用户名: 密码: 验证码:
砂加气混凝土砌块外墙自保温系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑是人类生存、生活和社会发展最基本的物资条件之一。据统计,我国建筑的总能耗大约占社会终端能耗的20.7%。而墙体材料是建筑材料的重要组成部分,用量占建筑材料的50%,成本占建筑成本的30%左右,产值为建材工业总产值的33%左右,能耗占建筑能耗的50%,所以应该努力研发并大量使用建筑节能材料。
     实现建筑节能最重要的就是要进行建筑墙体节能技术升级与改造,主要方式就是努力发展外墙保温技术和积极研发新型节能材料。然而,迄今为止,现有外墙保温系统都或多或少存在着技术上的局限性,有一些安全隐患。因此,研究建筑结构和建筑节能一体化是建设行业不断探讨和追求的发展方向。
     经过大量的研究和实践,现浇钢筋混凝土夹心节能结构、砌块保温夹心结构、轻钢框架夹心板、内浇外挂钢筋混凝土保温夹心板等新的结构体系迅速发展,成为建筑节能与结构一体化的生力军。然而,作为新型结构体系,在其技术开发的系统化、材料生产的标准化、推广应用规模化等方面存在着一定的问题。
     本文所指轻质加压砂加气混凝土砌块作为一种新型墙体材料,一方面具有很好保温隔热效能,另一方面具有很好承重功能,根据国家目前的节能要求,只有使用加气混凝土才能做到单一材料节能50%,目前它是唯一一种能满足不同节能目标的单一墙体材料。
     该轻质加压砂加气混凝土砌块是以钙质材料(砂)和硅质材料(水泥、石灰)为主要原料,利用发气剂在料浆中与其组分的化学反应而产生气体,经过混合、浇注、静停、销割、高压养护、出釜等工艺路径,从而形成具有轻质多孔结构的硅酸盐类制品。
     砂加气混凝土砌块主要是由无机材料组成,其材料密度小,传热系数低,吸水传湿比较慢,按照一定的工艺和技术措施,制备成内部形成轻质多孔结构较大体积的硅酸盐类制品,由于其材料特性与特殊的制品结构,造就了它有以下优点:质轻防火,隔音保温,抗渗抗震,环保节能,持久耐用,施工快捷和经济适用。
     国内外很多学者都开始研究如何对建筑物进行节能,从建筑物的材料性能、结构等方面进行了研究,也取得一些研究成果。加气混凝土虽然1898年就在国外问世,但直到1927年瑞典采用蒸压釜养护成功后才真正发展起来。经过几十年的发展,在瑞典、丹麦、德国、波兰、荷兰等国形成了六大生产工艺,世界各国通过对上述五国生产工艺的引进、吸收和发展,也慢慢形成了本国特有生产技术,生产国家从欧洲发展到100多个国家。目前,美国和日本,加气混凝土已成为主要的墙体材料,占墙体材料的35%左右,欧洲国家加气混凝土的用量占墙体材料的10%至30%之间。1931年,我国在上海设厂生产加气混凝土砌块,并用以建造了20层大楼,为当时国内最高。到了60年代,北京引进瑞典技术建成生产线,1976年国家实行墙改,加气混凝土工业在我国迅速发展起来。但是加气混凝土在建筑中应用的程度和保温隔热功能的发挥至今远未达到应有的水平。究其主要原因,一是加气混凝土砌块砌体特性和生产工艺有待进一步研究与优化;二是对建筑物的单一组成部分研究多,没有构造出一个整体的理论研究与实践研究。
     本文在前人工作的基础上,通过调查研究、室内试验、现场测试和数值分析,借助现代测试技术和手段,研究砂加气混凝土砌块的组成、结构与性能之间的相互关系,采用复合激发活化料浆技术进行配合比优化设计,通过对生产工艺参数的控制,生产符合《蒸压加气混凝土砌块》(GB11968-2006)标准要求的产品。研制满足AAC砌块砌体使用性能的专用砂浆,并能过仿真模拟计算与人工计算,找出砂加气混凝土砌块自保温外墙系统技术条件研究,建立达到不同建筑节能目标的砂加气混凝土砌块外墙自保温系统。
     论文具体开展了以下几方面工作:
