用户名: 密码: 验证码:
空气源热泵热水装置优化分析与运行策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源热泵热水技术是一种节能型热水技术。随着能源和环保压力的日益加大,通过优化现有空气源热泵热水装置(Air-source heat pump water heater,简称ASHPWH)的设计,拓展使用范围,是一条促进节能减排的有效途径。但是,囿于设计理论和实验条件的限制,多数研究者着眼于部件如何匹配、设计参数如何选取和经济性评价等问题,而对如何在实践上对运行策略进行优化使装置保持长期高性能运行、如何改善变工况下的热力学性能满足能量需求的多样化方面,鲜有考虑。此外,空气源热泵热水装置具有变工况运行的特点,特定工况下的有效能分析难以全面准确地反映系统的热力学特性,为了实现有效能理论在该类型系统中更好地应用,通过结合空气源热泵热水装置变工况运行的特点和有效能的基本理论建立相应的分析模型,将有助于更加准确发现系统设计和运行的薄弱环节。为此,本文从系统优化设计和运行的角度进行了实验和理论分析,主要体现在以下几个方面:
     (1)针对冷凝器采用板式换热器循环加热的小型家用空气源热泵热水装置,采用实验与数值仿真方法,研究了环境参数、装置结构参数对系统性能的影响,以指导优化。仿真数据和实验对比结果显示,仿真模型具有较好的精度。数值分析结果表明,对于采用该类型冷凝器的系统,冷凝器和蒸发器的面积比在一定范围内系统可以确保较高的热力学效率,计算条件下,最佳面积比在0.1到0.118之间。循环水进水高度(即水箱热水入口的位置)是影响系统性能的重要因素,循环水进水高度越高,系统COP越高。当其他条件固定,进水高度从水箱高度的0.167调整到水箱顶部,系统COP会从2.58增加到2.70,有4.65%的增幅。尽管水箱整体的等效平均温升随着进水高度的提升略有下降,约1℃,但其差别几乎可以忽略不计。从提高系统COP的角度来说,最佳进水口应位于水箱的顶部。
     (2)结合空气源热泵热水装置变工况运行的特点和有效能的基本理论建立了当量有效能分析模型,并通过样机实验验证了其分析结论,该模型综合考虑了热泵热水装置热水不断升温的影响。模型分析结果表明,环境温度7℃时,在其他部件不变的情况下,当压缩机绝热效率从0.6增加到0.85,压缩机有效能损失减少三分之二,系统有效能效率从35%增加到45.5%,系统不可逆程度改善10.5%。当压缩机的绝热效率低于0.78时,压缩机为有效能损失最大的环节。从本模型的分析中也可以发现,当其他条件不变,冷凝器换热温差从8℃降低到3℃,系统有效能效率从41.5%提高到46.2%,系统的不可逆程度改善了4.7%。当其他条件不变,蒸发器换热温差从15℃降低到10℃,系统有效能效率则从41.4%提高到46.3%,系统的不可逆程度改善了4.9%。基于实验数据的分析显示,压缩机的平均有效能损失系数最高,冷凝器平均有效能损失所占的比例仅次于压缩机损失所占的比例。考虑到提高压缩机的效率涉及到整个制造工艺的提升,非短期可实现,因此,从改进系统热力学循环的角度来讲,强化冷凝器的换热过程更加关键。
     (3)基于上述理论和实验研究,考虑到实际运行时存在昼夜温度的差异以及用户热水需求曲线的不同,为了实现运行策略的优化,分别对定时和定温两种典型的控制模式进行了研究。研究结果表明,对于定时控制而言,昼夜温差的差异和峰谷电价政策是设定启动加热时刻最大的影响因素。在定温控制模式中,设定水温直接影响到热泵系统的热力学特性和热水的供应能力,而这两个因素往往又是互相冲突的。为了解决这一矛盾,引入一个参数,即送水系数,定义为每天满足用户45℃水温要求的热水实时放出量与热水需求曲线之间的比值,反映的是居民对热水的满足程度。设定水温越高,送水系数也会越高,但系统COP会越低。当送水系数达到100%时,进一步提高设定水温,送水系数将维持100%不变,而系统COP仍会降低。因此,为了最大程度的满足用户基本热水需求,同时达到良好的节能效果,以满足送水系数为100%的最低设定水温为基准点,实现运行优化。优化分析结果表明,空气源热泵热水系统的最佳设定水温应该根据季节气温的变化进行调整,以上海气候为例,夏季、过渡季和冬季的最佳设定水温分别为46℃、48.2℃和55.4℃。
     (4)以前述工作为基础,利用灰色系统理论建立了空气源热泵热水装置的家庭热水消耗和能耗模型,并对典型上海家庭全年各月的热水消耗和能耗进行了预测,旨在利用灰色理论通过少量历史数据实现大时间跨度预测的特性,实现准确预测并节省实地测试成本。样本数据分析显示,尽管样本数据随着时间表现出一定的无序性,但样本数据的分布满足灰色理论的要求,且样本累加值呈现指数增加的趋势,符合灰色理论的适用条件。建模过程中发现,模型精度会随着采样周期的变长而逐渐提高,当采样周期达到四周时即可满足灰色理论的精度要求。基于此,建立了以四周为采样周期的灰色预测模型,并和后续场地测试数据进行了比较,预测和实测对比表明,模型预测精度良好。基于此模型,可以获得COP、全年各月的各个参数、碳减排量以及节省的费用。
     (5)通过实验测试与数值仿真,详细分析了空气源热泵热水装置分级供热的热力学过程。为了更好的利用冷凝热量,对热泵工质进行了筛选,并设计了相应的测试样机和测试平台。针对空气源热泵分级供热热水装置的工质选优结果表明,由于更佳的热力学循环特性和物性,R410A和R22为较优选择。样机实验结果显示,该实验样机能够在确保高效的前提下同时满足两种不同温度范围的供热需求,对于同时存在生活热水和地板采暖两种热水品质需求的场合,能够实现一机两用的功能。在此基础上,建立了空气源热泵分级供热热水装置的数学模型,并对影响系统性能的各参数进行了讨论。研究结果显示,在分级供热的模式下,两个冷凝器的进水温度直接影响冷凝器内部的换热模式,其中,初级进水温度是系统热力性能的最大影响因素。当初级进水温度上升到一定的临界值时,初级冷凝器内的换热全部为过热蒸气和水之间的单相换热,且环境温度越高,临界值越低。
This paper concentrated on air-source heat pump water heater (ASHPWH) system fordomestic use. In experimental research, researchers pay more attention to the matching ofdifferent components in this kind of system; in theory analysis, most of the scholars havedone lots of work about matching, design parameters and estimation of thermodynamicperformance. However, there was little work reported about long-term operation optimizationof this kind of system.
     Additionally, ASHPWH are almost in off-design conditions during operation. Correctevaluation of thermodynamic performance of this system under variable working conditionsis the fundamental prerequisite for optimization of design and operation. While, there isinsufficiency when conventional exergy anlysis is applied on this kind of system. In order tobetter utilize the optimization tool—exergy theory in ASHPWH, it is expected that theweakness of design and operation can be correctly found based on the relative model whenthe basic exergy theory and thermodynamic performance