用户名: 密码: 验证码:
船舶铺管作业动力定位控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海油气管道铺设船舶的动力定位(Dynamic Positioning,DP)控制技术,是铺管船用动力定位系统设计的关键技术。本学位论文结合相关工程需求,从理论上对J型铺管动力定位系统的建模和铺管船动力定位输出反馈控制理论开展了深入的研究,其研究内容主要包括以下几个方面:
     建立了动力定位船舶运动学、动力学和海洋环境干扰模型。提出一种计算J型铺管作业中管道对船体作用力的悬链线非线性方程方法,将船舶的位置、艏向、运动速度和放管速度作为影响管道力的因素考虑。通过建立船舶、环境和管道模型给出了动力定位船进行铺管作业的仿真模型,并基于模型进行了仿真验证。
     DP铺管船输出反馈控制器的基础是设计铺管船状态观测器,对于此问题,提出一种鲁棒强跟踪扩展Kalman滤波器(Robust Strong Tracking Extended Kalman Filter,RST-EKF)。该滤波器在DP铺管船模型存在参数不确定性时,利用指数渐消因子放大当前位置和艏向测量值权系数,使滤波器快速收敛;同时,针对船舶位置参考系统和罗经存在野值的问题,引入根据新息不同情况进行分段的稳健矩阵函数,避免了指数渐消因子对野值产生的粗差不合理放大,保证了滤波器的鲁棒性。仿真结果表明,该算法可以保证模型参数具有不确定性时滤波器的收敛速度,同时对新息粗差具有较好的鲁棒性。进一步,为了克服EKF不具有全局稳定性的问题,在系统模型存在结构不确定性情况下,提出了一种自适应滑模无源非线性观测器。对滑模面增益上界,提出一种切换自适应律进行估计,避免了增益过大产生的观测器振荡和增益过小造成的系统不稳定,最后证明了观测误差是全局一致有界的。仿真基于带有非线性水动力矩阵的DP铺管船动力学模型进行,结果表明,观测器能够克服非线性水动力矩阵引入的模型结构不确定性,具有良好的估计精度和鲁棒性。
     针对铺管船DP作业时的最优跟踪控制问题,提出一种自适应逆最优反步循迹状态反馈控制器。首先针对系统线性化部分设计最优跟踪控制律,再利用线性最优跟踪控制律给出的时变代数Riccati方程结合反步法对系统进行状态变换,并针对慢变海洋环境干扰设计了自适应律进行估计补偿,随后给出了使系统稳定的自适应反步循迹控制律,最后根据逆最优思想,给出所设计控制律作用下的最优性能指标。仿真中利用PID控制器与两组不同参数的最优控制器进行比较,说明了所提出算法的有效性。在此基础上,为了使控制器更适合铺管过程中船舶的行进——航停循环作业工况,提出带有速度校正环节的逆最优反步法状态反馈路径跟踪控制器,该方法能够在线灵活调整期望速度。首先设计逆最优反步路径跟踪控制律使船体渐近跟踪期望路径,然后根据该控制律给出可最小化的性能指标,再设计梯度更新律使速度误差收敛于零。仿真结果表明该算法在实现最优控制的同时,可以满足船舶行进——航停工作模式的要求。
     针对船舶铺管时管道和船体期望路径不同的问题,假设管道与海底接触点(着地点)到船体间的距离保持不变,并通过坐标转换将管道着地点实际路径与海底期望路径映射为船体实际和期望路径,然后设计了反馈线性化循迹控制器用以验证所给出的坐标变换方法。仿真结果表明上述方法可以控制DP船将管道铺设于给定路径上。进一步,为了使控制器更好的适应DP船行进铺管时船体匀加速——匀速——匀减速的运动过程,提出一种带有加速度校正环节的反馈线性化状态反馈路径跟踪控制器,该方法能够在线灵活调整期望加速度。首先将原DP铺管船二阶系统的控制项求导,得到一个新的三阶增广系统并对其设计反馈线性化路径跟踪控制律,使系统输出渐近跟踪期望路径,再设计梯度更新律使加速度误差收敛于零,并通过调节期望加速度实现了定常速度的误差有界控制。仿真结果表明该算法具有良好的路径和加速度控制效果,可以满足船舶行进铺管时的运动状态控制要求。
Dynamic positioning(DP) control method of pipelay vessel is the key technology ofdesigning a ship dynamic positioning control system for laying deep sea oil and gas pipe.Combined with related engineering requirements, this dissertation carries on theoreticalresearch about modeling of J-lay dynamic positioning vessel and output feedback controlmethod of dynamic positioning pipe lay vessel. The main contents of dissertation are asfollows:
     Kinematic and dynamic equations of DP vessel with sea environment model which isconsidered as the main disturbance are derived. A catenary theory based nonlinear equationmethod is proposed to calculate the pipe forces that acting on J-lay vessel: ship position,heading, motion velocity, rate of turn and the pipelay speed are all taken into consideration. Asimulation system comprised by the above three parts of models is given, and simulation testresults are shown based on the above model.