     (1)砂加气混凝土砌块及其砌体结构特性研究。研究了砂加气混凝土砌块蒸压养护前和养护过程中的化学反应机理。通过大量的试验室研究,同时结合生产中的基准配合比,进行生产试验研究,根据原材料的性能特征对砂加气混凝土砌块的配合比进行了系统的研究,研制出了适合本地材料生产AAC砌块的最佳配合比,为工厂生产出优质AAC砌块提供技术支撑;开展了砂加气混凝土砌块的宏观气孔形貌、宏观气孔分布等观察与分析,同时进行透水性试验、找出吸水率与吸水时间的关系,并对其收缩特性进行实验与分析。
     (2)砂加气混凝土砌块墙体专用砂浆研究。本文对组成砂加气混凝土砌块墙体专用砂浆的原材料进行分析,开展配合比优化设计,通过正交试验,优化配方设计结果,研制出砂加气混凝土砌块专用的抹面抗裂砂浆、保温砂浆、专用砌筑粘结剂、专用墙面界面剂、专用保温抹灰砂浆和聚合物水泥抗裂砂浆等系列砂浆,具有重大的工程意义和现实意义。
     (3)砂加气混凝土砌块自保温外墙系统仿真模拟研究。对砂加气混凝上砌块与专用砂浆等共同组成的单元整体墙体,进行了力学性能和热学性能仿真模拟研究,找出了该系统在受力状况下容易出现裂缝的部位,并从理论角度上验证了此自保温系统的合理性。
     (4)砂加气混凝上砌块自保温外墙系统技术条件研究。开展砂加气混凝土砌块热工指标分析和含水率对其导热系数的影响,进行了自保温砌体灰缝影响系数计算分析,开展自保温外墙热工性能计算及自保温外墙系统传湿等方面的研究分析,提出建立砂加气混凝土砌块自保温外墙系统的技术条件。
     (5)工程应用研究。选取运用该研究的砂加气混凝土砌块和专用砂浆的一个工程项目,分别对此工程围护主体结构包括屋面、外墙、地面、外窗等构造做法及性能参数进行计算与分析,对建筑热工性能判断,从实际生产中进一步验证了砂加气混凝土砌块外墙自保温系统的合理性。
     本文创新之处在于以下几个方面:
     (1)通过对砌块特性与优化、砂浆的比较研究等,构建砌块与专用砂浆的整体系统,解决了砌体墙体力学稳定性和热学稳定性问题。提出建立砂加气混凝土砌块自保温外墙系统技术条件,建立达到不同建筑节能目标的外墙构造系统。
     (2)研制出专用抹面抗裂砂浆和系列专用系列保温砂浆、专用砌筑粘结剂、专用墙面界面剂、专用保温抹灰砂浆和聚合物水泥抗裂砂浆等。
     (3)采用Msc.Marc和Midas/Civil专业软件对“单元整体墙”进行仿真研究,进一步验证了砂加气混凝土砌块自保温外墙系统的合理性。
Building is the most basic material conditions for the human being survival, living and development of society. According to statistics, China's total building energy consumption accounts for roughly20.7%of the terminal energy consumption of the whole society. And wall materials are the important parts of building materials, and wall materials consumption accounts for50%of building materials consumption. Cost is around30%of the cost of building, energy consumption accounts for50%of building energy consumption. So it gets necessary to make great efforts in research of the extensive use of energy-efficient building materials.
