用户名: 密码: 验证码:
季冻区高速公路沥青混合料矿料级配优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速公路是经济发展的必然产物。我国自20世纪80年代开始建设高速公路以来,高速公路里程已达9.62万公里,成为推动我国经济健康可持续增长的重要产业之一。吉林省目前已建成2300多公里的高速公路,预计到2016年,省内道路将形成“五纵五横、三环四联”的高速公路网络。
     沥青混凝土路面以其表面平整、行车舒适、施工期短、养护维修简便等优良品质,成为我国高速公路主要的路面结构型式。但随着交通量的迅猛增长以及超载、重载情况的不断加剧,沥青混凝土路面的早期破坏现象越来越突出,导致路面的实际使用寿命大大低于设计寿命,高温车辙、水损害、反射裂缝等成为目前高速公路沥青路面的主要问题,直接影响了路面行车的安全性、舒适性和经济性。因此,预防路面早期破坏、提高路面耐久性已成为高速公路沥青路面设计的重点。
     对沥青路面而言,沥青混合料的配合比是影响其使用性能的重要因素。而混合料的配合比设计优化,实际上就是结合当地的具体条件,综合考虑各项路用性能指标寻求一个最优解的问题。沥青混合料是由沥青和矿质骨料两大要素构成的,相比于沥青而言,矿料级配则表现出更大的复杂性和多变性。我国现行规范以富勒最大密实理论为基础给出了矿料级配的推荐范围,该指标适用于全国,范围较宽,针对性差,很难满足每一个地区的具体要求。因此,如何在宽泛的矿料级配范围内,寻找出最优的级配,使沥青混合料各方面的路用性能均发挥到最优,从而延长高速公路沥青路面使用寿命,降低养护费用,提高社会与经济效益是个函待解决的问题。
     本文结合吉林省交通运输厅科技项目“吉草高速公路沥青路面配合比优化及施工控制研究”,立足为季冻区高速公路工程建设服务,主要开展以下几方面工作:
     首先,针对正交试验设计法进行沥青混合料矿料级配设计具有试验次数少、数据点分布很均匀、结论的可靠性好等优点,依据《公路沥青路面施工技术规范》提供的ATB-25及AC-20矿料级配范围,采用正交试验设计方法,按照三因素三水平设计试验级配曲线,进行体积指标分析及路用性能试验。同时,给出了正规方程法的计算模型,解决了常规正规方程法设计矿料级配时存在负数解的缺陷,为生产单位提供了矿料掺配比例的快速设计方法。通过正交试验设计结果的极差和方差分析,确定出沥青混合料矿料级配的最优级配范围和最佳目标级配。根据正交试验结果,提出了水损害危险区的概念,并给出了ATB-25水损害危险区的位置;同时指出了AC-20矿料级配中可能出现的级配禁区。
     其次,基于分形理论,结合正交试验设计结果,分析ATB-25及AC-20混合料矿料级配分维数值与马歇尔试验指标及路用性能指标的相关性,建立了分维数与混合料特征指标之间的关系。通过锁定分维数范围确定矿料目标级配,并与正交试验设计方法得到的最优级配进行对比分析,分析结果表明二者研究结论基本一致,采用分形理论进行目标最佳级配的选定可以有效减少试验工作量。
     随后,为了将室内研究成果更好地在实际工程应用中推广,保证工程建设的质量,采用专家咨询权数法(Delphi法),根据沥青混合料路用性能指标提出了级配组成设计的量化评估公式,对矿料级配进行优选;数据验证表明,应用该公式得到的优化级配与采用正交试验设计与分形方法得到的最优级配有很好的吻合度。同时,根据正交试验设计给出的矿料目标级配,将本文试验结果与吉草高速公路指挥部试验室、项目部驻地试验室的试验结果进行了成果对比分析验证,表明该优化方法具有较好的实际指导意义,沥青混合料的各项试验指标性能均高于规范要求。
     最后,结合本文给出的矿料级配推荐范围,采用可拓层次分析法对吉草高速公路工程中不同矿料级配沥青混合料的综合路用性能进行评价,建立了季冻区高速沥青混合料综合路用性能评价体系。通过评价结果,验证了本文的矿料级配设计方法是实用的、可靠的,能够用于指导季冻区沥青混合料的矿料级配设计。
The highway is the inevitable product of economic development. The highway mileage inChina has reached96,200kilometers since the1980s, and highway has become one of the mostimportant industries to promote the healthy and sustainable growth of China's economy.Nowadays, more than2300km of highways has been built in Jilin Province, and it can beexpected a highway net which is called "five vertical and five horizontal, tricycles quadruple"will be formed by2016.
