用户名: 密码: 验证码:
超滤处理高藻水过程中膜污染特性及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着饮用水水质卫生标准日趋严格,具备高效除污染效能的超滤技术在饮用水处理中将拥有广泛的应用前景。但在天然水体富营养化现象尚不能有效控制的背景下,藻类引起的膜污染会严重制约超滤净水工艺的推广。因此超滤膜处理高藻水过程中膜污染特性及其控制研究对超滤技术在饮用水处理领域的推广应用具有重要意义。针对这个问题,本论文以铜绿微囊藻作为天然高藻水的代表藻种,开展了藻源膜污染物的表征及其膜污染特性研究、超滤膜藻源污染的影响因素研究以及超滤膜藻源污染控制研究,并在此基础上结合天然高藻水进行了中试研究。
     藻细胞及其胞外有机物(Extracellular organic matter, EOM)是高藻水中主要的膜污染物。本论文通过高速冷冻离心法实现了藻细胞和EOM的分离,并利用基于比通量下降、膜污染可逆性分析和有机碳质量平衡的膜污染评价方法以及扫描电镜和傅里叶红外光谱等表征技术对藻细胞和EOM引起膜污染进行了详细的分析。实验结果表明:藻细胞和EOM都能引起严重的膜通量下降和不可逆膜污染。为了进一步阐释EOM引发不可逆膜污染的机理,本论文考察了EOM的荧光特性、分子量分布以及亲疏水特征,发现EOM由蛋白质类、多糖类和腐殖质类有机物组成,以大分子和亲水性为主要特征。在此基础上,本论文通过预过滤、投加钙离子以及XAD树脂预处理等方法改变EOM的特性,并通过超滤对照实验研究了EOM的性质对膜污染的影响。结果表明,EOM中大分子组分(100kDa-0.45μm)对膜污染的贡献最大;在中性条件下EOM呈负电性,静电相斥作用会阻止其吸附在膜表面上;EOM的疏水组分更易于吸附在膜表面形成不可逆膜污染,而亲水组分引起膜通量下降的能力远远大于疏水组分。此外,本论文还详细研究了溶解型EOM(dissolved EOM, dEOM)和附着型EOM(bound EOM, bEOM)的性质和膜污染作用,得出以下结论:bEOM主要由蛋白质类有机物组成,以大分子和疏水性为主要特征;而dEOM含有多糖类、蛋白质类以及腐殖质类有机物,具有较强的亲水性。dEOM在超滤过程中引起的膜通量下降比bEOM严重,但bEOM能引起更为严重的不可逆污染。bEOM和dEOM都能加重藻细胞引起的膜污染。就污染机理而言,滤饼层污染是藻细胞和EOM引发超滤膜污染的主要机理,膜孔堵塞和疏水吸附对藻源膜污染的形成也具有一定的贡献。
     超滤膜藻源污染的影响因素研究表明:碱性条件对藻细胞和EOM引起的膜污染都没有显著的影响,而酸性条件会导致藻细胞破裂及IOM的释放,加重膜污染。无机颗粒污染物会减轻藻细胞引起的膜通量下降和不可逆膜污染,但它对EOM引起的膜污染没有明显的影响。天然腐殖质类有机物会同时加重藻细胞和EOM引起的膜通量下降以及不可逆膜污染。超滤膜的截留分子量越大,藻细胞和EOM引起的膜通量下降均越严重,但是膜污染的可逆性越好。亲水性超滤膜抗藻源污染的能力强于疏水性超滤膜,疏水作用会促进藻细胞和EOM在膜表面吸附。采用浸没式超滤膜处理高藻水时,缩短反冲洗周期和增大反冲洗流量都有利于膜污染的控制;气水反冲洗会引起藻细胞的重新悬浮以及破裂,加重藻源膜污染控制。
     基于藻源膜污染的特性研究和影响因素研究的结果,本论文开展了高锰酸盐强化混凝缓解超滤膜藻源污染试验研究。结果表明:混凝预处理能减轻藻细胞和EOM引起的膜通量下降和不可逆膜污染,但过量投加混凝剂亦不利于膜污染的控制。KMnO_4强化混凝预处理均能明显减轻藻细胞和EOM引起的膜通量下降和不可逆膜污染,降低污染物负荷和改善滤饼层结构是主要的膜污染缓解机理。高锰酸盐复合药剂(Potassium permanganate composites,PPC)强化混凝和超滤组合工艺处理引黄水库高藻水的参数优化研究表明:PACl的最佳投量为4mg/L,PPC的最佳投量为0.6mg/L。组合工艺中试试验的结果表明:PPC强化混凝不仅能提高出水的水质,还能有效缓解高藻水超滤过程中的膜污染现象。
     本论文完成了高藻水超滤过程中膜污染物的表征及其膜污染特性研究,并提出了适于高藻水处理的高锰酸钾强化混凝预处理和超滤组合工艺。本论文的研究成果可以为季节性藻类爆发时超滤工艺水厂的运行提供技术支持。
Under the situations that the drinking water quality standard becomes more andmore stringent,ultrafiltration (UF) technology which is excellent in the removal ofpollutant will be widely applied in drinking water production. However, theeutrophication of natural water cannot be effectively controlled till now, and themembrane fouling accosicated with algae will significantly hinder the application ofUF technology. Therefore, the study on the mechanisms and control of UF membranefouling caused by algae is essential for the further promotion of UF technology. Toaddress this problem, the study on the membrane fouling characteristics during thetreatment of algae-rich water by UF membrane, the study on the influence factors ofmembrane fouling caused by algae, and the study on the membrane fouling control bythe pretreatment of permanganate enhanced coagulation were carried out.Cyanobacterium was chosen for these experiments. Based on these bench scale studies,a pilot study was also performed with the natural seasonal algae-rich reservoir water inthe lower reaches of yellow river.