of the system are combined. Thus,the emphasis should be taken on matching, components design and performance assessment,so as to find a more reasonable and comprehensive optimization method. As to meet differentdomestic energy consumption, some research work has been obtained by scholars. While forsome sites with different temperature domestic hot water consumption, the conventionalmethod is to meet hot water demand with several types of equipments, such as oil boiler, heatpump and solar concentrator. As a result, higher running cost and complex managementcannot be avoided. In order to solve this kind of problem and take ASHPWH’s advantages onenergy-saving, multi-function of hot water system should be integrated. Therefore, it is veryimportant to save energy and initial cost considering the thermodynamic performance of ASHPWH system. The main works are summarized as follows:
     (1) An experimental set-up of domestic ASHPWH system was constructed and someexperimental data were obtained. In this research, the thermodynamic performance of thesystem was investigated. Additionally, the mathematical model of this kind of system wasestablished, and the effect of environment and design variants was analysized. The simulatedresults showed that it is uncessary to enlarge the area of heat exchangers when COP increasesto some extant. Based on the case, the optimal thermodynamic performance can be achievedwhen the area ratio of condenser and evaporator is among given range0.1-0.118. It was alsofound that the effect of inlet site of hot water to water tank cannot be ignored, the higher theinlet site of hot water, the higher COP the system will obtain. When the inlet site of hot wateris lift from0.167height of water tank to the top, the COP will increase from2.58to2.70, with4.65%increment. Simultaneously, the average water temperature of water tank decreasedabout1℃, which can be ignored. From the viewpoint of improving thermodynamicperformance of system, the optimal site is on the top of the water tank.
     (2) In this study, an equivalent exergy analysis model was presented according to unstableworking condition characteristic of ASHPWH system and verified by experiments. In thismodel, the exergy loss of different components and stages could be analysized, and thepriority optimization goal of this system was pointed out. The analyzied result indicated that,based on the assumption, the exergy efficiency of system is very sensitive to the adiabaticcoefficient of compressor. The exergy loss of compressor would reduce2/3when adiabaticcoefficient of compressor increases from0.6to0.85under ambient temperature7℃, whilethe exergy efficiency will increase from35%to45.54%, with10.5%improvement. Thecompressor should be chief optimized when the adiabatic coefficient of compressor is lowerthan0.78. When the temperature difference of heat transfer on condenser decreases from8℃to3℃, and the exergy efficiency of system will increase from41.5%to46.2%, with4.7%improvement. Similarly, when the temperature difference of heat transfer on evaporatordecreases from15℃to10℃, and the exergy efficiency of system will increase from41.4%to46.3%, with4.9%improvement. It could be found that, based on the experiments, thehighest average exergy loss of component is from compressor, and the following is from condenser. From viewpoint of improving system thermodynamic performance and cost,improving the performance of compressor is a long-term process, thus, enhance the heattransfer process of condenser is more urgent, for example, optimize the design of condenserand water tank.