     Asphalt pavement has become a major highway pavement structure because of its smoothsurface, comfortable driving, short construction period, super quality and easy to maintain andrepair. But with the rapid growth of traffic and overload, the early diseases of asphalt pavementare increasing, which results in that the actual life of pavement was lower significantly thandesign life. High temperature rutting, water damage and reflective cracking are the mainproblems in asphalt pavement, which directly affect the safety, comfort and economy. Therefore,preventing of early diseases, improving pavement durability has become the focus of AsphaltPavement Design.
     For asphalt pavement, proportion of the asphalt mixture is an important factor which affectsits performance. And in fact the optimization of mixture design is to seek an optimal solutionaccording to the specific local conditions. Asphalt mixture is made of asphalt and mineralaggregates, and comparing to asphalt, the aggregate gradation is more complex and variable.China's current codes provide us a recommended range based of Fuller theory, and this is appliedto all around our country, without specific requirements to any region. So, to find out theoptimum gradation to make a super asphalt pavement performance, low the maintenance costsand extend the life of asphalt pavement is a problem to be dealt with.
     The paper is based on the Technology Project of Study on the Optimization of the Asphaltmixture gradation and Construction Control of Department of Transportation of Seasonallyfrozen region. As follows:
     Firstly, the orthogonal design method for asphalt aggregate gradation design has theadvantages of fewer trials, evenly distributed data, and reliable conclusions, etc. Based on "asphalt pavement construction specifications", the volume index analysis and road performanceof ATB-25and AC-20aggregate gradation range are carried out according to the three factorsand three levels designed to test grading curve using orthogonal design. Meanwhile, the formalmodel equation method to solve the conventional mineral aggregate is worked out, the defect ofnormal equations is solved and provide a fast design method. By orthogonal design range andvariance analysis of the results, the asphalt aggregate gradation and optimal target gradation aredetermined. According to the results of orthogonal experiment, the concept of water damagedanger zone and the danger zone of water damage of ATB-25are proposed; and also, theprohibition range of AC-20aggregate gradation that may occur in the area is pointed out.
     Secondly, based on fractal theory, combined with orthogonal design results, correlationbetween analysis aggregate gradation fractal dimension value and the road performance ofATB-25and AC-20is established. By locking the fractal dimension of the target range, we candetermine the mineral aggregate gradation, the results show that the optimal level withorthogonal design was the same, and we can conclude that the target optimum gradation usingfractal theory selected can effectively reduce the work.
     Thirdly, in order to promote the indoor research in practical engineering applications, andensure the quality of construction, the method of expert advice weighting method (Delphimethod) is applied to establish assessment formula with the performance of pavement. And theresult shows that the method is well suited. Meanwhile, according to the orthogonal design goalsof any mineral aggregate gradation, the test results are compared with the laboratory test resultsof headquarters Project Department and field laboratory of JC expressway to verify theresults.And the results show us that the optimization method can indicate practice well.
     At last, combined with the aggregate gradation range recommended in this paper, themethod of extended AHP is applied to evaluate the road performance of different aggregategradation of asphalt pavement in JC expressway and evaluation system is established. By theresult, we can draw the conclusion that the method is practical, reliable, and can be used to guidethe asphalt mixture aggregate gradation design in seasonally frozen area.
引文
[1]《交通运输“十二五”发展规划》,中华人民共和国交通运输部.
    [2]《2013-2017年中国高速公路行业市场前瞻与投资战略规划分析报告》.
    [3]郑伟,蔡青城.高速公路沥青路面研究现状与发展趋势[J].山西建筑,2012,38(12):178-179.
    [4]邓学钧.路基路面工程(第三版)[M].北京:人民交通出版社,2008.
    [5]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [6]张登良.沥青路面工程手册[M].北京:人民交通出版社,2003.
    [7]李福普,沈金安.公路沥青路面施工技术规范实施手册[M].北京:人民交通出版社,2005.
    [8]中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40—2004)[M].北京:人民交通出版社,2004.