     Since algal cells and extracellular organic matter (EOM) were the most importantfoulants in algae-rich water, they were previously separated by the high-speedrefrigerated centrifugation, and their fouling effects were subsequently evaluated bythe nominalized flux decline, reversibility analysis of membrane fouling and massbalance of organic carbon. Moreover, the scanning electron microscope (SEM) and thetotal reflectance-fourier transform infrared spectroscopy (ATR-FTIR) were also used toanalyze the membranes fouled by the algal cells or EOM. The experimental resultsindicated that both algal cells and EOM could lead to serious flux decline andirreversible membrane fouling. Meanwhile, fluorescence properties, molecular weight(MW) distribution and hydrophobicity/hydrophilicity of EOM were also studied. Theresults revealed that EOM was comprised of protein-like, polysaccharide-like andhumic-like substances and was characterized by the high-MW (>100kDa) and stronghydrophilicity. In addition,prefiltration, calcium addition and XAD fractionation wereemployed to change the characteristics of EOM, and then the effects of thesecharacteristics on the fouling effects of EOM were compared. It was found that thefraction of EOM between100kDa and0.45μm contributed a significant portion of the fouling. As EOM was negatively charged under neutral condition, the electrostaticrepulsive between foulant and membrane surface could prevent the organics fromadhering to the membrane. The hydrophobic organics in EOM tended to adhere tomembrane surface causing irreversible fouling, while the cake layer formed by thehydrophilic organics caused greater resistance to water flow, leading to faster fluxdecline during UF. Furthermore, EOM was classified into the dissolved EOM (dEOM)which was released into water and the bound EOM (bEOM) which surrounded thecells, and their characteristics and fouling effects were compared. It was found thatbEOM was mainly composed of protein-like substance and was characterized byhigh-MW and strong hydrophobicity, while that dEOM contained protein-like,polysaccharide-like and humic-like substances and was much more hydrophilic.Results of UF experiments indicated that dEOM caused more severe flux decline thanbEOM while that bEOM led to the membrane fouling with much worse reversibility.Both flux decline and irreversible membrane fouling caused by the cells wereaggravated when the cells were together with EOM. In term of fouling mechanisms,cake layer formation, hydrophobic adhesion and pore plugging were the mainmechanisms for membrane fouling when treating algae-rich water with UF.