     (3) Based on the mathematical model of this ASHPWH system and validation, the effect ofdifferent parameters to the system performance was estimated. Additionally, the indicator ofoptimization operation strategy was presented and tested according to domestic hot waterdemand profiles. In this study, the influence of ambient temperature fluctuation, setting watertemperature, starting time and electricity price policy under two typical controlling patternswas also discussed. For the timing controlling pattern, the key factors are ambient temperaturedifference between day and night and electricity price policy. For the thermostatic controlpattern, the delivery coefficient was introduced and as an index which scales the degree ofsatisfaction for customers. The higher the setting temperature, the higher the deliverycoefficient is, while, it also leads to lower COP. In order to balance the meet of degree ofsatisfaction for customers and energy-saving concern,100%was selected as the critical pointof delivery coefficient to optimize the system performance. The optimized results showed thatthe optimal setting water temperature should be adjusted according to different seasons. Takethe climate of Shanghai for instance, it was investigated that the optimal setting watertemperature should be set above46℃,48.2℃and55.4℃, in summer, transitional season andwinter, respectively.
     (4) A new approach to energy consumption prediction of domestic air source heat pumpwater heater was presented based on grey system theory. Investigations with the modelindicated that grey system theory can be used to predict the domestic hot water heat andelectricity consumption, and satisfactory prediction accuracy can be obtained by the improvedgrey model. It can be found that, during the modeling, the samples could be applied in greysystem theory although they appeared unordered. Furthermore, the experimental resultindicated that correct accuracy can be assured only the data sample interval is no less thanfour weeks. Based on the improved model and weather data of Shanghai, the electricity costsaving, the monthly average heat and electricity consumption and the annual carbon emission reduction related to the use of the ASHPWH for the two typical families were evaluated andcompared with those of the conventional electric resistance water heater. It is noteworthy thatthe developed model requires few data in order to predict energy consumption and theprediction error is reasonable, hence some field test expenditure can be saved.
     (5) Combined with the experiments and simulation results, the air-sourced heat pumpdouble-stage water heating system was elaborated in this study. And then, the mathematicalrelationship between superheat and latent heat release in the condenser was analysized. Basedon the principle of thermodynamic law and theoretical model, the heat pump refrigerants wereselected and relative test-rig was established. In order to learn the thermodynamicperformance of this system, a new mathematical model of ASHPWH was developed andvalidated, in addition, the effect of different parameters to the system was investigated. Theexperimental results showed that the prototype could supply different temperature ranges hotwater and higher thermodynamic performance can be obtained. For instance, it can be appliedin the sites which consume domestic hot water and floor heating simultaneously. The resultsof modeling revealed that the most important factor which affected the system performancewas inlet water temperature of first condenser. Furthermore, the sensible heat could bereleased in the first condenser only when the inlet water temperature of first condenserincreased to certain critical value. With the increase of ambient temperature, the critical valuewould decrease simultaneously.
引文
[1]中国科学院可持续发展研究组.2000中国可持续发展战略报告.北京:科学出版社.2003.
    [2] DOE-EERE.2003Buildings Energy Databook, Washington, DC, August.
    [3]王如竹,代彦军.太阳能制冷.北京:化学工业出版社.2007.
    [4] Takao Nishimura.“Heat pumps––Status and trends” in Asia and the Pacific [J]. InternationalJournal of Refrigeration.2002(25):405–413.
    [5]黄文胜,罗清海,汤广发.热水器未来发展的一个主题与两个方向.建筑热能通风空调.2004,(23)6:35-39.
    [6]薛志峰.商业建筑节能技术与市场分析.清华同方技术通讯.2000(3):70–71.
    [7] Papakostas, K. T. et al. Residential hot water use patterns in Greece [J]. Solar Energy.1995,(54)6:369–374.
    [8]涂逢祥.建筑节能.北京:中国建筑工业出版社.2002.
    [9] Breembroek. G, Dieleman, M. Domestic heating and cooling distribution and ventilation systemsand their use with residential heat pumps.[M] IEA Heat Pump Center Analysis Report HPC-AR8.ISBN90-72741-40-8.2001.
    [10] Dokka.T.H, Hermstad. K. Energy efficient houses for the future-A Handbook for Planning ofPassive Houses and Low-Energy Houses. Norwegian final report from ECBCS Annex38, SustainableSolar Housing. SINTEF Building and Infrastructure.2006.
    [11]白雪莲,吴静怡,王如竹.基于热回收的游泳池热泵除湿供暖系统.太阳能学报.2004,25(6):838-844.