    [9] State of Georgia. Standard Specifications for Construction of TransportationSystems[M].2001.
    [10]Hveem,F. N.,Gradation of Mineral Aggregates for Dense Graded Technologists,Vol.11,1940.
    [11]N. W. MchLeod. Selecting the Aggregate Specific Gravity for Bituminous PavingMixtures,Proceedings of the Highway Rsearch Board,1957.
    [12]FreddyL. Roberts. Hot mixasphalt materials,mixture design,and construction[M]. NAPAEducation Foundation,Maryland,USA,1996.
    [13]程日盛.美国战略公路研究计划(SHRP)简介[J].河南交通科技,1999,19(5):35-38.
    [14]L. Allen Cooley Jr,B. D. Prowell and E. R. Brown. Issue Pertaining to thePermeabilty Characteristics of Coarse Graded Superpave Mixes,AAPT Vol.71,2002.
    [15]L.N.Mohammad,Ananda Herath,and Baoshan Huang. Evaluation of Permeamilityof Superpave Asphalt Mixtures,TRR No.1832,Bituminous Paving Mixtures,2003.
    [16]Bacchi,Christopher,Investigation of Over-Permeable Superpave Surface Mixesin North Carolina,2002.
    [17]Donald W. Christense,Jr. and Ramon F. Bonaquaist,Volumetric Requirementsfor Surperpave Mix Design,NCHRP Report567,2006.
    [18]严家伋.道路建筑材料[M].北京:人民交通出版社,1996.
    [19]Vavrik W R,Huber G,Pine W J,Carpenter S H,Bailey R.Bailey Method for GradationSelection inHot-Mix Asphalt Mixture Design. Transportation Research Board ofthe National Academies [R]. Transportation Research E-Circular No.E-C044,2002.
    [20]Brown E R, Cooley L A. Desiging Stone Matrix Asphalt Mixture for Rut-ResisstantPavements [R]. Report425,National Cooperative Highway Research Program,National Academy Press,washington D.C.,1999.
    [21]Mallick, Rajib B. Use of superpave gyratory compactor to characterize Hot-Mixasphalt [J].Transportation Research Record,1999,1681.
    [22]卢永贵.沥青玛蹄脂碎石混合料研究[D].西安:长安大学,2001.
    [23]袁万杰.多级嵌挤结构密实级配设计方法与路用性能研究[D].西安:长安大学,2004.
    [24]薛小刚.沥青混合料级配优化及配合比设计方法研究[D].西安:长安大学,2005.
    [25]王端宜,张肖宁,王绍怀.级配对沥青混合料体积特性的影响[J].华南理工大学学报,2002,30(3).
    [26]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003,(1).
    [27]陈忠达,袁万杰,郑东启.级配理论应用研究[J].重庆交通学院学报,2005,24(4),44-48.
    [28]张宗涛,刘中林,郝培文,张登良.间断密级配沥青混合料配合比设计方法[J].西安公路交通大学学报,2001,21(4).
    [29]盛晓军.沥青混合料骨架研究[D].西安:长安大学,2006.
    [30]Robert. Asphalts in Road Construction. London:2000,50-64.
    [31]Long-Term Pavement Performance Information. Revised DaraPave Version3.0[DB].FederalHighway Administration.2001.
    [32]J. Bonnot. Semi-rigid Pavements.PIARC Technical Committees.1991,16-19,56,90-104.
    [33]Canadian strategic Highwany Research. Pavement Structural Design practiceacross Canada[R].Canadian strategic Highway Research Program.2002.
    [34]张济忠.分形[M].北京:清华大学出版社,1995.
    [35]Carpnteri A,Chiaia B.Crack resistance behavior as a consequence of selfsimilarfracture topologies[J]. International Journal of Fracture,l996,23(76):327-340.
    [36]Carpnteri A. Fractal nature of material microstructure and size effects onapparent mechanical properties[J]. Mechanics of Materials,1994,34(18):89-101.
    [37]Brunetto M B. Scaling phenomena due to fractal contact in concrete and rockfractures[J].International Journal of Frcture,1999,112(9):221-338.
    [38]Feodor M B.Fractals and fractal scaling in fracture mechanics[J].International Journal of Fracture,1999,35(95):239-259.
