用户名: 密码: 验证码:
大断裂区深埋隧道地应力特征及围岩稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力是影响隧道围岩稳定性的重要因素之一,而地应力受地质构造特别是断层的影响较为显著,局部应力集中会造成断层附近的主应力大小和方向均发生一定程度的改变,限于地应力实测存在经费高、孔深小且代表性有限的问题,对于深埋隧道区域应力场的把握,必须借助于其他手段实现。根据隧址区的地应力状态预测洞室开挖时的围岩应力,进而找出洞壁围岩压力值,对于支护措施的选择能够起到有益的指导作用。更加准确的施工阶段围岩分级是评价围岩稳定性的最佳手段,如何更好的考虑地应力的修正E影响则成为必不可少且至关重要的环节。本文以大坪山深埋特长公路隧道为例,通过研究断裂区深埋隧道地应力特征,分析地应力和围岩压力的关系,考虑地应力的修正影响对隧道进行现场围岩亚级分级,对隧道围岩的稳定性进行评价,主要研究内容及相关成果如下:
     (1)通过对隧址区的区域地质构造特征分析得出:青峰断裂带是由数十条逆冲断层、破碎带及脆韧性剪切带、逆冲推覆构造共同组成的脆—韧性逆冲推覆剪切带,主要经受近NS向的地壳起弯、突起构造、推覆体及伸展构造等发展演化阶段。结合沿线地质调查,隧址区发育大量的局部地质构造特征,如“X”型剪节理、羽状节理、逆断层及大量的区域型及小型褶皱构造等。
     (2)地应力主要受地质构造、地形地貌、地表剥蚀、地层岩性、地下水、温度等的影响。随着埋深增大,地应力呈近线性增长;但其受断层的扰动影响最大,主要表现在影响应力的分布和传递方面:在同一地质构造单元内,被断层或其它大结构面切割的各大块体中的地应力量值和方向均较一致,而靠近断裂或其它分离面附近,特别是在拐弯处、分叉处及两端,因为都是应力集中地带,其量值和方向均有较大变化。随着远离断层,地应力主方向逐渐趋于与区域主应力方向一致。
     (3)对沿线多组剪节理、断层及褶皱特征要素等进行量化统计,采用地质力学分析法分析区域古构造应力场。根据共轭剪节理压缩区所在平面方向及赤平投影等得到最大主应力的方向为NE向(31。)。根据断层性质与大小主应力的方向关系、褶皱构造的轴面方向等得出区域最大主应力的方向为NE-NW向。结果表明:三种手段的地质力学分析法所得的区域构造应力场的方向是一致的,能较为准确的反映区域古构造应力场特征。
     (4)采用水压致裂法对两个钻孔进行地应力测试,测试孔ZK10、ZK11与断层F8、F10、F11之间距离无论从地表到地下直到洞轴线附近,均相距较近,受断层影响其应力变化较为明显,会出现局部应力集中,不能完全代表区域地应力特征。测试结果表明:水平主应力和自重应力均随深度的增加而迅速增大,近线性增长;各测试孔侧压力系数均大于1,工程场区地应力以构造应力为主;最大主应力方向为N14°-19°E,表明测孔附近地应力以NE向挤压为主,且现场实测与区域构造演化及地质力学分析所得地应力方向大体是一致的。
     (5)通过建立三维地质模型,计算在自重应力、水平X、Y方向挤压和XY面剪切构造等4种工况下的构造应力场;用最小二乘法求解对应的回归系数及实测点的回归计算值,剔除不合理的测点,将计算值与实测值进行对比分析,采用Sufer软件绘制隧道洞轴线主应力等值线图,得出整个工程区特别是重要工程部位的回归初始地应力场。计算结果表明:测点回归值与实测值大部分吻合较好,反演回归得到的地应力场是合理的,符合实际的初始地应力场分布规律。结果表明:水平主应力和自重应力随深度呈近似线性增长,侧压力系数呈现出随埋深而逐渐减小的趋势。应力的分布与地形地貌关系密切,在浅部,应力受地形地貌影响较大;随着埋深增大,地形地貌的影响相对较小;地形变化较大时,其应力等值线相对较密,说明应力变化梯度大。应力等值线受地质构造的影响较大,在断层及其影响带中,应力等值线出现突变现象,等值线密度加大。总体上,隧址区以水平应力场为主导。
     (6)采用定性分析和强度应力比定量判别大坪山隧道设计高程处的地应力状态,得出隧道设计高程处整体属于低~中等应力水平,局部为高~极高应力水平。已开挖页岩段出现的软岩大变形现象和所处的高地应力状态密切相关,验证了前期区域地应力场回归分析的准确性,对后续可能会出现的高地应力问题,需加强安全监测与防护,加强围岩的临时支护和超前地质预报。
     (7)以大坪山隧道Ⅳ级及以下围岩段部分监测断面为例,采用开挖应力释放率模型分析洞壁残余应力值。结合现场实测的拱顶下沉和水平收敛位移曲线,采用指数拟合方法对实测值进行拟合,经过误差分析,证明此方法是切实可行和相对准确的。结合五个典型监测断面,将埋设前的丢失位移及掌子面通过前的位移进行拟合预测,根据水平和竖直向地应力分量值,计算其在不同的释放率条件下的结构荷载,结果表明:Kl0=0.25时的综合应力残留率K明显大于Kl0=0.35时的K值。说明隧道开挖过程中掌子面前方发生的位移越小,应力释放就越少,作用在结构上的最终荷载越大。
     (8)采用修正的Fenner公式计算初始地应力和洞壁径向位移条件下的围岩压力值,计算得到横向和竖向围岩压力理论值。
     (9)在现场埋设压力盒进行围岩压力测试,按照荷载承担比例换算得到总的围岩压力值,并和两种理论计算结果对比分析,结果表明:计算值与实测值之间均有或多或少的差距,因为围岩压力量值大小受多种因素的影响和制约,而各种围岩压力计算理论仅能考虑一种或者儿种影响因素,导致围岩压力计算值与实测值之间的差异。所以,对于隧洞开挖后的洞壁围岩压力的获取应该不仅仅依靠于理论计算或者现场实测,而是将多种方法结合起来,进行综合对比验证。
     (10)地应力侧压力系数的大小影响隧道的位移、应力分布特征及围岩破坏形式。随λ的增大,隧道拱顶底垂直方向位移减小,而水平方向位移增大,且随埋深的增加其影响更加显著。隧道围岩的主应力随λ的增大而增大,隧道拱顶、底最大主应力均处于压应力状态,其值随着侧向压力以及埋深的增加而减小。当λ较小时,裂纹以垂直方向开裂为主,随着λ的增大转变为以水平方向开裂为主。
     根据三个主应力的大小关系,将地应力分为三个类型,即σH、σHV、σV型。对于不同的地应力类型,最大主应力的方向与洞轴线的夹角α不同,其对隧道围岩稳定性的影响程度各异,分为有利、一般和不利三种状态。
     (11)根据最大主应力方向与洞轴线夹角对隧道围岩稳定性影响的类别,结合高低地应力状态的定量指标值,综合考虑地应力对围岩分级的修正影响,给出相应的修正系数值,对隧道进行围岩亚级分级。结果表明:现场开挖揭示的围岩级别与前期设计围岩级别有一定的偏差,大多是高或低半个等级,但局部页岩地段相差达两个级别,这与该段所处的高~极高地应力状态密切相关。