     The elementary problem of designing a DP pipelay vessel output feedback controller issystem states estimation. For solving this issue, a robust strong tracking extended Kalmanfilter(RST-EKF) is proposed. An exponent fading factor is added in EKF to form a ST-EKFfor making filter converge rapidly by enlarging the current position and heading weightsunder model parameter uncertainties. Simultaneously, a piecewise stable matrix functiondepending on different innovation situations is involved to enhance robustness when facinginnovation gross error caused by wild values from position reference system and gyrocompass,so one can avoid the unreasonable zooming out of gross error by the fading factor andguarantee the filter robustness. Simulation shows that the designed algorithm can improvestate estimation convergence speed and be robust to gross error from innovation in case ofmodel parameter uncertainties. However, EKF is unable to guarantee the global stability ofsystem. To overcome this weakness, an adaptive sliding mode passive nonlinear observer isproposed with the model structure uncertainties problem. A kind of switching adaptive updatelaw is derived to estimate the upper bound of sliding mode surface, so the estimation vibrationcaused by large gain and system unstability results from small gain situations are bothavoided, uniform global boundedness of estimation errors is proved. Simulation process isbased on DP pipelay vessel model with nonlinear hydrodynamic matrix, it shows that theobserver can give satisfied estimations and be robust to model structure uncertainties causedby unknown nonlinear hydrodynamic matrix.
     For the optimal following control problem of DP pipelay vessel, an adaptivebackstepping inverse optimal state feedback tracking controller is proposed: first, an optimalpath following controller is designed for linearized parts of the system, time varying algebraicRiccati equation of the linear optimal path following controller combined with backsteppingprocedure are adopted to carry on system transformation, adaptive law is designed forestimating ocean slow varing disturbance, then the adaptive backstepping tracking control lawwhich can make system stable is given. Finally, index function is specified based on thetracking control law with inverse optimal process. In simulation case, optimal controlmethods with two groups of parameters and a traditional PID algorithm are compared to showthe validity of proposed algorithm. Based on the results mentioned above, for the purpose ofgiving a more suitable controller for vessel moving----stoping pipelay situations, abackstepping inverse optimal state feedback path following controller with speed assignmentis proposed, which can adjust desired speed conveniently. Inverse optimal backstepping pathfollowing control law is designed for making vessel body converge to desired path, then theindex function based on control law is specified, finally gradient update law is given to makethe speed error converge to zero. Simulation shows that the proposed algorithm can controlpath and speed simultaneously and give satisfied optimal control effects on vesselmoving----stoping procedure.