    [12] Morrison, G.L., Anderson, T., Behnia, M. Seasonal performance rating of heat pump water heaters[J]. Solar Energy.2004(76):147-152.
    [13] H.基恩.热泵,第二卷,电动热泵的应用.北京:机械工业出版社.1987.
    [14]吕灿仁.热泵及其在中国的应用前景.动力机械.1957,2.
    [15]马最良,刘泳红.在我国应用电动热泵的经济评价.哈尔滨建筑大学学报.1995,28(3):71-76.
    [16]王如竹,吴静怡,许煜雄.高效节电的空气能热泵热水器.上海电力.2004(6):500-502.
    [17] Rousseau P.G, Greyvenstein G. P. Enhancing the impact of heat pump water heaters in the SouthAfrican commercial sector [J]. Energy.2000,25:51-70.
    [18] Bodzin. Air-to-water heat pumps for the home [J]. Journal of Home Energy.1997,14(4):15-20.
    [19] O’Neal et al. Energy and economic effects of residential heat pump water heaters. CONF-790107-2,Oak Ridge National Laboratory, USA,1979.
    [20]广州能源所地源热泵技术应用取得突破.能源工程.2002,3:41.
    [21] Petter. Neks, H vard. Rekstad, G. Reza. Zakeri, Per Arne.Schiefloe. CO2-heat pump water heater:characteristics, system design and experimental results [J]. International Journal of Refrigeration.1998,21(3):172-179.
    [22] Bivens. D. B, et al. HCFC-22alternative for air conditioners and heat pumps [J]. ASHRAETransactions.1994,100(2):566-572.
    [23] Meyer, J. P., Greyvenstein, G. P. Hot water for homes in South Africa with heat pump [J]. Energy.1991,16(7):1039-1044.
    [24] Smith, F. J., Meyer, J. P. Investigation of the potential effect of zeotropic refrigerant mixture onperformance of a hot water heat pump [J]. ASHRAE Transactions.1998,104(1):387-394.
    [25] Spatz, M.W., Zheng, J. R-22Alternative refrigerant: Performance in unitary equipment [J].ASHRAE Transactions.1993,99(2):779-785.
    [26] Laue, J. Regional report Europe:“heat pumps-status and trends”[J]. International Journal ofRefrigeration.2002(25):414-420.
    [27] Jiang Huimin, Jiang Yiqiang, Wang Yang, Ma Zuiliang, Yao Yang. An experimental study on amodified air conditioner with a domestic hot water supply (ACDHWS)[J]. Energy.2006(31):1789-1803.
    [28] Gao Z.M., Mei, V.C., Chen, F.C. CFD solution and experimental testing of buoyancy-drivenconvection caused by condensers immersed in a water tank of HPWH. American Society ofMechanical Engineers, Advanced Energy Systems Division (Publication) AES,2003(43):33-38.
    [29] Mei, Vince C., Chen, Fang C., Domitrovic,Ronald E., Kilpatrick, Joe K., Carter, Julia A. A Studyof a Natural Convection Immersed Condenser Heat Pump Water Heater [J]. ASHRAE Transactional.2003(109) PART2:3-8.
    [30] Sloane, B.D., Krise, R.C., Kent, D.D. Energy Utilization Systems, Inc., Demonstration of a heatpump water heater. A subcontracted report, ORNL/Sub-7321/3,1979, Dec.
    [31]季杰,裴刚,何伟,董军,赵卫平.空调-热水器一体机制冷兼制热水模式的性能模拟何实验分析.暖通空调.2003,33(2):19-23.
    [32] Ji Jie, Pei Gang, Chow Tin-tai, He Wei, Zhang Aifeng, Dong Jun, Yi Hua. Performance ofmulti-function domestic heat-pump system [J]. Applied Thermal Energy.2005(80):307-326.
    [33] Cook, R.E. Water storage tank size requirements for residential heat pump/air conditionerdesuperheater heat recovery [J]. ASHRAE Trans.1990, PART2:715-719.
    [34] Wood, C.D., Meyer, J.P. Unsteady temperature distributions in vertical storage tanks heated withheat pumps [J]. Heat transfer engineering.1998,19(3):43-52.
    [35] Hiroml Hasegawa, et al. Development of two-stage compression and cascade heating heat pumpsystem for hot water supply [J]. ASHRAE Transactions.1996,102(1):248-256.
    [36]范亚云,夏朝凤,李军凯等热泵技术在太阳能利用中的实验研究.太阳能学报.2002,23(5):580-585.
    [37] Lee, Alex H.W., Jones, Jerold.W. Thermal performance of a residential desuperheater/water heatersystem [J]. Energy Conversion and Management.1996,37(4), April:389-397.
    [38] Xu Guoying, Zhang Xiaosong, Deng Shiming. A simulation study on the operating performance ofa solar-air source heat pump water heater [J]. Applied Thermal Engineering.2006(26):1257-1265.