     The most important of implement building energy efficiency is that we must carry on the transformation and upgrading of building wall energy saving technology, the main way is to try to develop exterior wall thermal insulation technology and new energy-saving materials. So far, however, the existing external insulation system has technical limitations more or less, and there are some potential safety hazards. So studying the building structure and building energy-saving integration is the development direction which construction industry constantly explores and pursuits.
     After a lot of research and practice, a new structural system, such as cast-in-place reinforced concrete sandwich energy structure, block insulation sandwich structure, light steel frame reinforced concrete insulation sandwich panels, within the pouring plug sandwich panels, developed rapidly, and that becomes the main force of the integration of building energy efficiency and structure. However, as a new structural system, there are still certain problems in systematization and standardization of the material production technology development, and large scale popularization and application.
     As a kind of new wall materials, light pressure sand aerated concrete block, on one hand, has the very good heat preservation and heat insulation performance, on the other hand, has the very good bearing capability. according to the country's current energy requirements it can only be done to save material energy by50%when aerated concrete is used as single-wall materials, now it is only one single wall materials that can meet the different efficiency targets.
     The light pressure sand aerated concrete block makes calcium materials and siliceous materials as the main raw material, using gas agent and its components in the slurry chemical reaction and gas generation, through mixing, pouring and quiet park, pin cutting, pressure maintenance and the kettle technology, thus forming a lightweight porous structure of silicate products.
     Sand aerated concrete block is primarily composed of inorganic material, the material density is small, low heat transfer coefficient, water absorption and wet slowly, according to certain technology and technical measures, the preparation of a lightweight porous structure is formed within larger volume of silicate products, because of its structure, material properties and product structure makes it have the following advantages:light fire prevention, sound insulation heat preservation, anti seismic, environmental protection and energy saving, durable, fast construction and economic and applicable.
     Many scholars at home and abroad have started to study how to save energy of buildings, from the structure of the material properties, structure, etc, and some research has made certain achievements. Aerated concrete was born in1898abroad, but it wasn't truly developed until1927, when Sweden adopted after the success of the curing reaction caldron in the aero concrete. After decades of development, in Sweden, Denmark, Germany, Poland, the Netherlands and other countries six major production process has formed, based on which, through introduction, absorption and development,each country gradually forms its own unique production technology, the number of production countries gets to more than100, changing from only Europe countries who can produce the materials earlier. At present, in the United States and Japan, the aerated concrete has become the main wall materials, accounting for about35%of the wall materials, the dosage of the aerated concrete in European countries accounts for between10%and30%of wall materials. In1931, China built factories to produce aerated concrete block in Shanghai, and built a20floors building, which was then the highest in China. In the60s, Beijing introduced Sweden technology to build in production line, in1976national reinforced reform in wall building, thus, aerated concrete industry developed rapidly in our country. But so far, the extent of the aerated concrete applied in the construction and function of heat preservation and heat insulation is far from proper level. Considering its main reasons, one is aerated concrete block masonry characteristics and production process needs further research and optimization; the other is that most study is about the single structure, without constructing a whole theory research and practice research.
     On the basis of predecessors' work, through the investigation and study, laboratory test, field test and numerical analysis, with the aid of modern testing techniques and methods, this paper researches sand aerated concrete block (AAC), the relationship between structure and properties, using compound excitation activated slurry technology to optimize mixture ratio design, through the control of the production process parameters, the production conforms to the autoclaved aerated concrete block (GB11968-2006) standard requirements of the product. By studying the AAC and masonry structure performance, put forward suggestions to prevent or control wall cracks and concrete empty drum. Research USES the thermal performance of AAC itself eventually supplemented by special (inorganic) masonry, plastering and anti-cracking mortar, through the construction of local thermal bridge area heat preservation and heat insulation measures, establishes different building energy conservation goal of sand aerated concrete block for the wall thermal insulation system.