     For the problem of position differences between DP vessel path and and seabed pipe path,the distance between pipe-seabed touch down point and vessel body is assumed to be fixed,then pipelay path is mapped to vessel path by coordinates transformation. A feedbacklinearization tracking controller is used for testifying the coordinates transformation,simulation results show that the above method can make the vessel and pipe both trackdesired path. In addition, for the purpose of giving a more suitable controller to vesselacceleration----constatn speed----decceleration pipelay process, a feedback linearizationstate feedback path following controller with acceleration assignment is proposed, which canadjust desired acceleration conveniently. Control term of DP pipelay vessel second ordersystem is differentiaed to get a new three order augmented system, then feedback linearizationpath following control law is given for this augmented system to force the system outputfollow desired path asymptotically, and gradient update law is designed to make accelerationconverge to zero. Finally a constant speed control strategy is given by adjusting the desired acceleration. Simulation case illustrates the effects on path following and acceleration control,it can make the vessel achieve desired motion states during moving process.
引文
[1]李含苹,闵兵.铺管船前景及船型开发.船舶,2009,2:1-4页.
    [2] Li Zhigang, Wang Cong, He Ning, et.al. An overview of deep water pipeline layingtechnology. China Ocean Engineering,2008,22(3):521-532P.
    [3] Trevor Jee Associates. Offshore pipeline construction. England: Trevor Jee Associates,2004:1-134P.
    [4] Dominique Perinet, Ian Frazer, Acergy. J-lay and steep S-lay: Complementary tools forultradeep water. Offshore Technology Conference,2007: OTC18669.
    [5] E P Heerema, Allseas Group S.A. Recent achievements and present trends in deepwater pipelay system. Offshore Technology Conference,2005: OTC17627.
    [6]何宁,徐崇崴,段梦兰,等. J型铺管法研究进展.石油矿场机械,2011,40(3):63-67页.
    [7]何宁,徐崇崴,段梦兰,等.2011J型铺管船发展综述.中国海洋平台,2011,26(4):1-6页.
    [8] Plunkett R. Static bending stresses in catenaries and drill strings. Journal of Engineeringfor Industry. Transactions of the ASME,1967,89(1):31-36P.
    [9] S W Rienstra. Analytical approximations for offshore pipelaying problems. ProceedingsICIAM,1987:99-108P.
    [10] H.M.Irvine. Cable Structures. Massachusetts: The MIT Press,1981.
    [11] M Callegari, C B Carini, S Lenci, et al. Dynamic models of marine pipelines forinstallation in deep and ultra-deep waters: analytical and numerical approaches.16thAIMETA Congress of Theoretical and Applied Mechanics,2003:1-12P.
    [12] E T S I Caminos, C Puetros. A nonlinear analysis of laying a floating pipeline on theseabed. Engineering Structures,2009,31(5):1120-1131P.
    [13]龚顺风,陈源,金伟良,等.深水海底管道S型铺设形态分析.14届中国海洋(岸)工程学术讨论会论文集,2008:123-129页.
    [14] O M Aamo, T I Fossen. Finite element modeling of mooring lines. Mathematics andComputers in Simulation,2000,53(4-6):415-422P.
    [15] Ney Roitman, Carlos Magluta, Ronaldo C Batista. Analysis of single pipeline pull inprocedure using small scale model. Marine Structures,1996,9(10):991-1002P.
    [16] O M Aamo, T I Fossen. Controlling line tension in thruster assisted mooring systems.IEEE Conference on Control Applications–Proceedings,1999:1104-109P.
    [17] T P Dreyer, Jan H Van Vuuren. A comparison between continuous and discretemodeling of cables with bending stiffness. Applied Mathematical Modelling,1999,23:527-541P.
    [18] G A Jensen, Aksel A Transeth, Tu Duc Nguyen. Modelling and control of offshoremarine pipeline during pipelay. Proceedings of the17th International Federation ofAutomatica World Congress,2008:15034-15039P.
    [19] G.A.Jensen. Offshore pipelaying dynamics. Trondheim: Department of EngineeringCybernetics NTNU,2010:63-80P.
    [20] D M Silva, C H Albrecht, B P Jacob. A computational system for subsea pipelayingsimulation. International Journal of Modeling and Simulation for the PetroleumIndustry,2009,3(1):35-45P.
    [21] G A Jensen, Niklas Safstrom, T D Nguyen. A nonlinear pde formulation for offshorevessel pipeline installation. Ocean Engineering.2010,37(4):365-377P.