    [39]张洁.空气源热泵热水器的季节性能优化与制冷剂流量特性研究.[硕士论文].上海:上海交通大学.2006.
    [40] Carl, C. Hiller. Dual-Tank Water-heating system options [J]. ASHTAE Trans.1996(102) PRAT1:1028-1037.
    [41] Huang, B.J., Lin, F.H. Compact and fast temperature-response heat pump water heater. ASME7-AA-26,1997,4.
    [42] Huang, B. J., Wang, J.H., Wu, J.H., Yang, P.E. A fast response heat pump water heater usingthermostat made from shape memory alloy [J]. Applied Thermal Engineering.2009(29):56-63.
    [43] Krakow, K. L., Lin, S. A solar source heat pump with refrigerant-cooled solar collectors for coldclimates [J]. Transactions of the ASHRAE.1982(88):417-439.
    [44]刘金平,张治涛,刘雪峰.空气源热泵热水器储水箱动态性能试验研究.太阳能学报.2007,28(5):472-476.
    [45] Blevins, R.D., Sloane, B.D., Valli, G. E.“Demonstration of a Heat-Pump Water Heater.”1981(2),June, ORNL/SUB-732114.
    [46]李胤,王永镖,李炳熙.空气源热泵热水机组季节性能的实验研究.节能技术.2005,129(1):54-55,68.
    [47] Meyer, J. P., Greyvenstein, G. P. Influence of height above sea level on the COP of air-source heatpumps used for water heating [J]. Heat Transfer Engineering.1993,14(2) Apr-Jun:44-50.
    [48] Robert, Zogg., John, Dieckmann., Roth.Kurt W, Brodrick. James. Heat pump water heaters [J].ASHRAE Journal.2005,47(3), March:98-99.
    [49] Mei, Vince C., Domitrovic, Ronald E., Brewer, Wayne H., Chen, Fang C. Experimental Study of anR407C Heat Pump Water Heater. ASHRAE WINTER MEETING CD, Technical and SymposiumPapers,2001:291-296.
    [50]李晓燕,闵泽生. R417a在热泵热水系统中替代R22的实验研究.制冷学报.2003(4):1-4.
    [51]贾荣林,鲁双,吴静怡. R417a在空气源热泵热水器中替代R22的实验研究.第五届全国制冷空调新技术研讨会论文集,2008.
    [52]孙彦昕.编译日本热泵热水器行业近期动态.家电科技.2004(7):28-31.
    [53] Leon,Liebenberg., Meyer, Josua P. Potential of the zeotropic mixture R-22/R-142b inhigh-temperature heat pump water heaters with capacity modulation [J]. ASHRAE Transactions,1998(104), PART1A4134,418-429.
    [54] Luca Cecchinato, Marco Corradi, Ezio Fornasieri, Lorenzo Zamboni. Carbon dioxide as refrigerantfor tap water heat pumps: A comparison with the traditional solution [J]. International Journal ofRefrigeration.2005(28):1250-1258.
    [55] Toscano, W.M., Harvey, A.C., Erickson, A.J. Research and development of an air-cycle heat pumpwater heater [J]. ASHRAE Trans.1982, PART1:603-615.
    [56] Shao Shuangquan, Shi Wenxing, Li Xianting, Ma Jie. A new inverter heat pump operated all yearround with domestic hot water [J]. Energy Conversion and Management.2004,(45):2255-2268.
    [57] Qureshi, T. Q., Tassou, S. A. Variable-speed capacity control in refrigeration systems [J]. AppliedThermal Engineering.1996,16(2):103-113.
    [58] Cao Feng, Fei Jiyou, Xing Ziwen, Li Liansheng. Study on performance of a heat pump water heaterusing suction stream liquid injection [J]. Applied Thermal Engineering.2009(29):2942-2948.
    [59] Mei, V. C., Domitrovic, Ronald E., Chen, Fang C., Kilpatrick, Joe K. A frost-less heat pump [J].ASHRAE.2005PART1:452-459.
    [60] Jiang Mingliu, Wu Jingyi, Wang Ruzhu, Sun Peng, Xu Yuxiong. Research on the control laws of theelectronic expansion valve for an air source heat pump water heater [J]. Building and Environment.2011,46(10):1954-1961.
    [61] Robert, Zogg., Murphy, William.J. Prototype design testing and analysis (Third-generationprototype fabrication and laboratory test report.) California Energy Commission,2004, April.500-04-018-A1.
    [62] Ying, W.M. Performance of room air conditioner used for cooling and hot water heating [J].ASHRAE Trans.1989,95(2):441-444.
    [63]朱焰.编译日本的热泵热水器市场.家电科技.2005(8):17-18.
    [64]丁国良,张春路.制冷空调装置仿真与优化.北京:科学出版社.2001.
    [65]丁国良,张春路.制冷空调装置智能仿真.北京:科学出版社.2002.