     (12)对大坪山隧道沿线揭露的围岩级别和实际级别相差较大地段及其表征的变形破坏特征进行分析,结合现场地质调查和施工方法等,对围岩的稳定性进行整体评价,结果表明,隧道围岩在进口灰岩白云岩段较稳定,但在出口页岩段受到的影响较大。部分地段发生了大变形、塌方和局部掉块现象,围岩的稳定性较差。这些均跟围岩段所处的高地应力状态有很大的关系。并提出未开挖段可能出现的变形或破坏问题,应在后续工作中加强监测和超前预报。
As one of the important factors of surrounding rock stability of tunnel, in situ stress is affected by geological structures, especially faults, with which the gradients and directions of principle stresses nearby will change because of local stress concentration. Limited by funding, swallow depth of hole and representation, characteristics of the regional in situ stress field in deeply buried tunnel have to be obtained by other means. Predicting the stress of surrounding rock during excavation according to the in situ stress, and then the peripheral rock pressure, can play a useful role in guiding the choice of supporting measures. More accurate rock classification during construction phase is the best evaluating means of the surrounding rock stability, and the correction effects of in situ stress become essential and crucial. Take the highway tunnel of Daping mountain with great length and depth for example, characterizes of in situ stress are analyzed, and then the relationship with peripheral rock pressure, and rock mass sub-classification and the surrounding rock stability evaluation is implemented during tunnel construction with considering the in situ stress correction effects. The main contents and conclusions are as follows:
     (1)The regional geological structural features of the tunnel site show that the Qingfeng fault, a brittle-ductile thrust nappe shear zone, composed by dozens of thrust faults and brittle-ductile shear zone and thrust nappe structure, has experienced four formation and evolution phases, including crust on bending, protruding structure, nappe and stretching structure, with overall NS trending. Combined with geological survey along Qingfeng fault, a large number of local geological structure features, including "X" conjugate shear joints, multiple faults and folds, exposed along the tunnel site.
     (2)In situ stress is mainly influenced by the geological structure, topography, surface erosion, lithology, groundwater, temperature, etc. It grows nearly lineally with the increased depth, while it is disturbed by faults evidently, which affect the stress distribution and transfer. Within the same geological units, the magnitudes and directions of in situ stress are consistent during each large cutting faults or other structural surfaces. Near the fractures or other separation surfaces, especially in the corners, at the bifurcations and both ends, where are stress concentration areas, the magnitudes and directions change greatly. Faraway from the faults, the principle directions of the in situ stresses are becoming more and more consistent with regional principal stress directions.