    [22] M J Morgan.近海船舶动力定位.北京:国防工业出版社,1984:195-210页.
    [23]王宏健,边信黔,丁福光,等.海底管线检测与维修装置智能综合操纵和动力定位系统.中国造船,2004,45(2):93-98页.
    [24]周利,王磊,陈恒.2008动力定位控制系统的研究.船海工程,2008,37(2):86-91页.
    [25] E A Tannuri, H M Morishita. Experimental and numerical evaluation of a typicaldynamic positioning system. Applied Ocean Research,2006,28(2):133-146P.
    [26] Liu Hsu, Ramon R Costa, Fernando Lizarralde, et al. Dynamic positioning of remotelyoperated underwater vehicles. Robotics&Automation Magzine,2000,7(3):21-31P.
    [27] Stockton, T R Source. Dynamic positioning of deep drilling vessels. Underwater JInform Bull.1972,4(6):228-234P.
    [28] Balchen Jens G, Jenssen Nils A, Mathisen Eldar. Dynamic positioning system based onkalman filtering and optimal control. Modeling, Identification and Control.1980,1(3):135-163P.
    [29] S Saelid, N A Jensen, J G Balchen. Design and analysis of a dynamic positioningsystem based on kalman filtering and optimal control. Transactions on AutomaticControl,1983,28(3):331-339P.
    [30] P T Fung, M J Grimble. Dynamic ship positioning using a self-tuning. Transactions onAutomatic Control,1983,28(3):339-350P.
    [31] J G Balchen. A modified LQG algorithm (MLQG) for robust control of nonlinearmultivariable systems. Modeling, Identification and Control.1993,14(3):175-180P.
    [32] A J Sorensen, S I Sagatun, T I Fossen. Design of a dynamic positioning system usingmodel-based control. Control Engineering Practice,1995,4(3):359-368P.
    [33] J G Balchen, N A Jenssen, S Salid. Dynamic positioning using kalman filtering andoptimal control theory. IFAC/IFIP Symposium on Automation in Offshore Oil FieldOperation,1976:183-186P.
    [34] J G Balchen, N A Jenssen, Mathisen Eldar. Dynamic positioning of floating vesselsbased on kalman filtering and optimal control. Proceedings of the IEEE Conference onDecision and Control.1980:852-864P.
    [35] A Grovlen, T I Fossen. Nonlinear Control of Dynamic Positioned Ships Using OnlyPosition Feedback: An Observer Backstepping Approach. Proceedings of the35th IEEEConference on Decision and Control.1996:2355-2359P.
    [36] T I Fossen, S P Berge. Nonlinear vectorial backstepping design for global exponentialtracking of marine vessels in the presence of actuator dynamics. Proceedings of the36thConference on Decision&Control.1997:4237-4242P.
    [37] T I Fossen, A Grovlen. Nonlinear output feedback control of dynamically positionedships using vectorial observer backstepping. IEEE Transactions on Control SystemsTechnology.1998,6(1):121-128P.
    [38] Anders Robertsson, Rolf Johansson. Comments on nonlinear output feedback control ofdynamically positioned ships using vectorial observer backstepping. IEEE Transactionson Control Systems Technology.1998,6(3):439-441P.
    [39] T I Fossen, J P Strand. Passive nonlinear observer design for ships using Lyapunovmethods: full-scale experiments with a supply vessel. Automatica.1999,35(1):3-16P.
    [40] Michiel Wondergem. Output feedback tracking of a fully actuated ship. Trondheim:Department of Mechanical Engineering NTNU,2005:45-84P.
    [41] M J Paulsen, O Egeland, T I Fossen. A passive output feedback controller with wavefilter for marine vehicles. International Journal of Robust and Nonlinear Control.1998,8(15):1239-1253P.
    [42] Antonio Loria, T I Fossen, Elena Panteley. A separation principle for dynamicpositioning of ships: theoretical and experimental results. IEEE Transactions on ControlSystem Technology.2000,8(2):332-343P.
