geckeler RD, Elster C: Traceable multiple sensor system for absoluteform measurement, Proc. SPIE,5878,1-8,2005
    [95] Gerhardt J, Geckeler RD, Schulz M, Elster C: High-accuracy profile form measurement by ascanning system consisting of an angle sensor and coupled distance sensors, Proc. SPIE,5856,385-392,2005
    [96] Gao W and Kiyono S: High accuracy profile measurement of a machined surface by thecombined method, Measurement,19(1),55-64,1996
    [97] Gao W and Kiyono S: On-machine profile measurement of machined surface using thecombined three-point method, JSME Int.J. C40,253-259,1997
    [98] Wei Gao and Satoshi Kiyono: On-machine roundness measurement of cylindrical workpieces by the combined three-point method, Measurement,21(4),147-156,1997
    [99] Weingartner I, Schulz M, et al.: Methods, error influences and limits for the ultra-precisemeasurement of slope and figure for large, slightly non-flat or steep complex surfaces, Proc.SPIE4099,142-53,2000
    [100] H.J. Pahk, J.S. Park and l. Yeo: Development of straightness measurement technique usingthe profile matching method, Int.J. Mach. Tools Manufact,37(2),135-147,2001
    [101] Fu Pan, Liao Nianzhao: On-Line Measuring Method Using Error Separating Technique toMeasure Form and Position Error of Large Scale Workpiece,1st ISPAMIE Proceedings,1987
    [102] Holmes M., Hocken R. and Trumper, D.: The long-range scanning stage: a novel platformfor scanned-probe microscopy, Precision Engineering,24(3),191-209,2000
    [103]赵兴玉,冯晓梅,武一民:面向MEMS制造的高速精密定位平台的动力学仿真和结构设计,机电工程学报,42(8),114-119,2006
    [104]吴鹰飞,周兆英:超精密定位工作台,精细加工技术,2,2002
    [105] Kuhle A, Garn s J and Dirscherl: Why perform3D calibration for a1D AFMmeasurement, Proc.7th Euspen Int. Conf.,2007
    [106] Hemming B., Palosuo I. and Lassila A.: Design of a calibration machine for opticaltwo-dimensional length standards. In Yoshizawa, T., ed. Optomechatronic Systems Iii, pp.670-678,2002
    [107] Zhang G.X. and Fu J.Y.: A method for optical CMM calibration using a grid plate, CirpAnnals,399-402,2000
    [108] Klapetek P., Necas D., Campbellova A., Yacoot A. and Koenders L.: Methods fordetermining and processing3D errors and uncertainties for AFM data analysis, MeasurementScience&Technology,22(2),2011
    [109] Luo P.F., Pan S.P. and Chu T.C.: Application of computer vision and laser interferometer tothe inspection of line scale, Optics and Lasers in Engineering,42(5),563-584,2004
    [110] Luo P.F., Pan S.P. and Lee C.L.: Application of computer vision and laser interferometer totwo-dimensional inspection, Optical Engineering,47(12),2008
    [111] H. Bosse, W. Haessler-Grohne, B. Brendel: About traceability, reproducibility andcomparability of grid calibrations, Proc of SPIE,3873,477-483,1999
    [112] Vira, N. and Alagudu, M.: Precision Measurement and Control of an Automatedtwo-dimensional Grid Plate Testing Machine, Isa Transactions,34(1),101-116,1995
    [113] Raugh, M.R.: Two-dimensional stage self-calibration: Role of symmetry and invariant setsof points, Journal of Vacuum Science&Technology B,15(6),2139-2145,1997
    [114] Silver, R.M., Doiron, T., Penzes, W., Kornegay, E., Fox, S., Takac, M., Rathjen, S. andOwens, D.: Two-dimensional calibration artifact and measurement methodology, Metrology,Inspection, and Process Control for Microlithography Xiii, Pts1and2,3677,123-138,1999
    [115] Takac M.T., Ye J., Raugh M.R., Pease R.F., Berglund C.N. and Owen G.: Self-calibrationin two-dimensions: The experiment. Metrology, Inspection, and Process Control forMicrolithography X,2725,130-146,1996
    [116] Takac M.T., Ye J., Raugh M.R., Pease R.F., Berglund C.N. and Owen G.: Obtaining aphysical two-dimensional Cartesian reference, Journal of Vacuum Science&Technology B,15(6),2173-2176,1997
    [117] Soichi IBARAKI, Wataru GOTO, Atsushi MATSUBARA, Tamaki OCHI and MinoruHAMAMURA: Self-calibration of a Cross Grid Encoder, Journal of the Japan Society ofPrecision Engineering,72(8),1032-1037,2006
    [118] Myers RH: Classical and modern regression with applications,2nd ed, PWS-KENT,Boston,1990
    [119] McCarthy, M.B., Dimensional metrology of NPL photomask standards-Methods ofMaterials Measurement in Micro-engineering, IEEE Colloquium,9,1-5,1995
    [120] Ritter M, Dziomba T, Kranzmann A and Koenders L: A landmark-based3D calibrationstrategy for SPM, Meas. Sci. Technol.18,404–14,2007
    [121] International Organization for Standardization (ISO)1995: Guide to the Expression ofUncertainty in Measurement, Geneva: ISO,1995
    [122] Dang Q.C., Yoo S. and Kim S.W.: Complete3-D self-calibration of coordinate measuringmachines, Cirp Annals,55(1),527-530,2006
    [123] Maurice Cox and Bernd Siebert: The use of a Monte Carlo method for evaluatinguncertainty and expanded uncertainty, Metrologia,43(4),178-188,2006
    [124] Wei Gao, Peisen Huang, Tomohiko Yamada, Satoshi Kiyono, A compact and sensitivetwo-dimensional angle probe for flatness measurement of large silicon wafers, PrecisionEngineering,26(1),396-404,2002
    [125]欧姆龙激光三角位移传感器:http://www.fa.omron.com.cn
    [126]华嶺直线电机:http://www.hleme.com/
    [127]法如激光跟踪仪:http://www.faroasia.com/home/cn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700