    [66] Long Jianyou, Zhu Dongsheng. Numerical and experimental study on heat pump water heater withPCM for thermal storage [J]. Energy and Buildings.2008,40(4):666-672.
    [67]张海峰,王勤,陈光明.相变储热型热泵热水器的设计及试验研究.制冷学报.2005,26(3):22-25.
    [68] Kara.Yusuf. Ali, Arslanturk.Cihat. Modeling of central domestic water heater for buildings [J].Applied Thermal Engineering.2004,24(2-3) February:269-279.
    [69] Stene J rn. Residential CO2heat pump system for combined space heating and hot water heating [J].International Journal of Refrigeration.2005(28):1259-1265.
    [70] Chaturvedi, S. K., Abazeri, M. Transient simulation of a capacity-modulated, direct-expansion,solar-assisted heat pump [J]. Solar Energy.1987(39):421-428.
    [71] Torab Hamid. Computer simulation of a heat pump water heater and experimental evaluation of adual-fuel water heater system [PhD Thesis]. Ann Arbor: University of Michigan.1984.
    [72] Morrison, G. L. Simulation of packaged solar heat-pump water heaters [J]. Solar Energy.1994,53:249-257.
    [73] Ito, S., Miura, N., Wang, K. Performance of a heat pump using direct expansion solar collectors [J].Solar Energy.1999,65(3):189-196.
    [74] Kim Mingsung, Kim Min Soo, Chung Jae Dong. Transient thermal behavior of a water heatersystem driven by a heat pump [J]. International Journal of Refrigeration.2004(27):415-421.
    [75] Xu, G.Y., Zhang, X.S., Deng, S.M. A simulation study on the operating performance of a solar-airsource heat pump water heater [J]. Applied Thermal Engineering.2006(26):1257-1265.
    [76]王伟,金苏敏,陈建中,武文斌.空气源热泵热水器双级压缩循环研究.暖通空调.2006,36(9):58-61.
    [77] Ryohei Yokoyama, Takeshi Shimizu, Koichi Ito, Kazuhisa Takemura. Influence of ambienttemperatures on performance of a CO2heat pump water heating system [J]. Energy.2007(32):388-398.
    [78] Cohn, S. M., Cardell, N. S.“Residential Energy Tax Credit Eligibility: A Case Study for the HeatPump Water Heater.” Draft ORNL/CON-71.
    [79] Morrison, L.S., Claridge, D.E. Heat pump water heaters with a comparison to solar domestic waterheaters [J]. ASHRAE.1982(3) PART1:597-601.
    [80] Aye, L., Charters, W. W. S., Chaichana, C. Solar heat pump systems for domestic hot water [J].Solar Energy.2002,73(3):169-175.
    [81] Meyer, J. P., Greyvenstein, Gideon P. Hot water for large residential units, hospitals and laundrieswith heat pumps in South Africa: a techno-economic analysis [J]. Energy Conversion andManagement.1992,33(2):135-143.
    [82]朱梅,许得潜,苏馈足.住宅新型热水供应系统研究.节能.2003,247(2):21-23.
    [83]王贤林,寇广孝,王汉青,宁勇飞.房间空调与供热水合用热泵的经济性初探.节能.2002,236(2):15-16.
    [84]江辉民,王洋,马最良,姚杨.带热水供应的家用空调器的探讨.建筑热能通风空调.2004,23(1):48-51.
    [85] Greyvenstein, G.P., Van Niekerk, W.M.K. Life-cycle cost comparison between heat pumps and solarwater heaters for the heating of domestic water in South Africa [J]. Journal of Energy in SouthernAfrica.1999,10(3), August:86-91.
    [86] Dentice d’Accadia.Massimo, Vanoli.Laura. Thermoeconomic optimization of the condenser in avapor compression heat pump [J]. International Journal of Refrigeration.2004(27):433-441.
    [87] U.S. Department of Energy. Energy efficiency standards for consumer products, Economic Analysis,DOE/CS-0169, Washington, DC,1980.
    [88] Louise Morrison, Swisher. Joel.“Analysis of the performance and space conditioning impacts ofdedicated heat pump water heaters,” Solar Engineering-1981, Proceeding of the ASME SystemsSimulation and economic Analysis Conference, Reno, NV,1981, April.
    [89] Tennessee Valley Authority,“Heat pump water heater field test,” Interim Report, Load ManagementBranch, Chattanooga, TN, Summer1980.
    [90] E-Tech, Inc.,“Efficiency II water heating heat pump, field test data,”(Manufacturer’s Literature),Atlanta, GA,1979.
    [91] Energy utilization systems, Inc.,“Research and development of a heat pump water heater,” FinalSummary Report (1,2), ORNL/SUB-732/1, Oak Ridge National Laboratory, Oak Ridge, TN.1980,August.
    [92] Pritchard, B.A., Beckman, W.A., Mitchell, J.W. Heat pump water heaters for restaurant applications[J]. International Journal of Ambient Energy.1991,12(2):59-68.