    [39]Lees G. The rational design of aggregate gradings for dense asphalticcomposition. Proceeding of Asphalt Paving Technologies. Kansas City,USA1970,39:60-90.
    [40]林绣贤.论Superpave组成配比的特色[J].华东公路,2002,134(1):3-7.
    [41]Corte,J.F.,and Serfass,J.P.,“The French Approach to Asphalt Mixtures Design:A Performance-Related System of Specifications.”Proceedings Assoeiation ofAsphalt Paving Technologists,2000.
    [42]Oliver,J. W.,“Development and implementation of a new Australian asphaltmix design procedure.”Proceedings Association of Asphalt PavingTechnologists,2000.
    [43]Kajima Corp. Mix design of concrete for roller compacted concrete pavements.Annual Report of Kajima Institute of Construction Technology,1989,37,l-10.
    [44]OZAWA Koichi. Design method for mixing formulas of asphalt mixturesconsidering aggregate voids[J].Technical Research Laboratory,Obayashi RoadCorp.2-12-36Numakage,Saitama336-0027Japan Sekiyu Gakkai Shi,2002,45(2):70-76.
    [45]Goode,J. F. and Lufsey,L. S. a new graphical chart for evaluation aggregategradations. Proeeedings of the Assoeiation of Asphalt Paving Technologists,1962,31:176-207.
    [46]Perdomo D., Button J. W. Indentifying and Correcting Rut Susceptible AsphaltMixture.TRB[R]. Washington DC.TRR,1991,1259.
    [47]Yeggoni M.,Button J. W.,Zollinger D. G,Fractals of aggregates correlatedwith creep in asphalt concrete[R]. ASCE Journal of Transportation Engineering,1996,122(1),22-28.
    [48]Masad E,Button J W,Papagiannakis T. Fine aggregate angularity:automatedimage analysis approach[J]. Journal of the Transportation Research Board,2000,(1721):66-72.
    [49]Masad E,Jandhyala V K,Dasgupta N,et al. Characterization of air voiddistribution in asphalt mixes using X-ray computed tomography[J]. Journal ofMaterials in Civil Engineering,2002,14(2):122-129
    [50]Lan li, Paul Chan,etc. Quantitative Analysis of Aggregate Shape Based onFractal[J].ACI Materials Journal,July-August,1993.
    [51]Yeggoni M,Button J.W,Zollinger D.G,Fractals of aggregates correlated withcreep in asphalt concrete[J].ASCE Journal of Transportation Engineering.1996.122(1):112.
    [52]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003,140(1):82-84.
    [53]沙庆林.SAC和其他粗集料断级配的矿料级配设计方法[J].公路,2005,1:143-150.
    [54]沙庆林.沥青混凝土矿料级配的发展方向[J].铁道建筑技术,2007,4:1-8.
    [55]王富玉,沙庆林,张勇,戴文亭.VCADRF和VCAAC矿料级配检验方法在SAC13级配设计中的应用[J].吉林大学学报,2007,37(3):538-543.
    [56]张肖宁,郭祖辛,吴旷怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2):28-36.
    [57]王绍怀,张肖宁,吴旷怀.按集料体积设计沥青混合料级配组成[J].华南建设学院西院学报,1994,2(2):27-30.
    [58]张肖宁,王绍怀,吴旷怀,王端宜.沥青混合料组成设计的CAVF法[J].公路,2001,12:17-21.
    [59]吴旷怀,王绍怀.透水性沥青面层材料设计新法及应用[J].哈尔滨建筑大学学报,1996,29(4):111-115.
    [60]吴旷怀,叶国铮,邵定强,王绍怀.现场改性沥青体积法密断级配混合料在桥面铺装中的应用[J].华南建设学院西院学报,2000,8(1):26-31.
    [61]谭忆秋,张肖宁,郭祖辛.用体积法设计SMA混合料的配合比[J].哈尔滨建筑大学学报,1999,32(3):105-110.
    [62]Tan Yiqiu,Xu Huining,Shi Kunlei,Wu Jiantao. Effect of aggregate gradationon low temperature performance of asphalt paving mixtures[J].Journal of HarbinInstitute of Techuology(New Series),2011,18(1):105-110.
    [63]郝培文,张宗涛,张登良.间断密级配的设计方法[J].石油沥青,2000,14(4):11-16.