     (3)Thorough quantitative statistics of characteristics of multiple sets of conjugate shear joints, faults and folds, geomechanical analysis methods are used to analyze the regional ancient tectonic stress field. Combined with stereographic projection software Dips, the plane direction of conjugate shear joint compression zone represents the direction of maximum principal stress, which is NE trending (31°). According to the relationship between fault properties and directions of principle stresses, the directions of the axial planes of the folds, the direction of maximum principal stress in this area is NE-NW trending. The results show that, the directions of regional tectonic stress field are consistent by the three geotechnical analysis means, which can accurately reflect the features of the regional pale tectonic stress field.
     (4)The hydraulic fracturing method is used in two drillings for in situ stress measurement in engineering district. The distances between ZK10, ZK11and faults, e.g. F8, F10and F11, are nearer whether from the surface to the underground or near the axis, and in situ stresses chang obviously and turn to be local stress concentration, which cannot entirely represent the characteristics of the regional stress. The test results show that horizontal principal stresses and gravitational stresses increase lineally with increasing depth rapidly, and the lateral pressure coefficients of drillings are greater than1within the test depth range, indicating that the tectonic stress is integral part of the stress field in the project area. The orientation of σH is N14°~19°E, showing that in situ stress is mainly formed by squeezing in the NE direction, which is consistent overall in combination with regional geological tectonic evolution, analysis of geological structure characteristics, geomechanical analysis.
     (5)A3D FE computational model is established to compute in situ stress in four cases, including gravity, tectonic stress field for horizontal extrusion with X、Y direction and shear structure with XY plane. And the regression coefficients are solved using the least square method, and then the calculation values of the measured points with unreasonable point eliminated. The principal stress isolines of tunnel axis are plotted using SUFER software, eventually the regression stress field of the whole area especially important engineering parts. Through comparison between the calculated and measured values of the drilling points, it is found that these two are similar, which suggest that the in situ stress field obtained by regression is reasonable and conforms to the historical background of geological structure. The conclusions are drawn as follows:The values of principle stresses are growing approximately lineally with depth, and the distribution of stress is closely related in topography, which has great influence on stress in the shallow. As the buried depth increases, its influence is relatively minor. When terrain changes greatly, the contour of the stress is relatively close, and the change gradient is great. In addition, the influence of the geological structure is also great, in the fault and its influence in the belt, stress isoline appears abrupt and the contour density increases. In general, tectonic stress is integral part of the stress field in the project area.
     (6)Qualitative analysis, and quantitative discriminate are used comprehensively to identify the in situ stress state of the design elevation of Daping mountain tunnel, with the results that overall are low to moderate stress levels, locally are high to very high stress levels. The large deformation of shale has close relationship with its high stress state, which verifies the accuracy of regression analysis of the in situ stress field. To the problems induced by high in situ stress follow-up, there is the need to strengthen the security monitoring and protecting, strengthening the temporary support and advanced geological forecast of the surrounding rock.
     (7)Take the partly monitoring sections of rock classification with IV and below level of Daping mountain tunnel for example, the excavation stress release rate model is used to analyze the residual stress values of the tunnel wall. Vault sink and horizontal convergence displacement values are fitted by exponential fitting method, which has proved to be a feasible and relatively accurate method after error analysis. It is used in five monitoring sections, and displacements including missing displacement before buried and ahead the tunnel face are obtained. According to the horizontal and vertical in situ stress component values, the structural loads are calculated in different release rate conditions. The results showed that:K, the integrated stress residual rate, is greater significantly when the value of Kl0is0.25than when that is0.35.
     (8) Based on in situ stress and radial displacement (the stable value of displacement fitted using a cubic polynomial), the peripheral rock pressure is obtained with modified Fenner formula. The theoretical values of horizontal and vertical peripheral rock pressure is obtained respectively.
     (9)The peripheral rock pressure has been tested using embedding pressure box, and was transferred to the total values according to load ratio conversion, and the vertical and horizontal values. The measurements of peripheral rock pressure are compared with the theoretical calculation results, and the results show that, because of the values of pressure are influenced and constrained by many factors, while the calculation theory methods consider only limited factors, all these lead that there are several differences between calculated and measured values. Therefore, the obtaining of more precise values of the peripheral rock pressure should not only rely on measurements or theoretical results, but also combine a variety of methods, and to compare and verify the accuracy of the values comprehensively.
     (10)The values of the coefficient of lateral pressure of in situ stress affect the displacements, the distribution characteristics of stress and the failure modes of surrounding rock of tunnel. With λ increasing, the vertical displacements of the arch and bottom of the tunnel decreases, whereas the horizontal displacement increases, and its impact increases evidently with the depth increasing. The principle stresses of surrounding rock increas with λ increasing, and the maximum principal stresses of the arch and bottom of the tunnel are in compressive states, and its magnitudes decrease with increasing lateral pressure and the depth. When the value of λ is small, cracks appear to be mainly in the vertical direction, while they turn to be in a horizontal direction mainly with λ increasing.
     According to the relationships among the values of the three principal stresses, the in situ stress is divided into three types, namelyσH、σHV、σV. For a different type of in situ stress, the angle between direction of maximum principal stress and the hole axis is different, with varying degrees of surrounding rock stability of tunnel, which are divided into three states, that is favorable, general and unfavorable.