    [43] A B Aalbers, R F Tap, J A Pinkster. An application of dynamic positioning control usingwave feed forward. International Journal of Robust and Nonlinear Control.2001,11(13):1207-1237P.
    [44] T I Fossen, K P Lindegaard, R Skjetne. Inertial shaping techniques for marine vesselsusing acceleration feedback.15th Triennial World Congress.2002:1280P.
    [45] K P W Lindegaard. Acceleration feedback in dynamic positioning. PHD Thesis.Trondheim: Department of Engineering Cybernetics, NTNU,2003:63-94P.
    [46] Noriyuki Akasaka. Design of piecewise linear LQ control by multivariable circlecriterion for dynamic positioning system. International Joint Conference.2006:5672-5677P.
    [47] A V Fannemel. Dynamic positioning by nonlinear model predictive control. Master ofScience Thesis. Department of Engineering Cybernetics, NTNU,2008:55-86P.
    [48] D T Nguyen, A J Sorensen. Switching control for thruster-assisted position mooring.Control Engineering Practice.2009,17(9):985-994P.
    [49] M R Katebi, M J Grimble, Y Zhang. H∞robust control design for dynamic shippositioning. IEE Proceedings of Control Theory Application.1997,144(2):110-120P.*63-
    [50] M R Katebi, Y Zhang, M J Grimble. Nonlinear dynamic ship positioning. Proceedingsof the13th IFAC World Congress.1997:303-308P.
    [51] E A Tannuri, D C Donha, C P Pesce. Dynamic positioning of a turret moored FPSOusing sliding mode control. International Journal of Robust and Nonlinear Control.2001,11(13):1239-1256P.
    [52] D B Lee, E Tatlicioglu, T C Burg, et al. Robust output tracking control of a surfacevessel. American Control Conference.2008:544-549P.
    [53] J M Godhavn, T I Fossen, S P Berge. Nonlinear and adaptive backstepping designs fortracking control of ships. International Journal of Adaptive Control and SignalProcessing.1998,12(8):649-670P.
    [54] Y Fang, E Zergerogu, M S de Queiroz, et al. Global output feedback control ofdynamically positioned surface vessels: an adaptive control approach. Mechatronics,2004,14(4):341-356P.
    [55] R K Verma. Dynamic positionig of ship using direct model reference adaptive control.Master of Science Thesis. Texs A&M University,2004:47-88P.
    [56] D B Lee, E Tatlicioglu, T C Burg, et al. Adaptive output tracking control of a surfacevessel. Proceedings of the47thIEEE Conference on Decision and Control.2008:1352-1357P.
    [57] A Loria, E Panteley, H Nijmeijer, et al. Robust adaptive control of passive systems withunknown disturbances. IFAC Nolcos.1998:866-892P.
    [58] W J Chang, G J Chen, Y L Yeh. Fuzzy control of dynamic positioning systems for ships.Journal of Marine Science and Technology.2002,10(1):47-53P.
    [59] M Yamamoto, C K Morooka. Dynamic positioning system of semi-submersibleplatform using fuzzy control. Journal of the Braz Soc of Mech Sci&Eng.2005,17(4):449-455P.
    [60] E A Cid, E W McGookin, D J M Smith, et al. Genetic algorithms optimisation ofdecoupled Sliding Mode controllers simulated and real results. Control EngineeringPractice.2005,13(6):739-748P.
    [61] E A Cid, E W McGookin, D J M Smith, et al. Genetic programming for the automaticdesign of controllers for a surface ship. IEEE Transactions on Intelligent TransportationSystems.2008,9(2):311-321P.
    [62] R Skjetne, T I Fossen, P Kokotovic. Output Maneuvering for a Class of NonlinearSystems.15th Trienial World Congress.2002,1:790-794P.
    [63] R Skjetne, A R Teel, P Kokotovic. Stabilization of Sets Parametrized by a SingleVariable Application to Ship Maneuvering. Proceedings of the15th internationalsymposium on mathematical theory of networks and systems.2002.
    [64] R Skjetne, T I Fossen, P Kokotovic. Robust output maneuvering for a class of nonlinearsystems. Automatica.2004,40(3):373-383P.