     Study on the effects of solution chemistry on the fouling caused by algae showedthat the alkaline condition had not influence on the fouling effects of both algal cellsand EOM, while that the acid environment could lead to the cell lysis and exacerbatedthe flux decline and irreversible fouling. Moreover, the adhesion of EOM onmembrane could also be intensified in the acid environment. Inorganic particles couldalleviated the flux decline and irreversible fouling caused by algal cells, but they wereinefficient in reducing the membrane fouling related to EOM. Natural humic-likesubstance could aggravate the fouling caused by both algal cells and EOM. Theproperties of membrane were also found to apparently affect the membrane fouling.When the membranes with higher molecular weight cutoff (MWCO) were used to treatalgal cell solution or EOM solution, more severe flux decline but better reversibility offouling could be found. The hydrophilic membrane was found to be better inanti-fouling ability than hydrophobic membrane, and the hydrophobic interaction couldenhance the adhesion of algal cells and EOM to the membrane surface. It wasfavorable to increase the frequency and intensity of backwashing for the sake offouling control. However, the combined backwashing with air and water could not mitigate but aggravate the fouling, because it might caused the lysis of algal cells andthe resuspension of cell aggregates on the membrane surface during hydraulicbackwashing.
     Effects of different pretreatments such as coagulation, KMnO_4preoxidationenhanced coagulation and hydrated manganese dioxide (δ-MnO_2) enhancedcoagulation on the membrane fouling caused by algal cells or EOM were compared. Itwas found that coagulation pretreatment could reduce the fouling caused by both algalcells and EOM under the favorable coagulant dosage. However, the fouling woulddeteriorate when the coagulant was over dosed. In addition, KMnO_4preoxidationenhanced coagulation could dramatically reduce the fouling caused by algal cells orEOM. Reducing the foulant load and improving the structure of cake layer were themain mechanisms for fouling control. The pilot study of treating natural algae-richwater with the hybrid process of preoxidation enhanced coagulation and UF wascarried out. The results of optimizing experiment of the operational parametersindicated that the optimum dosages of PACl and PPC were4and0.6mg/L,respectively. The results of pilot experiment suggested that PPC preoxidation could notonly improve the quality of water, but also mitigate the membrane fouling during UFof natural algae-rich water.
     This thesis focused on the identification of foulants associated with algae and theeffects of their characteristics on UF membrane fouling. Based on these results, thehybrid process of premangnate preoxidation enhanced coagulation and UF wasconstructed for the treatment of algae-rich water. This thesis can provide supports forthe running and manage of the waterworks in which UF technology is used, when theseasonal algae bloom occurs.
引文
[1]李圭白,张杰等.水质工程学.中国建筑工业出版社.2005:1-15.
    [2]梁好,盛选军,刘传胜.饮用水安全保障技术[M].北京:化工工业出版社,2006:1-35.
    [3]中华人民共和国环境保护部.2010中国环境状况公报.中华人民共和国环境保护部.2009:4-17
    [4]甘日华. WHO和世界主要国家生活饮用水卫生标准介绍[J].中国卫生监督杂质,2007,14(5):353-356.
    [5]张岚,王丽,鄂学礼.国际饮用水水质标准现状及发展趋势[J].环境与健康杂质,2007,24(6):451-453.
    [6]刘强,王晓昌,李世俊,赵孝勇,万吉昌,付莎,杜于蛟.美国现行饮用水水质标准简介[J].给水排水,200632(11):106-121.
    [7]高娟,李贵宝,刘晓茹,华珞.国内外生活饮用水水质标准的现状与比对[J].水利技术监督,20053(1):61-64.
    [8]张媛媛,杨祝红,文高飞,陈国松,冯新,陆小华.我国饮用水水质标准研究进展及新增检测项目[J].中国公共卫生,2007,3(23):275-276.
    [9]李圭白,杨艳玲.超滤-第三代城市饮用水净化工艺的核心技术[J].供水技术,2007,1(1):1-312
    [10]裴义山,杨敏,郭召海,张昱,于建伟,张君枝,张金松.含溴水源水臭氧处理时溴酸盐的产生于控制[J].环境科学学报,200727(11):1767-1770.
    [11]田家宇.浸没式膜生物反应器组合工艺净化受污染水源水的研究[D].哈尔滨:哈尔滨工业大学.2009:
    [12]王海芳,晋日亚.膜分离技术应用于给水处理中的膜污染研究[J].环境工程学报,2008,9(2):1159-1163.
    [13]曲久辉.对未来中国饮用水水质主要问题的思考[J].给水排水,2011,37(4):1-3.
    [14]黑笑涵,徐顺清,马照民,李芳.持久性有机污染物的危害及污染现状.环境科学与管理[J],200732(5):38-42.
    [15]张琴,包丽颖,刘伟江,郁亚娟.我国饮用水水源内分泌干扰物的污染现状分析[J].环境科学与技术,201134(2):91-96.