     (11)Combined with category of surrounding rock stability with quantitative indicators values of the state of in situ stress, the correction coefficients of in situ stress are adjusted for the surrounding rock sub-classification, and it is used in tunnel site. The results show that the rock classification of the construction deviated with the designed classification in some degree, mostly are higher or lower half degree. However, the difference of classification in local surrounding rock of shale is nearly two levels, which are closely related with the high to very high in situ stress state.
     (12)Analyzing the deformation and failure characteristics of rock sections with great difference of surrounding rock classification along the Daping mountain tunnel, and combined with geological survey and construction methods, the stability of the surrounding rock is evaluated integratedly and some conclusions are drawn as follows. The surrounding rock in the imported limestone and dolomite segments is relatively stable, while the export shale segments are affected severely, with large deformation, collapse and local rock breakout in some sections. All these have a great relationship with high in situ stress state. It is proposed that the excavation segment, where may appear deformed or destruction phenomenon, should be strengthened monitoring and advanced geological forecast at the follow-up work.
引文
[1]Hajiabdolmajida V, Kaiser P K,. Martin C D. Modeling brittle failure of rock[J]. International Journal of Rock Mechanics & Mining Sciences,2002,(39):731-741.
    [2]BAGDE M N, PETOR A V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2):237-250.
    [3]张祉道.家竹箐隧道施工中支护大变形的整治[J].世界隧道,1997(1),7-16.
    [4]徐则民,黄润秋,王士天.隧道的埋深划分[J].中国地质灾害与防治学报,2000,11(4):5-10.
    [5]Read R S.20 years of excavation response studies at AECL's underground research laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8): 1251-1275.
    [6]MARTINA C D, KAISERB P K. Stress, instability and design of underground excavations[J]. International Journal of Rock Mechanics & Mining Sciences,2003,40: 1027-1047.
    [7]Martino J B, Chandler N A. Excavation-induced damage studies at the underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(8):1413-1426.
    [8]C. Ljunggren, Yanting Chang, T. Janson, R, Christiansson. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics & Mining Sciences 40(2003):975-989.
    [9]Chang Soo-Ho, Lee Chung-In, Lee Youn-Kyou. An experimental damage model and its application to the evaluation of the excavation damage zone[J]. Rock Mechanics and Rock Engnieering,2007,40(3):245-285.
    [10]Maejima T, Morioka H, Mori T. Evaluation of loosened zones on excavation of a large underground rock cavern and application of observational construction techniques[J]. Tunnelling and Underground Space Technology,2003,18 (2/3):223-232.
    [11]梁瑶.深切河谷地区的地应力场研究和高边坡稳定性评价[博士学位论文].成都:西南交通大学,2008.
    [12]J. A. Hudson, F. H. Cornet, R. Christiansson. ISRM Suggested Methods for rock stress estimation-Part 1:Strategy for rock stress estimation. International Journal of Rock Mechanics and Mining Sciences,40 (2003):991-998.
    [13]SJOBERG J, CHRISTIANSSON R, HUDSON A. ISRM suggested methods for rock stress estimation-part 2:overcoring methods[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(7/8):999-1010.
    [14]C. Ljunggren, Yanting Chang, T.Janson, et al. An overview of rock stress measurement methods. International Journal of Rock Mechanics and Mining Sciences,40 (2003):975-989.
    [15]Chandong Chang, Lisa C. McNeill, J. Casey Moore, et.al. In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures. Geochemistry, Geophysics, Geosystems.10.1029/2010.
    [16]N. Bozkurt Ciftci. In-situ stress field and mechanics of fault reactivation in the Gediz Graben, Western Turkey. Journal of Geodynamics,2012.
    [17]肖本职,罗超文,刘元坤.鄂西地应力测量与隧道岩爆预测分析[J].岩石力学与工程学报,2005,24(24):4472-4477.
    [18]康勇,李晓红,王青海,等.隧道地应力测试及岩爆预测研究[J].岩土力学,2005,26(6):959-963.
    [19]刘允芳,刘元坤.单钻孔中水压致裂法三维地应力测量的新进展[J].岩石力学与工程学报,2006,25(增2):3816-3822.
    [20]张延新,宋常胜,蔡美峰,等.深孔水压致裂地应力测量及应力场反演分析[J].岩石力学与工程学报,2010,29(4):778-786.
    [21]K. Matsuki, S. Nakama, T. Sato. Estimation of regional stress by FEM for a heterogeneous rock mass with a large fault[J]. International Journal of Rock Mechanics & Mining Sciences.46 (2009):31-50.
    [22]H. Konietzky, L. te Kamp, H. Hammer, S. Niedermeyer. Numerical modelling of in situ stress conditions as an aid in route selection for rail tunnels in complex geological formations in South Germany[J]. Computers and Geotechnics,28 (2001):495-516.
    [23]J.A. de Mello Francoa, J.L. Armelina, J.A.F. Santiago, J.C.F. Telles, W.J. Mansur. Determination of the natural stress state in a Brazilian rock mass by back analyzing excavation measurements:a case study[J]. International Journal of Rock Mechanics & Mining Sciences 39 (2002):100-1032.