     The specific work was carried out by the following aspects:
     (1) Sand aerated concrete block and masonry structure characteristic is researched. Research the chemical reaction mechanism in the sand aerated concrete block autoclave curing and curing process. Through a large number of laboratory studies, at the same time, combining with the production test of various mixing ratio, according to the performance characteristics of raw materials mixing proportion of sand autoclaved aerated concrete block, the optimal mixture ratio of local material production of AAC block is developed, providing technical support for the factory to produce high quality AAC block. By observing macro porosity of sand aerated concrete block, analyzing macro porosity distribution, and the water permeability tests which are carried out at the same time, to find out the relationship between water absorption and water absorption time
     (2) Special mortar about sand aerated concrete block wall is researched. this paper will develop sand aerated concrete block dedicated plaster anti-cracking mortar by analysis the raw materials composing of sand aerated concrete block wall dedicated mortar, through mix proportion optimization design, and the orthogonal experiment to optimize formula design, the finally, we get series of thermal insulation mortar of special sand aerated concrete block, masonry binder, metope interface agent, special thermal insulation coating and polymer cement mortar anti-cracking mortar, etc. this is of great engineering and realistic significance.
     (3) Simulate Sand aerated concrete block insulation exterior wall systems. Conduct a study of mechanical properties and thermal simulation, on the overall composed of sand and special mortar for aerated concrete block wall, identify where are prone to cracking about the parts of the system, verify the rationality of self thermal insulation system in theory.
     (4) The conditions of insulation system, for exterior wall made of Sand autoclaved aerated concrete block, researched. based on the analysis of sand aerated concrete block thermal indicators, the influence of moisture content on the coefficient of thermal conductivity, the thermal insulation masonry mortar joint effect coefficient, the heat preservation exterior wall thermal performance calculation and the wet heat preservation exterior wall system, the conditions of insulation system, for exterior wall made of Sand autoclaved aerated concrete block, is proposed, etc.
     (5) The engineering application is researched. Selecting an engineering project using the study of special sand aerated concrete block and mortar, respectively calculating and analyzing construction practices and the performance parameters of the main structure including roofing, external wall, ground, outside the window, and judging from building thermal performance, the wall thermal insulation system made from the sand aerated concrete block is further verified.
     This article innovation lies in the following aspects:
     (1)Through comparative research about the block characteristics, optimization and mortar, the masonry mechanical stability and thermodynamic stability problem is solved. The establishment of autoclaved aerated concrete block wall insulation technology is proposed, to build exterior wall structure system and achieve different building energy-saving targets.
     (2) A special plaster mortar and a series of special series of insulation mortar, including masonry walls, special adhesive for interface agents, special insulation plastering mortar and cement mortar, polymer, is developed.
     (3) Using Msc.Marc and Midas/Civil software to simulate the "unit wall ", the rationality of autoclaved aerated concrete block from the external wall insulation system is further verified.
引文
[1]刘凡.当代建筑节能研究[J].资源与人居环境,2010.
    [2]周峰.气候变化对建筑工程的影响研究[D].北京交通大学硕士论文,北京:北京交通大学,2009.
    [3]俞允凯.中国城镇建筑能耗现状、趋势与节能对策建议[D].长安大学硕士论文,西安:长安大学,2009.
    [4]聂玉强.国内外建筑节能技术现状与发展趋势[J].建设科技,2002,(07).
    [5]马丽华.节能建筑现状与发展前景探索[J].煤矿现代化,2006,(12).
    [6]白薇.采暖地区住宅外围护结构的节能设计[D].河北工业大学硕士论文,天津:河北工业大学,2007.
    [7]雷红鹏.民用建筑结构节能原理研究[D].天津大学硕士论文,天津:天津大学,2003.
    [8]曹艳华,谌莉,黄志全,林今民.使用加气混凝土砌块做为保温墙体的节能分析[J].广西轻工业,2010,(02).
    [9]傅剑.浙江省推广建筑节能障碍性因素分析及对策研究[D].浙江工业大学硕士论文,浙江:浙江工业大学,2007.