    [16]周海东,黄霞,温向华.城市污水中有关新型为污染物PPCPs归趋研究的进展.环境工程学报[J],20071(12):1-9.
    [17]冉治霖,李绍峰,黄君礼,崔崇威,袁一星.氯气灭活饮用水中隐孢子虫的影响因素[J].中国环境科学,201030(6):786-790.
    [18] Janson A., O’Toole G., Singh M., Hong S.P. A273,000m3/d immersed membranesystem for aurface water treatment: pilot system results and full-scale system design
    [C]. IWA Specialized Conference on Water Environment-Membrane Technology.Seoul,2004:1531-1538
    [19]韩宏大,吕晓龙,陈杰.超滤膜技术在水厂中的应用[J].供水技术,2007,1(5):14-17.
    [20] Bixio D., De heyder B., Cikurel H., Muston M., Miska V., Joksimovic D.Municipal wastewater reclamation: where do we stand? An overview of treatmenttechnology and management practice [J]. Wat. Sci. Technol.,20055(1):77-85.
    [21] Leiknes T.O., degaard H. The Development of a Biofilm Membrane Bioreactor[J]. Desalination,2007202(1-3):135-143
    [22] Meng, F.G., Drews, A., Mehrez, R., Iversen, V., Ernst, M., Yang, F.L., Jekel, M.,Kraume, M. Occurrence, source, and fate of dissolved organic matter (DOM) in apilot-scale membrane bioreactor [J]. Environ. Sci. Technol.200943(23):8821-8826.
    [23] Lahoussine-Turdaud V. Fouling in tangential-flow ultrafiltration: the Effects ofcolloid size and coagulation pretreatment [J]. J. Membr. Sci.,199052(2):173-190.
    [24] Jermann D., Pronk W., Kagi R., Halbeisen M., Boller M. Influence of interactionsbetween NOM and particles on UF fouling mechanisms [J]. Wat. Res.200842(14):3870-3878.
    [25] Jermann D., Pronk W., Meylan S., Boller M. Interplay of different NOM foulingmechanisms during ultrafiltration for drinking water production [J]. Wat. Res.200741(8):1713-1722.
    [26] Aiken G.R., McKnight D.M., Thorn K.A., Thurman E.M. Isolation of hydrophilicorganic acids from water using nonionic macroporous resins [J]. Org. Geochem.199218(4):567-573.
    [27] Owen D.M., Amy G., Chowdhury Z.K., Paole R., McCoy G., Viscosil K. NOMcharacterization and treatability [J]. J. AWWA.199587(1):46-63.
    [28] Zularisam A.W., Ismail A.F., Salim R. Behaviors of natural organic matter inmembrane filtration for surface water treatment—a review [J].2006Desalination.Desalination.2006194(1-3):211-231.
    [29] Hong S., Elimelech M. Chemical and physical aspects of natural organic matterfouling of nanofiltration membranes [J]. J. Membr. Sci.1997132(2):159-181.
    [30] Jones K.L., O’Melia C.R. Protein and humic acid adsorption onto hydrophilicmembrane surface: effects of PH and ionic strength [J]. J. Membr. Sci.2000165(1):31-46.
    [31] Nilson J.A., DiGIano F.A.. Influence of NOM composition on nanofiltration [J].AWWA.199687(1):53-66.
    [32] Yuan W., Zydney A.L. Humic acid fouling during microfiltration [J]. J.Membr. Sci.1999157(1):1-12.
    [33] Yuan W., Zydney A.L. Humic acid fouling during ultrafiltration [J]. Environ. Sci.Technol.200034(24):5043-5050.
    [34] Lin C., Lin T., Hao O.J. Effects of humic substance characteristics on UFperformance [J]. Wat. Res.200034(4):1097-1106.
    [35] Chen Y., Dong B.Z., Gao N.Y., Fan J.C. Effects of coagulation pretreatment onfouling of an ultrafiltration membrane [J]. Desalination,2007204(1-3):181-188.
    [36] Carroll T., King S., Gray S.R., Bolto B.A., Booker N.A. The fouling ofmicrofiltration membranes by NOM after coagulation treatment [J]. Wat. Res.200034(11):2861-2868.
    [37] Amy G. Fundamental understanding of organic matter fouling of membranes [J].Desalination,2008231(1-3):44-51.