    [65] R Skjetne, T I Fossen, P Kokotovic. Adaptive maneuvering, with experiments, for amodel ship in a marine control laboratory. Automatica.2005,41(2):289-298P.
    [66] I A F Ihle, R Skjetne, T I Fossen. Output feedback control for maneuvering systemsusing observer backstepping. Proceedings of the13th Mediterranean Conference onControl and Automation.2005:1512-1517P.
    [67] R Skjetne. The Maneuvering Problem. PHD Thesis. Faculty of Information TechnologyNTNU,2005:27-82P.
    [68] J Almeida, C Silvestre, A Pascoal. Path following control of fully actuated surfacevessels in the presence of ocean currents. Ocean Currents Control Applications inMarine Systems.2007,7(1):26-31P.
    [69] Morten Breivik, T I Fossen. Path following of straight lines and circles for marinesurface vessels. Proceedings of the IFAC CAMS.2004:65-77P.
    [70] Morten Breivik, T I Fossen. Path following for marine surface vessels. OCEANS.2004:2282-2289P.
    [71] Morten Breivik, T I Fossen. A unified concept for controlling a marine surface vesselthrough the entire speed envelope. Proceedings of the13th Mediterranean Conferenceon Control and Automation.2005:1518-1523P.
    [72] J P Strand, K Ezal, T I Fossen, et al. Nonlinear control of ships: a locally optimal design.IFAC Nolcos.1998:732-738P.
    [73] J P Strand, T I Fossen. Nonlinear output feedback and locally optimal control ofdynamically positioned ships: experimental results. Proceedings of the IFACConference on Control Applications in Marine Systems.2002:89-95P.
    [74] T I Fossen, J P Strand. Nonlinear passive weather optimal positioning control (WOPC)system for ships and rigs experimental results. Automatica.2001,37(5):701-715P.
    [75] E A Tarruni. Assisted dynamic positioning of a moored fpso robustness aspectsregarding current forces modeling.22nd International Conference on OffshoreMechanics and Arctic Engineering.2003:99-107P.
    [76] E A Tannuri, C P Pesce, G S Alves, et al. Dynamic positioning of a pipeline launchingbarge. Proceedings of the12th International Offshore and Polar EngineeringConference.2002:108-115P.
    [77] E A Tannuri, C P Pesce. Comparing two different control algorithms applied to dynamicpositioning of a pipeline launching barge. Proceedings of the10th MediterraneanConference on Control and Automation.2002.
    [78] B J Leira, A J Sorensen, C M Larsen. A reliability-based control algorithm for dynamicpositioning of floating vessels. Structure Safety.2004,26(1):1-28P.
    [79] G A Jensen, M Breivik, T I Fossen. Offshore pipelay operations from a controlperspective. Proceedings of the ASME28th International Conference on Ocean,Offshore and Arctic Engineering.2009:259-268P.
    [80] Tristan Perez. A review of geometrical aspects of ship motion in maneuvering andseakeeping, and the use of a consistent notation. MSS Technical Report (MSS-TR001-2005).
    [81]李殿璞.船舶运动与建模.北京:国防工业出版社.2007:1-108页.
    [82]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社.2001:1-17页.
    [83] T I Fossen. Marine Control Systems. Trondheim: Tapir Trtkkeri,2002:15-114P.
    [84] T I Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. WestSussex: John Wiley&Sons Ltd,2011:45-58P.
    [85] A J Sorensen. Marine cybernetics modeling and control. Lecture Notes, ReportUK-05-76,2005.
    [86]贾欣乐,杨盐生.船舶运动数学模型—机理建模与辨识建模.大连:大连海事大学出版社.1999:294-359页.
    [87] Bao shi Shiau. Velocity spectra and turbulence statistics at the northeastern coast ofTaiwan under high-wind conditions. Journal of Wind Engineering.2000,88(2-3):139-151P.
    [88]施吉林,刘淑珍,陈桂芝.计算机数值计算方法.北京:高等教育出版社,2005:223-234页.