    [10]简文清,孙凤明,陈华.浅谈建筑外墙外保温在既有公共建筑改造中的应用[J].煤炭工程,2007,(11).
    [11]徐东明.建筑节能的现状与措施[J].科技与管理,2010.
    [12]马锦芝.建筑墙体节能保温方式探讨[J].装备制造,2009,(12).
    [13]韩永奇.我国外墙外保温材料产业存在问题与对策[J].住宅产业,2009,(01).
    [14]张桂平.浅谈保温材料在建筑外墙的应用[J].山西建筑,2009,(33).
    [15]邹源.夏热冬暖地区居住建筑热工性能及能耗的模拟分析[D].西安建筑科技大学硕士论文,西安:西安建筑科技大学,2004.
    [16]耿留住,李米玉.外墙保温材料技术浅谈[J].中小企业管理与科技(下旬刊),2010,(03).
    [17]宗加瑞.国内几种外墙保温材料和外墙保温形式对比[J].科技资讯,2007,(26).
    [18]许药.蒸压砂加气混凝土砌块在节能建筑工程外墙上的应用研究[D].同济大学硕士论文,上海:上海同济大学,2008.
    [19]张洪峰.山东省建筑节能管理研究[D].天津大学硕士论文,天津:天津大学,2005.
    [20]李进喜.外墙保温技术与能源节约[J].佳木斯大学学报(自然科学版),2006.
    [21]武鹏,徐娅,陈晓育.浅谈外墙外保温技术[J].山西建筑,2007,(06).
    [22]建筑节能网,三大技术理念简析-外墙外体温体系的基本组成及技术特点[J].聚氨脂,2008,(11).
    [23]鲁言.建筑节能:墙体保温材料何处何从[J].建筑,2006,(06).
    [24]李振波,孙雪梅.外墙外保温优点及其保温失效产生原因[J].砖瓦,2005,(04).
    [25]王宝春,刘志杰.外墙外保温失效的原因[J].山东建材,2006,(02).
    [26]李京,战峰.建筑外墙保温材料的火灾危险性与防火措施[J].安全、健康和环境,2009,(11).
    [27]郭关朝.节能建筑墙体青睐灰砂加气混凝土制品[J].天津建设科技,2004,(05).
    [28]江亿.我国建筑能耗趋势与节能重点[J].建设科技,2006,(04).
    [29]岳涛.免蒸压粉煤灰加气混凝土开发研究[D].重庆交通大学硕士论文,重庆:重庆大学,2010.
    [30]孙延文,韩启诚,郑世扬,于莎莎.水泥—石灰—硅砂加气混凝土的研制与生产[J].新型建筑材料,1995,(12).
    [31]陈佑棠.走出蒸压轻质砂加气混凝土砌块认识误区[J].天津建设科技,2005,(04).
    [32]肖力光.材料因素对保温砌筑砂浆性能的影响[J].墙材革新与建筑节能,2004,(02)
    [33]蒸压加气混凝土化学反应机理和微观结构[J].硅酸盐建筑制品,1976,(03).
    [34]王舫.低硅尾矿加气混凝土蒸养条件下反应机理的研究[D].武汉理工大学硕士论文,武汉:武汉理工大学,2003.
    [35]王武峰.蒸压砂加气混凝土砌块及其单一墙体结构特性研究[D].武汉理工大学硕士论文,武汉:武汉理工大学,2010.
    [36]陶红森.武汉市洪山乡葛化电厂高钙粉煤灰研制加气混凝土砌块的研究[D].武汉理工大学硕士论文,武汉:武汉理工大学,2004.
    [37]邢振影.脱硫渣在粉煤灰加气混凝土中的应用研究[D].河北工程大学硕士论文,邯郸:河北工程大学,2010.
    [38]杨永.免蒸压粉煤灰轻质墙体材料的试验研究[D].西安科技大学硕士论文,西安:西安科技大学,2006.