    [38] Speth T.F., Summers R.S. Gusses A.M. Nanofiltration foulants from a treatedsurface water [J]. Environ. Sci. Technol.199832(22):3612-3617.
    [39] Cho J., Amy G., Pellegrino J. Characterization of clean and natural organic matter(NOM) fouled NF and UF membranes and foulants characterization [J].Desalination,1998118(1-3):101-108.
    [40] Cho J., Amy G., Pellegrino J. Membrane filtraion of natural organic matter:factorsand mechnnisms affecting rejection and flux decline with charged ultrafiltrationmembrane [J]. J. Membr. Sci.2000164(1-2):89-110.
    [41] Fan L.H., J.L. Harris, Roddick F.A., Booker N.A. Influence of the characeteristicsof natural organic matter on the fouling of microfiltration membrances [J]. Wat. Res.200135(18):4455-4463.
    [42] Kimura K., Hane Y., Watanabe Y., Amy G., Ohkuma N. Irreversible membranefouling during ultrafiltration of surface water [J]. Wat. Res.200438(14-15):3431-3441.
    [43] Chiou Y.T., Hsieh M.L., Yeh H.H. Effects of algal extracellular polymer substanceson UF membrane fouling [J]. Desalination.2010250(2):648-652.
    [44] Kang S.T., Subramani A., Hoek E.M., Ceshusses M.A., Matsumoto M.R. Directobservation of biofouling in cross-flow microfiltration: Mechanisms of depositionand release [J]. J. Membr. Sci.2004244(1-2):151-165.
    [45] Fan L.H., Nguyen T., Roddick F.A., Harris J.L. Low-pressure membrane filtrationof secondary effluent in water reuse: pre-treatment for fouling reduction [J]. J.Membr.Sci.2008320(1-2):135-142.
    [46] Stoller M. On the Effects of flocculation as pretreatment process and particle sizedistribution for membrane fouling reduction [J]. Desalination.2009240(1-3):209-217.
    [47] Zhang L.L., Gu P., Zhong Z.J., Yang D., He W.J., Han H.D. Characterization oforganic matter and disinfection by-products in membrane backwash water fromdrinking water treatment [J]. J. Hazard. Mater.2009168(2-3):753-759.
    [48] Kabsch-Korbutowicz M. Impact of pre-coagulation on ultrafiltration processperformance [J]. Desalination.2006194(1-3):232-238.
    [49] Kabsch-Korbutowicz M. Application of ultrafiltration integrated with coagulationfor improved NOM removal [J]. Desalination.2005174(1):13-22.
    [50] Katsoufidou K., Yiantsios S.G., Karabelas A.J. An experimental study of UFmembrane fouling by humic acid and sodium alginate solutions:The Effects ofbackwashing on flux recovery [J]. Desalition.2008220(3):214-227.
    [51] Lee N., Amy G., Croue J.P., Buisson H. Identification and understanding of foulingin low-pressure membrane (MF/UF) filtration by natural organic matter (NOM)[J].Wat. Res.200438(20):4511-4523.
    [52] Zularisam A.W., Ismail A.F., Salim M.R., Sakinah M., Ozaki H. The effects ofnatural organic matter (NOM) fractions on fouling characteristics and flux recoveryof ultrafiltration membranes [J]. Desalination,2007212(1-3):191-208.
    [53] Kimura K., Maeda T., Yamamura H., Watanabe Y. Irreversible membrane fouling inmicrofiltration membranes filtering coagulated surface water [J]. J. Membr. Sci.2008320(1-2):356-362.
    [54] Guigui C., Rouch J.C., Durand-Bourlier L., Bonnelye V., Aptel P. Impact ofcoagulation condition on the in-line coagulation/UF process for drinking waterproduction [J]. Desalination,2002147(1-3):95-100.
    [55] Hwang K.J., Liu H.C. Cross-flow microfiltration of aggregated submicron particles[J]. J. Membr.Sci.2002201(1-2):137-148.
    [56] Lee C.W., Bae S.D., Han S.W., Kang L.S. Application of ultrafiltration hybridmebrane processes for reuse of secondary effluent [J]. Desalination,2007202(1-3):239-246.
    [57] Gabelich C.J., Yun T.I., Coffey B.M., Suffet I.H. Effects of aluminum sulfate andferric chloride coagulant residuals on polyamide membrane performance [J].Desalination,2002150(1):15-30.