    [89]张勋,王宏健,周佳加,边信黔,熊磊. UUV结构环境SFEKF同步构图定位方法.哈尔滨工程大学学报,2012,33(8):1-6页.
    [90] Jun Hu, Zidong Wang, Huijun Gao, Lampros K S. Extended Kalman filtering withstochastic nonlinearities and multiple missing measurements. Automatica.2012,48(9):2007-2015P.
    [91]孙奎.基于串行双EKF的感应电机无速度传感器控制系统研究.哈尔滨工业大学硕士论文.电气工程及自动化学院,2010,26-40页.
    [92]孙国章,钱峰.一种基于指数渐消因子的自适应卡尔曼滤波算法.电子测量技术,2010,22(1):40-42页.
    [93]尹忠刚,张瑞峰,钟彦儒,曹钰.基于抗差扩展卡尔曼滤波器的永磁同步电机转速估计策略.控制理论与应用,2012,29(7):921-927页.
    [94]尹忠刚,赵昌,钟彦儒,李立冬,李洁.采用抗差扩展卡尔曼滤波器的感应电机转速估计方法.中国电机工程学报,2012,32(18):152-159页.
    [95] K Xiong, C L Wei, L D Liu. Robust Kalman filtering for discrete-time nonlinearsystems with parameter uncertainties. Aerospace Science and Technology,2012,18(1):15-24P.
    [96]周聪,肖建.改进强跟踪滤波算法及其在汽车状态估计中的应用.自动化学报.2012,38(9):1520-1527页.
    [97]周彦,李建勋,王冬丽.传感器网络中鲁棒状态信息融合抗差卡尔曼滤波器.控制理论与应用,2012,29(3):292-297页.
    [98]何黎明,田作华,施颂椒.动力定位船舶的非线性观测器设计.上海交通大学学报,2003,37(6):964-968页.
    [99] H Nijmeijer, T I Fossen. New Directions in Nonlinear Observer Design. London:Springer,1999:113-134P.
    [100] V Hassani, A M Pascoal, A P Aguiar, et al. A multiple model adaptive wave filter fordynamic ship positioning. Proceedings of the8th IFAC Conference, ControlApplications in Marine Systems:2010:120-125P.
    [101] G Torsetnes. Nonlinear control and observer design for dynamic positioning usingcontraction theory. Norwegian University of Technology and Science:2004:15-36P.
    [102] G Torsetnes, J Jerome, T I Fossen. Nonlinear dynamic positioning of ships withgain-scheduled wave filtering.43rd IEEE Conference on Decision and Control. Nassau:CDC,2004:5340-5347P.
    [103] K D Do. Global robust and adaptive output feedback dynamic positioning of surfaceships. Journal of Marine Science and Application,2011,3:325-332P.
    [104] M H Kim, D J Inman. Development of a robust nonlinear observer for dynamicpositioning of ships. Journal of Systems and Control Engineering,2004,218(1):1-12P.
    [105] M H Kim. Nonlinear control and robust observer design for marine vehicles. VirginiaPolytechnic Institute and State University:2000:9-40P.
    [106] M H KIM, D J Inman. Application of a sliding mode observer for dynamic positioningof ships.18th Biennial Conference on Mechanical Vibration and Noise:ASME DesignEngineering Technical Conference. Pittsburgh: ASME,2001,6:2573-2582P.
    [107] J M Valenzuela, L A Zuppa. Dynamic positioning control of ships via relay observerdesign. Asian Journal of Control,2004,6(3):398-406P.
    [108] F Dukan, M Ludvigsen, A J Sorensen. Dynamic positioning system for a small size rovwith experimental results. OCEANS2011IEEE. Santander: IEEE Computer Society,2011:114-119P.
    [109] R A Horn, C R Johnson. Matrix Analysis. New York: Cambridge University Press,1990:343-378P.
    [110] F R Hampel, M Ronchetti, P J Rousseuw, et al. Robust Statistics: the Approach Basedon Influence Function. New York: Wiley,2005:270-306P.