    [24]Upendra. K. Singh, Bharat. C. Sahoo. Computing the 3D in-situ stress field from shut-in pressure data using statistical regression[J]. Geotechnical and Geological Engineering 18(2000):119-137.
    [25]M. Cai, P.K. Kaiser, H. Morioka, M. Minami, T. Maejima, Y. Tasaka, H. Kurose. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. International Journal of Rock Mechanics & Mining Sciences,44 (2007):550-564.
    [26]V. Saati, A. Mortazavi. Numerical modelling of in situ stress calculation using borehole slotter test[J]. Tunnelling and Underground Space Technology,26(2011):172-178.
    [27]柴贺军,刘浩吾,王明华.大型电站坝区应力场三维弹塑性有限元模拟与拟合[J].岩石力学与工程学报,2002,21(9):1314-1318.
    [28]邱祥波,李术才,李树忱.三维地应力回归分析方法与工程应用[J].岩石力学与工程学报,2003,22(10):1613-1617.
    [29]胡斌,冯夏庭,黄小华,等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J].岩石力学与工程学报,2005,24(22):4055-4064.
    [30]白世伟,韩昌瑞,顾义磊.隧道应力扰动区地应力测试及反演研究[J].岩土力学,2008,29(11):2887-2891.
    [31]赵德安,李国良,陈志敏,等.乌鞘岭隧道三维地应力场多元有限元回归拓展分析[J].岩石力学与工程学报,2009,28(增1):2687-2694.
    [32]张建国,张强勇,杨文东,等.大岗山水电站坝区初始地应力场反演分析[J].岩土力学,2009,30(10):3071-3078.
    [33]何江达,谢红强,王启智,等.官地水电站坝址区初始地应力场反演分析[J].岩土工程学报,2009,31(12):166-171.
    [34]汪波,何川,吴德兴.深埋特长公路隧道三维初始地应力场的回归分析[J].公路交通科技,2010,27(12):112-117.
    [35]于崇.大连地下石油储备库地应力场反演分析[J].岩土力学,2010,3 1(12):3984-399.
    [36]孙祥,杨子荣,赵忠英.主应力方向地质力学分析法的应用[J].岩土工程学报,2006,28(1):81-83.
    [37]孙卫春,闵宏,王川婴.三维地应力测量与地质力学分析[J].岩石力学与工程学报,2008,27(增2):3778-3784.
    [38]高峰.地应力分布规律及其对巷道围岩稳定性影响研究[博士学位论文].徐州:中国矿业大学,2009.
    [39]张奇华,钟作武,龚壁新.施加边界位移产生纯剪应力及反分析应用[J].长江科学院院报,2000,17(2):34-36.
    [40]束加庆,任旭华,张继勋,等.隧洞工程区三维初始地应力场的回归分析[J].红水河.2006,25(1):4649,69.
    [41]余志雄,周创兵,陈益峰,等.基于v-SVR和GA的初始地应力场位移反分析方法研究[J].岩土力学,2007,28(1):151-157.
    [42]郭明伟,李春光,王水林,等.优化位移边界反演三维初始地应力场的研究[J].岩土力学,2008,29(5):1269-1274.
    [43]闫相祯,王保辉,杨秀娟,等.确定地应力场边界载荷的有限元优化方法研究[J].岩土工程学报,2010,32(10):1485-1490.
    [44]周家文,杨兴国,吴震宇,等.浅埋岩体隧洞初始地应力场位移反分析方法研究[J].四川大学学报(工程科学版),2010,42(1):3541
    [45]胡斌.深切峡谷区大型地下洞室群围岩稳定性的动态数值仿真研究[博士学位论文].成都:成都理工大学,2001.
    [46]王明华.金沙江溪洛渡水电站地下洞室围岩分类及稳定性评价[硕士学位论文].成都:成都理工大学,2001.
    [47]李仲奎,戴荣,姜逸明.FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报,2002,21(增2):2387-2392.
    [48]李攀峰.大型地下洞室群围岩稳定性工程地质研究-以黄河拉西瓦水电站地下厂房洞室群为例[博士学位论文].成都:成都理工大学,2004.
    [49]乔国文.大跨度、深埋地下洞室群围岩稳定性工程地质研究—以锦屏二级水电站洞室群为例[硕士学位论文].成都:成都理工大学,2005
    [50]戴荣,李仲奎.三维地应力场BP反分析的改进[J].岩石力学与工程学报,2005,24(1): 83-88.
    [51]金长宇,马震岳,张运良,等.神经网络在岩体力学参数和地应力场反演中的应用[J].岩土力学.2006,27(8):1263-1266.
    [52]付成华,汪卫明,陈胜宏.溪洛渡水电站坝区初始地应力场反演分析研究[J].岩石力学与工程学报,2006,25(11):2305-2312.
    [53]谢红强,何江达,肖明砾.大型水电站厂区三维地应力场回归反演分析[J].岩土力学.2009,30(8):2471-2476.
    [54]周华,陈胜宏.高拱坝坝址区初始地应力场的二次计算[J].岩石力学与工程学报,2009,28(增4):767-774.