    [39]李方贤.粘上—硅质石屑—石灰体系水热合成特性及应用研究[D].武汉理工大学硕士论文,武汉:武汉理工大学,2006.
    [40]陈杰.B05级加气混凝土制备及其热工分析[D].武汉理工大学硕士论文,武汉:武汉理工大学,2009.
    [41]马磊霞.水镁石纤维增强加气混凝土工艺研究[D].长安大学硕士论文,西安:长安大学,2007.
    [42]陈靖.加气混凝土砌块墙体裂缝原因分析及防治[A].全国第九次防水材料技术交流大会论文集,2007.
    [43]郑杜军.石灰-砂加气混凝土的试验[J].建材工业信息,1997,(08).
    [44]Z.W.Fu,S.H.Zeng.Mix ratio test and basic property analysis for autoclaved,Trend in Civil Engineering,2012.
    [45]王种.蒸压砂加气混凝土砌块特性及其自保温墙体研究[D].武汉理工大学硕士论文,武汉:武汉理工大学,2012.
    [46]张敬堂,周卫国.蒸压加气混凝土砌块含水率对节能设计的影响[J].墙材革新与建筑节能,2008,(07).
    [47]杨芳.砂加气混凝土干燥收缩性能的试验研究[J].新型建筑材料,2006,(05).
    [48]王宝玉.抹面抗裂砂浆性能的试验研究[D].西安建筑科技大学硕士论文,西安:西安 建筑科技大学,2005.
    [49]肖力光,张慧萍,赵路.保温砌筑砂浆的研制[J].新型建筑材料,2002,(11).
    [50]杨俊晓.高性能保温砌筑砂浆的研究与应用[D].兰州理工大学硕士论文,兰州:兰州理工大学,2009.
    [51]陈书胜.加气混凝土砌块墙体裂缝的防治措施[J].中国新技术新产品,2009,(07).
    [52]花红艳.防止加气混凝土墙体空鼓开裂的措施[J].中国科技财富,2010.
    [53]Z.W.Fu,S.H.Zeng.The study of the Crack-resistant plaster Mortar of sand autolaved aerated concrete blocks,progress in industrial and civil engineering,2012.
    [54]赵武斌.浅谈陶粒加气混凝土墙材的特性[J].砖瓦,2010,(06).
    [55]黄秀平,黄梅英.粉煤灰加气混凝土强度试验研究[J].中小企业管理与科技(下旬刊),2010,(05).
    [56]齐迪.挤扩灌注桩承载机理及其在电力工程中的应用研究[D].吉林大学博士论文,长春:吉林大学,2006.
    [57]郑社军,高鹏臣.无水泥灰砂加气混凝土砌块试验[J].房材与应用.1997,(10).
    [58]孔祥香.脱硫石膏基加气混凝土的研究[D].武汉理工大学硕士论文,武汉:武汉理工大学,2009.
    [59]郑建文.朝天门长江大桥静力结构模型设计及稳定性分析[D].重庆大学硕士论文,重庆:重庆大学,2010.
    [60]方显.吉林兰旗松花江大桥结构模型试验及计算仿真分析[D].武汉科技大学硕士论文,武汉:武汉科技大学,2006
    [61]孙伟民.预应力混凝土砌块砌体抗裂性能的有限元分析[J].四川建筑科学研究,2006,29(4).
    [62]侯红梅.大跨径预应力混凝土箱梁预制过程中温度效应及孔道压浆技术研究[D].山东大学硕士论文,山东:山东大学,2009.
    [63]许根土.加气混凝土砌块的裂缝问题及防治措施[J].工程质量,2010,(06).
    [64]杨其镇.浅谈加气混凝土墙裂缝原因及防治[J].城市建设与商业网点,2009.
    [65]顾同曾.加气混凝土单一保温节能墙体体系研究[J].建设科技,2009,(02).