    [93] Oshinski, John. N., Abrams, Donald.W. Applications tests of commercial heat pump water heaters[J]. Energy Engineering Journal of the Association of Energy Engineers.1988,85(6) Oct-Nov:49-71.
    [94] Krusi, P. Heat pumps for domestic hot water in offices and a restaurant. Caddet Newsletter,1995(1)Mar:9-11.
    [95] Hiller, Carl C. Heat Pump Water heater Operating Experience in a Residence [J]. ASHRAE Trans.2002,108(PART2):793-799.
    [96] Cardinale, N., Piccininni, F., Stefanizzi, P. Economic optimization of low-flow solar domestic hotwater plants [J]. Renewable Energy.2003(28):1899-1914.
    [97] Anderson, T.N., Morrison, G.L. Effect of load pattern on solar-boosted heat pump water heaterperformance [J]. Solar Energy.2007(81):1386-1395.
    [98] Tomlinson, John. J., Murphy, Richard W. Measured performance and impacts of "Drop-in"residential heat pump water heaters. Annual Meeting-Technical and Symposium Papers, AmericanSociety of Heating, Refrigerating and Air-Conditioning Engineers.2004.629-635.
    [99] Dinse, David R., Henderson, Hugh. I., Richardson, John O. Field performance of HPWH preheatingfor water heating systems in schools. Annual Meeting-Technical and Symposium Papers, AmericanSociety of Heating, Refrigerating and Air-Conditioning Engineers.2004.656-661.
    [100] Liu Nanxi, Shi Lin, Han Lizhong, Zhu Mingshan. Moderately high temperature water sourceheat-pumps using a near-azeotropic refrigerant mixture [J]. Applied Energy.2005,80(4):435-447.
    [101]马一太,李敏霞,苏维诚,卢苇. CO2跨临界热泵双级加热热水系统运行参数分析与比较.天津大学学报.2003,36(4):447-451.
    [102]孙方田,马一太,王洪利.中高温热泵热水器新工质TJR01循环性能分析.天津大学学报.2007,40(2):153-156.
    [103] White, S.D., Yarrall, M.G., Cleland, D.J., Hedley, R.A. Modelling the performance of a transcriticalCO2heat pump for high temperature heating [J]. International Journal of Refrigeration.2002,25(4):479-486.
    [104] Willy Adriansyah. Combined air conditioning and tap water heating plant using CO2as refrigerant[J]. Energy and Buildings.2004,36(7):690-695.
    [105] Poggi, F., Macchi-Tejeda, H., Leducq, D., Bontemps, A. Refrigerant charge in refrigerating systemsand strategies of charge reduction [J]. International Journal of Refrigeration.2008,31(3):353-370.
    [106] Rankin, R., Rousseau, P.G. Demand side management in South Africa at industrial residence waterheating system using in line water heating methodology [J]. Energy Conversion and Management.2008,49(1):62-74.
    [107] Hepbasli, Arif., Kalinci,Yildiz. A review of heat pump water heating systems [J]. Renewable andSustainable Energy Reviews.2009,13(6,7):1211-1229.
    [108] Kline J, MoClintock FA. Describing uncertainties in single sample experiments. Mech Eng.1953,34:3-8.
    [109]周强泰.两相流动和热交换.北京:水利电力出版社.1990.
    [110] Chaturvedi, S. K., Abazeri, M. Transient simulation of a capacity-modulated, direct-expansion, solarassisted heat pump [J]. Solar Energy.1987,39(5):421-428.
    [111] Wang, CC., Du, YJ. Airside performance of herringbone fin-and-tube heat exchangers in wetconditions [J]. The Canadian Journal of Chemical Engineering.1999,77(6):1225-1230.
    [112] Klimenko, VV. A generalized correlation for two-phase forced flow heat transfer [J]. InternationalJournal of Heat and Mass Transfer.1988,31(3):541-552.
    [113] Jabardo, J.M. Saiz., Mamani, W.Gonzales., Ianella, M.R. Modeling and experimental evaluation ofan automotive air conditioning system with a variable capacity compressor [J]. International Journal ofRefrigeration,2002,25(8):1157-1172.
    [114]吴存真,张诗针,孙志坚.热力过程火用分析基础.杭州:浙江大学出版社,2000.
    [115] Ozgener, Onder., Hepbasli, Arif. Experimental performance analysis of a solar assistedground-source heat pump greenhouse heating system [J]. Energy and Buildings.2005,37(1):101-110.
    [116] Dikici, A., Akbulut, A. Performance characteristics and energy-exergy analysis of solar-assisted heatpump system [J]. Building and Environment.2008,43(11):1961-1972.
    [117] Bilgen, E., Takahashi, H. Exergy analysis and experimental study of heat pump systems [J]. Exergy.2002,2(4):259-265.