    [55]J.A. de Mello Francoa, J.L. Armelina, J.A.F. Santiago, J.C.F. Telles, W.J. Mansur. Determination of the natural stress state in a Brazilian rock mass by back analyzing excavation measurements:a case study[J]. International Journal of Rock Mechanics & Mining Sciences,39 (2002):100-1032.
    [56]K. Matsuki, S. Nakama, T. Sato. Estimation of regional stress by FEM for a heterogeneous rock mass with a large fault[J]. International Journal of Rock Mechanics & Mining Sciences,46 (2009):31-50.
    [57]Y Jiang, H. Yoneda, Y Tanabashi Theoretical estimation of loosening pressure on tunnels in soft rocks[J]. Tunneling and Underground Space Technology,2001(16):99-105.
    [58]马念杰,张益东.圆形巷道围岩变形压力新解法[J].岩石力学与工程学报,1996,15(1):84-89.
    [59]范文,俞茂宏,石耀武,等.围岩塑性松动压力Caquot公式的推广和改进[J].长安大学学报(地球科学版),2003,25(1):33-36.
    [60]陈志敏,赵德安,李国良,等.高地应力软弱围岩铁路隧道的衬砌压力[J].中国铁道科学,2011,32(6):55-62.
    [61]陈志敏.高地应力软岩隧道围岩压力研究和围岩与支护结构相互作用机理分析[博士学位论文].兰州:兰州交通大学,2012.
    [62]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,17(3):239-247.
    [63]傅鹤林,韩汝才,朱汉华.破碎围岩中单拱隧道荷载计算的理论解[J].中南大学学报(自然科学版),2004,35(3):478-483.
    [64]陆文超,钟政,王旭.浅埋隧道围岩应力场的解析解[J].力学季刊,2003,24(1):50-54.
    [65]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.
    [66]Dasari G. R., Rawlings, C. G., Bolton, M. D. Numerical Modelling of a NATM Tunnel Construction in London Clay [A]. Geotechnical Aspects of Underground Construction in Soft Ground [C]. Balkema, London, UK,1996:491-496.
    [67]Oreste, P. P., Peila, D., Poma, A. Numerical Study of Low Depth Tunnel Behavior [A]. World Tunnel Congress on Challenges for the 21st Century [C]. Balkema, Oslo, Norway, 1999:155-162.
    [68]Swoboda, G, Abu-Krisha, A. Three-dimensional numerical modeling for TBM tunneling in consolidated clay[J]. Tunneling and Underground Space Technology,1999,14(3):327- 333.
    [69]Marcio Munizde Farias, Alvaro Henrique Moraes Junior, Andre Pachecode Assis. Displacement control in tunnels excavated by the NATM:3-D numerical simulations[J]. Tunneling and Underground Space Technology,2004(19):283-293.
    [70]蒋树屏,胡学兵.云南扁平状大断面公路隧道施工力学响应数值模拟[J].岩土工程学报,2004,26(2):178-182.
    [71]贾剑青.复杂条件下隧道支护体时效可靠性及风险管理研究[博士学位论文].重庆:重庆大学,2006.
    [72]Xu Zhenxiang. Tunnel Design Method Using Field Measurement Data[A]. ISRM Symposium:Design and Performance of Underground Excavation[C]. London, England 1984:21-229.
    [73]徐林生.大断面高速公路隧道复合式衬砌结构受力监测分析[J].重庆交通大学学报(自然科学版),2009,28(3):528-530.
    [74]赵占厂,谢永利,杨晓华,等.黄土公路隧道衬砌受力特性测试研究[J].中国公路学报,2004,17(1):66-69.
    [75]王明年,郭军,罗禄森,等.高速铁路大断面深埋黄土隧道围岩压力计算方法[J].中国铁道科学,2009,30(5):53-57.
    [76]陈建勋,姜久纯,罗彦斌,等.黄土隧道洞口段支护结构的力学特性分析[J].中国公路学报,2008,21(5):75-79.
    [77]蒋洪胜,侯学渊.软土地层中的圆形隧道荷载模式研究[J].岩石力学与工程学,2003,22(4):651-658.
    [78]李远.大型洞室群地应力测试及基于统一强度理论的稳定性分析[博士学位论文].北京:北京科技大学,2008.
    [79]Barton N. Some new Q-value correlations to assist in site characterization and tunnel design[J]. Int. J. Rock Mech. & Min. Sci. Geomech. Abstr.,2002,39(2):185-216.
    [80]WJ.Gale. Strata control utilising rock reinforcement techniques and stress control methods, in Australian coal mines [J].Mining Engineer (London),1991,150(352):247-253.
    [81]鲁岩.构造应力影响下的围岩稳定性原理及其控制研究[博士学位论文].徐州:中国矿业大学,2008.
    [82]解联库,李华炜,杨天鸿,等.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3):54-57.
    [83]唐效敏.构造应力区的巷道围岩变形分析与维护机理研究[J].山东煤炭科技,2009(3):95-96.