    [66]林恩凯.浅谈加气混凝土砌体墙体及粉刷层防裂[J].山西建筑,2009.
    [67]傅兆焕.浅谈建筑墙体防水质量控制与处理方法[J].科学与财富,2010.邓卫东.加气混凝土砌体施工质量控制[A].河南省土木建筑学会2009年学术大会论文集,2009
    [68]中华人民共和国国家标准《砌体结构设计规范》(GBJ7--88).北京:中国建筑工业出版社,1988.
    [69]中华人民共和国国家标准《蒸压加气混凝土砌块》(GB/T1968-1997).北京:中国建筑工业出版社,1997.
    [70]建筑材料应用技术规范,中国建筑工业出版社,1997.12.
    [71]陈晓.蒸压加气混凝土砌块墙体防治裂缝措施[J].工程与建设,2010,(08)
    [72]王翀.蒸压砂加气混凝土砌块的试验研究[J].应用技术,2012.
    [73]程蓬.影响蒸压灰砂加气混凝土抗压强度的因素研究[J].新型建筑材料,2004,(09).
    [74]李恩华.轻质砂加气混凝土砌块在工程中的使用[J].砖瓦,2005,(05).
    [75]王润丰.节能型墙材砂加气混凝土[J].砖瓦世界,2005,(08).
    [76]沈勤.《蒸压轻质砂加气混凝土砌块应用技术规程》的应用[J].天津建设科技,2005,(06).
    [77]汪守淳.E渣在加气混凝土中的应用[J].福建建材,2010,(03).
    [78]单俊鸿,邢振影,王军,张保珍,任胜鸽.脱硫渣用于加气混凝土生产的试验研究[J].河北工程大学学报(自然科学版),2010,(01).
    [79]张敏,蒋冬青,薛广龙.加气混凝土的使用性能[J].陕西建筑,2006,(06).
    [80]甘立炜,朱丽苹,张召述,夏举佩.磷渣活化制备加气混凝土的研究[J].昆明理工大学学报(理工版),2010,(03).
    [81]高连玉,赵成文.蒸压加气混凝土节能墙体工程应用研究(下)[J].墙材革新与建筑节能,2010,(05).
    [82]陈志聪,季韬,罗蜀榕,黄萍.加气混凝土砌块专用砂浆配合比研究[J].墙材革新与建筑节能,2009,(01).
    [83]齐子刚,姜勇.我国加气混凝土行业现状及发展趋势[J].墙材革新与建筑节能,2008,(01).
    [84]耿彦威,戚丁文.当前几种常见建筑保温材料介绍[J].辽宁建材,2009,(09).
    [85]孙晓旭.复合硅酸盐保温材料的性能及应用[J].热电技术,2008,(03).
    [86]何亦飞.蒸压加气混凝土砌块推广应用的问题研究[D].同济大学硕士论文,上海:上海同济大学,2005.
    [87]B.Trunk, G.Schober, A.K.Helbling, F.H.Wittmann. Fracture machanicsparameters of autoclaved aerated concrete[J]. Cement and Concrete Research29(1999)
    [88]N.Narayanan K.Ramamurthy Structure and properties of aerated concrete: areview[J]. Cement&Concrete Composites 22(2000)
    [89]A ndreaus U Failure criterion form asonry pane ls under in-plane loading [J]. Journal of S tructural Engineering,1996,122 (1)
    [90]成磊.浅析加气混凝上生产工艺路线设计[J].建筑砌块与砌块建筑,2009,(1).
    [91]Trunk B, Schober G, Helbling A K, e tal.Fracture mechanics param e ters of autoc laved ae rated concrete[J]. Cem ent and Concrete Research,1999.
    [92]N a rayanan N, R am am urthy K. Structure and properties of aerated concrete:a review [J]. Cement and Concrete Composites,2000,22 (5).