    [58] Citulski J., Farahbakhsh K., Kent F., Zhou H.D. The impact of in-line coagulantaddition on fouling potential of secondary effluent at a pilot-scale immersedultrafiltration plant [J]. J. Membr. Sci.200835(1):311-318.
    [59] Zhao B.Q., Wang D.S., Li T., Chou W.K. Chow, Huang C. Influence of flocstructure on coagulation-microfiltration performance: Effects of Al speciationcharacteristics of PACls [J]. Sep. Purif. Technol.201072(1):22-27.
    [60] Hankins N., Price R., Debacher N.A. Process intensification during treatment ofNOM-laden raw upland waters: control and impact of the precoagulation regimeduring ultrafiltration [J]. Desalination and water treatment.20098(1-3):2-16.
    [61] Choo W.H., Choi S.J., Hwang E.D. Effects of coagulant types on textile wastewaterreclamation in a combined coagulation/ultrafiltration system [J]. Desalination2007(1-3):262-270.
    [62] Dennett K. E.; Amirtharajah, A.; Moran, T. F.; Gould, J. P. Coagulation: its effecton organic matter [J]. J. AWWA.199688(4):129-142;
    [63] White M.C.; Thompson, J. D., Harrington, G. W., Singer, P. C. Evaluating criteriafor enhanced coagulation compliance [J]. J. AWWA.199789(5):64-77,
    [64] Zularisam A.W., Ismail A.F., Salim M.R., Sakinah M., Matsuura T. Application ofcoagulation-ultrafiltration hybrid process for drinking water treatment: Optimizationof operating conditions using experimental design [J]. Sep. Purif. Technol.200965(2):193-210.
    [65] Baek S.O., Chang I.S. Pretreatment to control membrane fouling in membranefiltration of secondary effluents [J]. Desalination,2009244(1-3):153-163.
    [66] Wang J., Wang X.C. Ultrafiltration with in-line coagulation for the removal ofnatural humic acid and ebrane fouling mechanism [J]. J. Environ. Sci.200618(5):880-884.
    [67] Dong B.Z., Chen Y., Gao N.Y., Fan J.C. Effects of coagulation pretreatment on thefouling of ultrafiltration membrane [J]. J. Membr.Sci.200719(3):278-283.
    [68] Lee J.D., Lee S.H., Jo M.H., Park P.K., Lee C.H., Kwak J.W. Effects of coagulationconditions on membrane filtration characteristics in coagulation-microfiltrationprocess for water treatment [J]. Environ. Sci. Technol.200034(17):3780-3788.
    [69] Antelmi D., Cabane B., Meireles M., Aimar P. Cake collapse in pressure filtration[J]. Lanmuir.200117(22):7137-7144.
    [70] Cabane B., Meireles M., Aimar P. Cake collapse in frontal filtration of colloidalaggregates: mechanisms and consequences [J]. Desalination,2002146(1-3):155-161.
    [71] Xia S.J., Li X., Zhang Q.L., Xu B., Li G.B. Ultrafiltration of surface water withcoagulation pretreatment by streaming current control [J]. Desalination.2007204(1-3):351-358.
    [72] Choi K.Y.J., Dempsey B.A. In-line coagulation with low-pressure membranefiltration [J]. Wat. Res.200438(19):4271-4281.
    [73] Park P.K., Lee C., Choi S.J., Choo K.H., Kim S.H., Yoon C.H. Effects of removalof DOMs on the performance of a coagulation-UF mebrane system for drinkingwater production [J]. Desalination,2002145(1-3):237-245.
    [74] Cho M.H., Lee C.H., Lee S. Effects of flocculation conditions on membranepermeability in coagulation–microfiltration [J]. Desalination.2006191(1-3):386-396.
    [75] Liang H., Gong W.J., Li G.B. Performance evaltuation of water treatmentultrafiltration pilot plants treating algae-rich reservoir water [J]. Desalination,2008221(1-3):345-350.
    [76] Braghetta A., Price M., Hentz C., Stevenson E., Kolkhorst C. Impact ofpretreatment on UF operation and removal of dissolved organics [C]. Membranes inDrinking and Industrial Water Production II.2001:331-339.
    [77] Baudin L., Campos C., Laine J.M. Removal of organic matter by the PAC-UFprocess: first two years of a full-scale application [J]. Wat. Sci. Technol.20011(4):253-263.