    [84]Kwon S, Lee C S, Cho S J, etal. An investigation of the excavation damaged zone at the KAERI underground research tunnel[J]. Tunneling and Underground Space Technology, 2009,24(1):1-13.
    [85]姜耀东,刘文岗,赵毅鑫,等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1861.
    [86]S. Stiros, V. Kontogianni. Mean deformation tensor and mean deformation ellipse of an excavated tunnel section[J]. International Journal of Rock Mechanics and Mining Sciences, 2009,46(8):1306-1314.
    [87]宋志敏,程增庆.构造应力区软岩巷道围岩变形与控制[J].矿山压力与顶板管理,2005(4):48-50.
    [88]孔德森,蒋金泉.深部巷道围岩在复合应力场中的稳定性数值模拟分析[J].山东科技大学学报(自然科学版),2001,20(1):68-70.
    [89]吴德超.湖北谷城观音坪地区多重滑脱-推覆及构造变形[J].成都地质学院学报.1993,20(03):59-66.
    [90]雷世和,唐桂英.扬子地台北缘武当推覆体结构模式及成因分析[J].河北地质学院学报,1996,19(1):25-31.
    [91]Fairhurst, C.,1986, In situ stress determination-an appraisal of its significance in rock mechanics, In:Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lulea,3-17.
    [92]Hudson J. A. and Cooling C. M., In situ rock stresses and their measurement in the UK-Part I, The current state of knowledge. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1988(25):363-370.
    [93]Hudson J. A. and Harrison J. P. Engineering rock mechanics:an introduction to the Principals, Elsevier, Oxford,1997.
    [94]苏生瑞.断裂构造对地应力场的影响及其工程意义[博士学位论文].成都:成都理工大学,2001.
    [95]沈海超,程远方,赵益忠,等.基于实测数据及数值模拟断层对地应力的影响[J].岩石力学与工程学报,2008,27(增2):3985-3990.
    [96]黄醒春,夏小和,沈为平.断层周边应力场的原位实测及数值反演[J].上海交通大学学报,1998,32(12):55-59.
    [97]孙宗颀,张景和.地应力在地质断层构造发生前后的变化[J].岩石力学与工程学报,2004,23(23):3964-3969.
    [98]景锋.地应力与岩石弹性模量随埋深变化及相互影响[C].第十一次全国岩石力学与工程学术大会论文集,2010:69-74.
    [99]K. Matsuki, S.Nakama, T.Sato. Estimation of regional stress by FEM for a heterogeneous rock mass with a large fault. International Journal of Rock Mechanics and Mining Sciences,46 (2009):31-50.
    [100]任玉京,李刚,赵钦忠,等.CAD绘图功能在赤平投影中的应用[J].山东科技大学学报,2006,25(1):21-24.
    [101]王珂,戴俊生.地应力与断层封闭性之间的定量关系[J].石油学报,2012,33(1):74-81.
    [102]中国科学院武汉岩土力学研究所.湖北省谷竹高速公路大坪山隧道ZK10(补)、ZK11(补)孔地应力测试报告[R].2010.
    [103]刘允芳.岩体地应力与工程建设[M].武汉:湖北科学技术出版社,2000.
    [104]A. G. Protosenya. Foliation of Rock Mass around Mine Workings in Mining Rockburst-Hazardous Deposits[J]. Journal of mining science,2004,40(2):113-122.
    [105]熊平华,苏凯,钱军,等.小范围区域内初始地应力场的多元线性回归[J].水电能源科学,2010,28(6):39-42.
    [106]郭怀志,马启超,薛玺成,等.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [107]王薇,王连捷刘,乔子江.三维地应力场的有限元模拟及其在隧道设计中的应用[J].地球学报,2004,25(5):587-258.
    [108]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    [109]Asadollahi, Pooyan. Limiting equilibrium versus BS3D analysis of a tetrahedral rock block[J]. International Journal for Numerical and Analytical Methods in Geomechanics, v 36, n 1, p 50-61, January 2012.
    [110]程滨,王水林,李春光.采用位移边界条件拟合初始地应力场的研究[J].矿业研究与开发,2006,26(1):28-30.
    [111]尤哲敏,陈建平,徐颖,等.大坪山隧道初始地应力场有限元回归分析[J].公路交通科技,2012,29(8):94-98.
    [112]戴武奎.马鞍山浅埋隧道围岩压力监控量测研究[硕士学位论文].吉林:吉林大学,2007.
    [113]严宗雪.大断面隧道施工的应力路径与空间效应研究[博士学位论文].广州:华南理工大学,2011
    [114]JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004.
    [115]JTG/TD70-2010.公路隧道设计细则[S].北京:人民交通出版社,2004.
    [116]龚建伍.扁平大断面小净距公路隧道施工力学研究[博士学位论文].上海:同济大学,2008.
    [117]丁春林,朱世友,周顺华.地应力释放对盾构隧道围岩稳定性和地表沉降变形的影响[J].岩石力学与工程学报,2002,21(11):1633-1638.
    [118]姚军,王国才,陈祥林.地应力释放对隧道围岩稳定性影响的研究[J].浙江工业大学学报,2010,38(6):629-633.