    [111]索夫HT.控制系统的最优滤波和辨识方法.燕申译.北京:国防工业出版社,1984:166-202页.
    [112]宋立忠,鄢圣茂,杨立秋.不确定系统鲁棒自适应离散变结构控制.自动化学报,2011,37(8):1024-1028页.
    [113] Khalil,H.K. Nonlinear systems. Third Edition. New Jersey, USA: Prentice Hall,2002:111-180P.
    [114]李鹏,郑志强.非线性积分滑模控制方法.控制理论与应用,2011,28(3):421-426页.
    [115]黄鹤,李德伟,席裕庚.基于多步控制策略的混合H2/H∞鲁棒预测控制控制器设计.自动化学报,2012,38(6):944-950页.
    [116] Yantao Feng, Brian D O Anderson, Michael Rotkowitz. A game theoretic algorithm tocompute local stabilizing solutions to HJBI equations in nonlinear H∞control.Automatica,2009:45(4),881-888P.
    [117] S H Fu, C C Cheng, W M Haddad. On inverse optimal adaptive designs for trackingcontrol of ships with exogenous disturbances. The4th Asian Control Conference.Singapore: ASCC press,2002:129-134P.
    [118] E A Tannuri, A C Agostinho, H M Morisnita, et al. Dynamic positioning systems: anexperimental analysis of sliding mode control. Control Engineering Practice.2010,18(10):1121-1132P.
    [119] J Hauser, R Hindman. Maneuver regulation from trajectory tracking_feedbacklinearizable systems. Proceedings of the IFAC Symp. Nonlinear Control SystemsDesign, IFAC.1995:595-600P.
    [120] J Hauser, R Hindman. Aggressive flight maneuvers. Proceedings of the36thConference on Decision&Control.1997:4186-4191P.
    [121] P Encarnacao, A Pascoal. Combined trajectory tracking and path following_anapplication to the coordinated control of autonomous. Proceedings of the40th IEEEConference on Decision&Control.2001:964-969P.
    [122] R Skjetne, T I Fossen, P V Kokotovic. Adaptive output maneuvering, with experiments,for a model ship in a marine control laboratory. Automatica,2005,41(2):289–298P.
    [123]魏春玲,武玉强.不确定非线性系统的自适应输出机动控制.系统工程与电子技术,2007,29(3):427-432页.
    [124]周颖,臧强.多输入多输出不确定非线性系统的输出反馈自适应机动控制.物理学报,2009,58(11):7565-7572页.
    [125]王卉琴,刘目楼.数值分析.北京:冶金出版社,2004:162-166页.
    [126] Slotine E, Weiping Li. Applied nonlinear control. New Jersey: Pearson education.1991:326-333P.
    [127] R Skjetne, A R Teel, P V Kokotovic. Nonlinear maneuvering with gradient optimization.Proc of41st IEEE Conf. Decision&Control. Las Vegas, USA,2002:3926–3931P.
    [128]李贻斌,阮久宏,刘鲁源等.车辆纵向加速度自抗扰控制.山东大学学报(工学版),2008,38(4):1-10页.
    [129]阮久宏,杨福广,李贻斌.车辆加速度自抗扰控制.控制理论与应用,2011,28(9):1189-1194页.
    [130]曹洋,方帅,徐心和.加速度约束条件下的非完整机器人运动控制.控制与决策,2006,21(2):193-196页.
    [131] I K Peddle. Acceleration based manoeuvre flight control system for unmanned aerialvehicles. Stellenbosch: Stellenbosch University,2008:48-70P.
    [132] C Nielsen, C Fulord, M Maggiore. Path following using transverse feedbacklinearization: application to a maglev positioning system. Automatica,2010,46(3):585-590P.
    [133] I A Tall. State and feedback linearization of single-input control systems. Systems&Control Letters,2010,59(7):429-441P.
    [134] Lin Y, Sontag E D, Wang Y. A smooth converse Lyapunov theorem for robust stability.SIAM Journal on Control and Optimization,1996,34(1):124-160P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700