    [64]郝培文,徐金枝,周怀治.应用贝雷法进行级配组成设计的关键技术[J].长安大学学报(自然科学版),2004,24(6):1-6.
    [65]卢永贵,张登良.基于路用性能的沥青混合料体积设计方法[J].西安公路交通大学学报,2001,21(2):30-33.
    [23]袁万杰.多级嵌挤密实级配设计方法与路用性能研究[D].西安:长安大学,2004.
    [66]袁万杰,王钊.南方湿热地区沥青混合料配合比设计方法应用研究[J].公路,2007,2:101-107.
    [67]鲁正兰,孙立军,朱梦良.临长高速公路沥青混凝土路面表层级配优化[J].公路,2005,1:160-164.
    [68]周纯秀,谭忆秋,辛星.废橡胶颗粒沥青混合料级配组成的优化[J].合成橡胶工业,2006,29(5):368-370.
    [69]冯新军,郝培文,查旭东.TLA改性沥青混合料配合比设计研究[J].公路,2007,4:170-176.
    [70]徐金枝,郝培文,肖庆一.基于三级分散系的沥青混合料配合比设计方法[J].长安大学学报(自然科学版),2007,27(3):9-14.
    [71]郝孟辉,郝培文.机场AC-20ⅳ型沥青混合料设计优化研究[J].武汉理工大学学报,2010,32(18):58-62.
    [72]刘刚,郝培文,曹晓娟.基于级配理论的沥青混合料骨架结构研究[J].中外公路,2013,33(3):261-264.
    [73]葛折圣,黄晓明.沥青稳定碎石基层混合料矿料级配的优化[J].中国公路学报,2002,15(4):4-6.
    [74]江慧娟.沥青稳定碎石级配设计方法及性能研究[D].西安:长安大学,2006.
    [75]王俏梅,刘薇,周群华,何智勇.下面层密级配沥青稳定碎石(ATB-25)配合比试验研究[J].公路,2008,12:27-32.
    [76]魏建国.沥青稳定碎石技术特性研究[D].西安:长安大学,2008.
    [77]冯新军,郝培文.密级配沥青稳定碎石基层混合料级配设计方法[J].中国公路学报,2009,22(4):33-38.
    [78]董豫.沥青稳定碎石(ATB-30)下面层的应用技术研究[D].西安:长安大学,2010.
    [79]杨群.高速公路沥青稳定基层结构与设计方法研究[D].南京:东南大学,2001.
    [80]严二虎.沥青路面柔性基层材料设计方法与应用技术研究[D].南京:东南大学,2004.
    [81]袁宏伟.沥青稳定碎石基层材料设计方法研究.西安:长安大学,2003.
    [82]易湘舒.多年冻土地区沥青稳定碎石基层混合料路用性能研究.西安:长安大学,2003.
    [83]王玲娟.沥青稳定碎石基层混合料设计方法和路用性能研究.西安:长安大学,2004.
    [84]周海生.高等级道路沥青稳定基层的实践与思考.石油沥青,2005,19(6),33-37.
    [85]王谦源,张清.破碎体分形及其筛分布[J].青岛建筑工程学院学报,1994,15(1):59-66.
    [86]王谦源,张清.不等概率分形破碎及有限尺度破碎体分形[J].岩石力学与工程学报,1994,13(2):109-117.
    [87]李国强,邓学均.集料的分形级配研究[J].重庆交通学院学报,1995,14(2):38-43.
    [88]赵战利.基于分形方法的沥青路面抗滑技术研究[D].西安:长安大学,2005.
    [89]黄继成,黄彭.沥青混合料集料分形和性状相关性研究[J].同济大学学报(自然科学版),2006,32(12):1632-1636.
    [90]杨瑞华,许志鸿.密级配沥青混合料集料分形分维与路用性能的关系[J].土木工程学报,2007,40(3):98-104.
    [91]彭勇,孙立军.基于分形理论沥青混合料均匀性评价方法[J].哈尔滨工业大学学报,2007,39(10):1656-1659.
    [92]彭勇,孙立军,王元清,黄志义.沥青混合料级配集料的分形特性[J].华中科技大学学报(自然科学版),2007,35(12):80-82.
    [93]宿秀丽,李波,刘建勋,李晓娟.密级配沥青混合料矿料分布分形特征[J].长安大学学报(自然科学版),2011,31(2):12-16.