    [78] Xia S.J., Liu Y.N., Li X., Yao J.J. Drinking water production by ultrafiltration ofsonghuajiang river with PAC absorption [J]. J. Environ. Sci.200719(5):536-539.
    [79] Yeh H.H., Tseng I.C., Kao S.J., Lai W.L., Chen J.J., Wang G.T., Lin S.H.Comparison of the finished water quality among an integrated membrane process,conventional and other advanced treatment processes [J]. Desalination.2000131(1-3):237-244.
    [80] Hitzfeld B.C., Hoger S.J., Dietrich D.R. Cyanobacterial toxins: removal duringdrinking water treatment and human risk assessment [J]. Environmental HealthPerspectives.2000108(1):113-122.
    [81] Lebeau T., Lelievre C., Buisson H., Cleret D., Venter L.W.V.D., Cote P. Immersedmembrane filtration for the production of drinking water cobination with PAC forNOM and SOCs removal [J]. Desalination,1998117(1-3):219-231
    [82] Campos C., Marinas B.J., Snoeyink V.L., Baudin I., Laine J.M. Adsorption of traceorganic compounds in CRISTAL process [J]. Desalination,1998117(1-3):265-271.
    [83] Mstsui Y., Colas F., Yuasa A. Removal of a synthetic organic chemical by PAC-UFsystemsⅡ:model application [J]. Wat. Res.200135(2):464-470.
    [84] Lee S.J. Choo K.H., Lee C.H. Conjunctive use of ultrafiltration with powderedactivated carbon adsorption for removal of synthetic and natural organic matter [J].Journal of Industrial and Engineering Chemistry,20006(6):357-364.
    [85] Snyder S.A., Adham S., Redding A.M., Cannon F., Carolis J.D., Oppenheimer J.,Wert E.C., Yoon Y. Role of membranes and activated carbon in the removal ofendocrine disruptors and pharmaceuticals [J]. Desalination,2007202(1-3):156-181.
    [86] Oh H., Yu M., Takizawa S., Ohgaki S. Evaluation of PAC behavior and foulingformation in an integrated PAC-UF membrane for surface water treatment [J].Desalination,2006192(1-3):54-62.
    [87] Goren U., Aharoni A., Kummel M., Messalem R., Mukmenev I., Brenner A., GitisV. Role of membrane pore size in tertiary flocculation/adsorption/ultrafiltrationtreatment of municipal wastewater [J]. Sep. Purif. Technol.200861(2):193-203.
    [88] Thiruvenkatachari R., Shim W.G., Lee J.W., Aim R.B., Moon H. A novel method ofpowdered activated carbon (PAC) pre-coated microfiltration (MF) hollow fiberhybrid membrane for domestic wastewater treatment [J]. Colloids and Surfaces A:Physicochem. Eng.2006274(1-3):24-33.
    [89] Akram A., Stuckey D.C. Flux and performance improvement in a submergedanaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC)[J]. Process Biochemistry,200843(1):93-102.
    [90] Shon H.K., Vigneswaran S., Kim I.S., Cho J., Ngo H.H. Effects of pretreatment onthe fouling of membranes: application in biologically treated sewage effluent [J]. J.Membr.Sci.2004234(1-2):111-120.
    [91] Jegatheesan V., Senaratne N., Steicke C., Kim S.H. Powdered activated carbon forfouling reduction of a membrane in a pilot-scale recalculating aquaculture system[J]. Desalination and Water Treatment,20095(1):1-5.
    [92] Omer S., Sun Y.X., Hao A.L., Gu p. Effects of PAC addition on MBR process fordrinking water treatment [J]. Sep. Purif. Technol.200858(3):320-327.
    [93] Tomaszewska M., Mozia S. Removal of organic matter from water by PAC-UFsystem [J]. Wat. Res.200236(16):4137-4143.
    [94] Mohiuddin M., Khan T., Lewandowski Z., Takizawa S., Yamada K., Katayama H.,Yamamoto K., Ohgaki S. Continuous and efficient removal of THMs fro river waterusing MF membrane combined with high dose of PAC [J]. Desalination,2009249(2):713-720.
    [95] Zhao Y., Gu P. Effects of powdered activated carbon dosage on retardingmembrane fouling in MBR [J]. Sep. Purif. Technol.200652(1):154-160.