    [118] Koroneos, C., Spachos, T., Moussiopoulos, N. Exergy analysis of renewable energy sources [J].Renewable Energy.2003,28:295-310.
    [119] Jordan U, Vajen K. Realistic domestic hot-water profiles in different time scales. IEA SHC Task26:Solar Combisystems,2001.
    [120] Mandate to CEN and CENELEC for the elaboration and adoption of measurement standards forhousehold appliances: water-heaters, hot-water storage appliances and water-heating systems. Brussels:European Commission,2002.
    [121] ENV12977-2. Thermal-solar systems and components: custom-built systems, test methods.Brussels, CEN,2001.
    [122] Service Water Heating. ASHRAE Handbook-HVAC System and Applications. USA,1987.17-20.
    [123] Spur, R., Fiala, D., Nevrala, D., Probert, D. Influence of the domestic hot-water daily draw-offprofile on the performance of a hot-water store [J]. Applied Energy.2006,83(7):749-73.
    [124]王晟,陆振辉,蒋井中.燃气热水器与电热水器运行费用的比较.煤气与热力.2002,22(6):538-539.
    [125]李舒宏,武文彬,张小松,殷勇高.太阳能热泵热水装置试验研究与应用分析.东南大学学报.2005,35(1):82-85.
    [126] Selahattin Goktun. Selection of working fluids for high-temperature heat pumps [J]. Energy.1995,20(7):623-625.
    [127] Jung Dongsoo, Cho Youngmok, Park Kiho. Flow condensation heat transfer coefficients of R22,R134a, R407C, and R410A inside plain and microfin tubes [J]. International Journal of Refrigeration.2004,27(1):25-32.
    [128]朱明善,王鑫.制冷剂的过去、现状和未来.制冷学报.2002,(1):14-20.
    [129] Ozgener Leyla, Hepbasli Arif, Dincer Ibrahim. Energy and exergy analysis of geothermal districtheating systems: an application [J]. Building and Environment.2005,40(10):1309-1322.
    [130] Ozgener Leyla, Hepbasli Arif. Experimental performance analysis of a solar assisted ground-sourceheat pump greenhouse heating system [J]. Energy and Buildings.2005,37(1):101-110.
    [131] Lee, C.C., Teng, Y.J., Lu, D.C. An investigation of condensation heat transfer of superheated R22vapor in a horizontal tube. World conference on experimental heat transfer. Fluid Mechanics andThermodynamics,1991,1051-1057.
    [132] Webb R.L. Convective condensation of superheated vapor [J]. Journal of Heat Transfer.1998,120(2):418-421.
    [133]蒋能照.空调用热泵技术及应用.北京:机械工业出版社.1997.
    [134] Huang, B. J., Lee, C.P. Performance evaluation method of solar-assisted heat pump water heater [J].Applied Thermal Engeering.2007,27(1):568-575.
    [135]李郁武.直膨式太阳能热泵热水装置的优化分析与变容量运行研究.[博士论文].上海:上海交通大学.2007.
    [136] Deng, J.L. Control problems for grey system [J]. System and Control Letters.1982,5(1):288-294.
    [137] Akay, D., Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting ofTurkey [J]. Energy.2007,32(9):1670-1675.
    [138] Deng, J.L. Elements on Grey System Theory. Wuhan: Press of Huazhong University of Science andTechnology.2002.
    [139] Wang, X.M., Chen, Z.K., Yang,C.Z., Chen,Y.M. Gray predicting theory and application of energyconsumption of building heat-moisture system [J]. Building and Environment.1999,34(4):417-420.
    [140] Morita, H., Kase, T., Tamura, Y., Iwamoto, S. Interval prediction of annual maximum demand usinggrey dynamic model [J]. International Journal of Electrical Power and Energy Systems.1996,18(7):409-412.
    [141] Leephakpreeda, T. Grey prediction on indoor comfort temperature for HVAC systems [J]. ExpertSystem with Applications.2008,34(4):2284-2289.
    [142] Wang, Z.L., Cai, G.L. The problem in modeling of nonequidistance sequence and its improvement[J]. College Mathematics.2003,19(2):46-50.
    [143] He, S., Li,Y., Wang, R.Z. A new approach to performance analysis of ejector refrigeration systemusing grey system theory [J]. Applied Thermal Engineering.2009,29(8,9):1592-1597.
    [144] Shanghai, China. Climate (Average Weather) Data.http://www.climate-charts.com/Locations/p/PC58367.php.
    [145]潘自强,马忠海,毋涛等.我国煤电链和核电链对健康、环境和气候影响的比较.辐射防护.2001,21(3):130-144.
    [146]周彬彬,李红旗,赵志刚,张超甫.热泵热水器发展现状及性能试验研究.制冷.2007,26(3):35-39.
    [147]郭俊杰,吴静怡,王如竹,张洁,许煜雄.空气源热泵热水器实验研究和热力学分析.化工学报.2006,57(12).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700