    [94]吕伟民,孙大权.沥青混合料设计手册[M]北京:人民交通出版社,2007.
    [95]李云雁,胡传荣.试验设计与数据处理(第1版)[M].北京:化学工业出版社,2005.
    [96]Douglas C. Montgomery Design and analysis of experiments[M].3rdedition,1998.
    [97]Taguchi G. The experimental design method[M].3rd. Tokyo:MaruzenPub,1976.
    [98]王万中.试验的设计与分析(第1版)[M].北京:高等教育出版社,2004.
    [99]吴国雄,杨锐,杨大田,袁传泯.真空密封法测定沥青混合料毛体积相对密度试验[J].重庆交通大学学报(自然科学版),2010,29(6):896-902.
    [100]姜鹏,仰建岗,杨香黄.细集料毛体积相对密度的测定[J].公路交通科技(应用技术版),2010,65(5):22-23.
    [101]Pellinen T K. The effect of volumetric properties on mechanical behavior ofasphalt mixtures[C]. Transportation Research Record,TRB,National ResearchCouncil,Washington,D.C.,2004.
    [102]Hafez I H. Development of a simplified asphalt mix stability procedure forused in superpave volumetric design[D]. College Park,MD.1997.
    [103]Abdullah W S, Obaidat M T, Abu-Sa'da N M. Influence of aggregate type andgradation on voids of asphalt concrete pavements[J]. Journal of Materialsin Civil Engineering,1998,10(2):76-85.
    [104]李立寒,曹林涛,郭亚兵等.初始空隙率对沥青混合料性能影响的试验研究[J].同济大学学报(自然科学版),2006,34(6):757-760.
    [105]林绣贤.再论HMA的矿料间隙率VMA[J].上海公路,2005,4:4-10.
    [106]曾辉.影响沥青混合料质量的三大体积指标[J].交通科技,2007,10:79-82.
    [107]徐慧宁,谭忆秋,李晓民,田庚亮.沥青混合料马歇尔稳定度与级配曲线特性关系的研究[J].交通科技,2008,8:213-217.
    [108]Zube,E. Compaction Studies of Asphalt Concrete Paving as Related to the WaterPermeabiliy Test.Paper Presented at41st Annual Meeting of the HigwayResearch Board, Washington,D.C.,1962.
    [109]梁锡三.沥青混合料设计及质量控制原理[M].北京:人民交通出版社,2008.
    [110]郝培文,王海林,包斌.SUPERPAVE级配禁区对沥青混合料性能影响[J].中外公路,2005,25(4):167-171.
    [111]龙起易,龙期威,穆在勤.理想的分形模型和实际的嵌套结构[J].物理,1994,23(3):158-164.
    [112]唐明,巴恒静.混凝土材料的拓扑学特征及分形特征的评价[J].哈尔滨建筑大学学报,2002,35(1):86-89.
    [113]陈国民,谭忆秋,王哲人等.沥青混合料级配曲线走向的分形研究[J].公路交通科技,2005,22(1):1-4.
    [114]蒋双全,张争奇,杨博.分形几何理论在沥青混合料研究中的应用[J].公路,2009,10:198-203.
    [115]褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004.
    [116]王艳丽.沥青混合料级配优化研究[D].西安:长安大学,2008.
    [117]王琛,潘峰.模糊物元模型在岩土边坡稳定性综合评价中的应用[J].水利水电技术,2004,35:34-36.
    [118]夏元友,李新平,朱瑞赓.基于人工神经网络的边坡稳定性工程地质评价方法[J].岩土力学,1996,17(3):27-33.
    [119]王东耀,折学森,叶万军.基于可拓工程法的黄土路堑边坡稳定性评价方法[J].地球科学与环境学报,2006,28(3):57-60.
    [120]吴大国,汪明武,张薇薇.基于模糊集对分析的黄土路堑边坡稳定性评价方法[J].岩土力学,2008,28:435-438.
    [121]Fernando Saboya Jr.,Maria da Glória Alves, Wendell Dias Pinto. Assessmentof failure susceptibility of soil slopes using fuzzy logic[J]. EngineeringGeology,2006,86:211-224.
    [122]Ya-Ching Liu,Chao-Shi Chen. A new approach for application of rock massclassification on rock slope stability assessment[J] Engineering Geology,2007,89:129-143.
    [123]杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700