    [93]The Seismic D design Handbook, Edited by Famed Naeim,Stnictural Engineering Series,Van Nastrand Reinhold,NewYork,1989.
    [94]Seible, GA. Hegemier, A. Igarashi, CzR. Kingsly. Simulated Seismic-load Tests on Full-scale Five-story Masonry Building.Journal of Structural Engineering, ASCE, March 1994.70
    [95]苑金生.国外国外加气混凝土的生产状况[J].江西建材,2000,(01).
    [96]何亦飞.压加气混凝土推广应用的问题研究[J].同济大学,2005,(08).
    [97]张宏标.加气混凝土砌块墙体抹灰层空裂的原因及防治[J].建筑砌块与砌块建筑,2004,(04).
    [98]刘世福.加气混凝土砌块墙体抹灰开裂空鼓的成因及防治措施[J].施工技术研究与应用, 2002,(03).
    [99]袁光碧,黄英.加气混凝土砌块填充墙粉刷层空裂的分析与控制[J].天然气与石油,2003,(12)
    [100]邬时畅.加气混凝土砌块填充墙裂缝原因及防治[J],重庆建筑,2002,(02).
    [101]王铁梦.工程结构裂缝控制[M].北京:工程建筑出版社,1997.
    [102]李明友.基于极限变形理论的新型砌块墙体抗裂性能研究[J].新型建筑材料,2007,(03).
    [103]王培众.加气混凝土抹灰饰面质量分析与防治[J].工业建筑,1997,(10).
    [104]李敏,李惠民,白凤春,等.防止加气混凝土饰面裂缝的探讨[J].低温建筑技术,1996,(02).
    [105]黄光裕,王亚萍.加气混凝土墙面空裂的防治措施[J].山西建筑,2004,(12).
    [106]曾海燕,晏石林.杜拉纤维增强树脂砂浆的力学性能研究[J].江西建材,2005,(02).
    [107]刘元林.加气混凝土砌块专用砂浆的研制与应用[J].加气混凝土砌块工业,1993,(01).
    [108]陶有生.加气混凝砌筑抹灰灰浆的配制应用及粘结力试验[J].加气混凝土砌块工业,1990,(04).
    [109]王德洪.加气混凝土砌块墙体与其墙面抹灰层裂缝问题的探讨[J].浙江建筑,1999,(02).
    [110]Francisco Anuii-nco.Ph-D.The PEROB System Volume Ⅱ User's Manual.1979.1.
    [111]Wang suqing.Energy Efficiency in Buildings Should Be Done.Design and DesignManagemen t,2004.3.
    [112]Kus Hulya,Carlsson Toms, Microstructural investigations of naturally and artificially
    [113]weathered autoclaved aerated concrete, Cement and Concrete Research,2003.9.
    [114]David.Z Yankelevsky Itazhak AvnonAutoclaved Aerated Concrete Behavior Under Explosie
    [115][120]A.Laukaitis,B.Fiks.Acoustical properties of aerated autoclaved concrete. Applied Acoustics.2006.
    [1161]Mustafa Albayraka,Abdulkerim Yorukoglua,Serdar Karahana,Sema Atlhana,H.Ylmaz Aruntasb,Ismail Girginc.Influence of zeolite additive on properties of autoclaved aerat-ed concrete. Building and Environment.2007.
    [117]Chaoming Pang,Honggen Qin,et al.Experimental design and nondestructive detection technique of concrete.2006
    [118]Jianjun Zhang,Wen Chen. Time-Fractional Diffusion Equation For Chloride Ion Diffusion In The Reinforced Concrete[A]. Program of the Fifth Symposium on Fractional Differentiation and Its Applications[C].2012.
    [119]S. J. Chang."The influence of fly ash on the performance of aerated concrete products.". Building Block and Block building.2004.
    [120]N. Y. Mostafa."Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete". Journal of Cement and Concrete Research.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700