    [119]李俊鹏.开挖过程中隧洞围岩应力释放规律及软岩支护时机研究[硕士学位论文].西安:西安理工大学,2007.
    [120]赵岩.大断面隧道施工过程荷载释放规律研究[硕士学位论文].济南:山东大学,2011.
    [121]曹光辉.不同应力释放率对隧道位移及应力影响的数值模拟[硕士学位论文].兰州:兰州交通大学,2012.
    [122]罗俐.深埋隧道围岩应力释放规律研究[硕士学位论文].北京:中国地质大学,2012.
    [123]周顺华,高渠清,崔之鉴.开挖应力释放率计算模型[J].上海力学,1997,18(1):91-98.
    [124]陈宗基.应力释放对开挖工程稳定性的重要影响[J].岩石力学与工程学报,1992,11(1):1-10.
    [125]王唢.隧道围岩渐进性破坏及围岩压力预测研究[硕士学位论文].重庆:重庆交通大学,2009.
    [126]张长亮.基于监控量测与数值分析的隧道围岩稳定性判定方法研究[硕士学位论文].重庆:重庆交通大学,2008.
    [127]李世焊,赵玉绂,徐复安,等.隧道支护设计新论-典型类比分析法应用和理论[M].北京:科学出版社,1999.
    [128]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003.
    [129]《公路隧道施工技术规范》(JTG 042-94)[S].北京:人民交通出版社,1994.
    [130]伍冬.山岭隧道围岩压力计算方法及其适用性研究[硕士学位论文].北京:北京交通大学,2012.
    [131]王晓形,丁文其,刘学增,等.地下洞室围岩压力分配比例研究[J].现代隧道技术,2006,增刊:144-147.
    [132]陈寿堂.水岩耦合作用对隧道稳定性影响分析及隧道围岩分级修正方法研究[硕士学位论文].成都:西南交通大学,2012.
    [133]罗学东.两郧断裂区域软弱破碎岩层隧道围岩大变形机理及治理对策研究[博士学位论文].武汉:中国地质大学,2006.
    [134]陈晓祥.采矿过程中围岩力学数值模拟关键问题的研究[博士学位论文].徐州:中国矿业大学,2004.
    [135]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [136]刘刚,宋宏伟.围岩松动圈影响因素的数值模拟[J].矿冶工程,2003,23(4):1-3.
    [137]陈晓祥,韦四江.初始地应力场对煤矿巷道围岩稳定性的影响[J].矿冶工程,2008,28(6):1-4.
    [138]马行东.不同地应力下的地下硐室动态特征分析[J].矿业研究与开发,2007,27(2):20-22,91.
    [139]李占海,朱万成,冯夏庭,等.侧压力系数对马蹄形隧道损伤破坏的影响研究[J].岩土力学,2011,31(增2):434-442.
    [140]SL279-2002,水工隧洞设计规范[S].
    [141]DL/T5195-2004,水工隧洞设计规范[S].
    [142]水利水电规划设计总院,水利水电地下建筑物情报网.水利水电工程地下建筑物设计手册[M].成都:四川科学技术出版社,1993.
    [143]戚蓝,马启超.在地应力场分析的基础上探讨地下洞室长轴向选取和围岩稳定性[J].岩石力学与工程学报,2000,19(增1):1120-1123.
    [144]范秋雁.选择巷道合理开挖方向的力学分析[J].煤炭学报,1990,15(3):62-70.
    [145]李学华.高水平应力跨采巷道围岩稳定性模拟研究[J].采矿与安全工程学报,2008,25(4):420-425.
    [146]王俊奇,颜月霞.地应力对洞室轴线布置影响的二维数值分析[J].长江科学院院报,2009,26(7):33-39.
    [147]李曼,马平,孙强.洞室轴线走向与初始地应力关系对围岩稳定性的影响[J].铁道建筑,2011(07):70-72.
    [148]孙玉福.水平应力对巷道围岩稳定性的影响[J].岩土力学,2010,35(6):891-895.
    [149]任洋.高地应力公路隧道施工阶段围岩分级方法研究及应用[硕士学位论文].成都:成都理工大学,2009.
    [150]左昌群.变质岩地区隧道围岩分级方法研究[博士学位论文].武汉:中国地质大学(武 汉),2008.
    [151]王明年.公路隧道围岩亚级分级方法[M].成都:西南交通大学出版社,2008.
    [152]王明年.公路隧道岩质和土质围岩统一亚级分级标准研究[J].岩土力学,2010,31(2):547-552.
    [153]王明年.公路隧道岩质围岩亚级分级方法研究[J].岩土工程学报,2009,31(10):1590-1594.
    [154]王明年.公路隧道围岩亚级物理力学参数研究[J].岩石力学与工程学报,2008,27(11):2252-2259.
    [155]童建军.公路隧道围岩亚级开挖及支护设计参数研究[J].岩土力学,2011,32(增1):515-519.
    [156]刘大刚.公路隧道施工阶段岩体围岩亚级分级研究[博士学位论文].成都:西南交通大学,2007.
    [157]江永顺.山区高速公路隧道围岩分级方法及应用研究[硕士学位论文].成都:成都理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700