    [96] Tsujimoto W., Kimura H., Izu T., Irie T. Membrane filtration and pretreatment byGAC [J]. Desalination,1998119(1-3):323-326.
    [97] Lin C.F., Huang Y.J. Hao O.J. Ultrafiltration processes for removing humicsubstances:Effects of molecular weight fractions and PAC treatment [J]. Wat. Res.199933(5):1252-1264.
    [98] Lin C.F., Liu S.H., Hao O.J. Effects of functional groups of humic substances onUF performance [J]. Wat. Res.200135(10):2395-2402.
    [99] Li C.W., Chen Y.S. Fouling of UF membrane by humic substance: Effects ofmolecular weight and powder-activated carbon (PAC) pretreatment [J]. Desalination,2004170(1):59-67.
    [100] Fabris R., Lee E.K., Chow C.W.K., Chen V., Drikas M. Pretreatments to reducefouling of low pressure microfiltration (MF) membranes [J]. J. Membr.Sci..2007289(1-2):231-240.
    [101] Lohwacharin J., Oguma K., Takizawa S. Effects of preadsorption by carbon blackon membrane filtration of natural organic matter [J]. Desalination and WaterTreatment,20096(1-3):74-79.
    [102] Tian J.Y., Liang H., Yang Y.L., Tian S., Li G.B. Membrane adsorption bioreactor(MABR) for treating slightly polluted surface water supplies: as compared tomembrane bioreactor(MBR)[J]. J. Membr.Sci.2008325(1):262-270.
    [103] Gai X.J.,Kim H.S. The role of powdered activated carbon in enhancing theperformance of membrane systems for water treatment [J]. Desalination,2008225(1-3):288-300.
    [104] Remy M., Potier V., Temmink H., Rulkens W. Why low powdered activatedcarbon addition reduces membrane fouling in MBRs [J]. Wat. Res.201044(3):861-867.
    [105] Kang S.K., Choo K.H. Why does a mineral oxide absorbent control fouling betterthan powdered activated carbon in hybrid ultrafiltration water treatment [J]. J.Membr.Sci.2010355(1-2):69-77.
    [106] Zhang M.M., Li C., Benjamin M.M., Chang Y.J. Fouling and natural organicmatter removal in adsobent/membrane system for drinking water [J]. Environ. Sci.Technol.200337(8):1663-1669.
    [107] Chang Y.J. Benjamin M.M. Iron oxide assorption and UF to remove NOM andcontrol fouling [J]. J. AWWA,199688(12):74-88.
    [108] Schlichter B., Mavrov V., Chmiel H. Study of a hybrid process combiningozonation and membrane filtration–filtration of model solutions [J]. Desalination,2003156(1-3):257-265.
    [109] Lehman S.G., Liu L. Application of ceramic membranes with pre-ozonation fortreatment of secondary wastewater effluent [J]. Wat. Res.200943(7):2020-2028.
    [110] Wang X.D., Wang L., Liu Y., Duan W.S. Ozonation pretreatment for ultrafiltrationof the secondary effluent [J]. J. Membr.Sci.2007287(2):187-191.
    [111] Karnik B.S., Davies S.H.R., Chen K.C, Jaglowski D.R., Baumann M.J. MastenS.J. Effects of ozonation on the permeate flux of nanocrystalline ceramicmembranes [J]. Wat. Res.200539(4):728-734.
    [112] Hyung H. Lee S., Yoon J., Lee CH. Effects of preozonation on flux and waterquality in ozonation-ultrafiltration hybrid system for water treatment [J].Ozone-science&engineering,200022(6):637-652.
    [113] Kim J., Davies S.H.R., Baumann M.J., Tarabara V.V., Masten S.J. Effects of ozonedosage and hydrodynamic conditions on the permeate flux in a hybridozonation-ceramic ultrafiltration system treating natural waters [J]. J. Membr. Sci.2008311(1-2):165-172.
    [114] Zhu H.T., Wen X.H., Huang X. Preozonation for dead-end microfiltration of thesecondary effluent: suspended particles and membrane fouling [J]. Desalination,2008231(1-3):166-174.
    [115] Zhu H.T., Wen X.H., Huang X., Noguchi M., Gan Y.P. Membrane fouling in thereclamation of secondary effluent with an ozone-membrane hybrid system [J]. Sep.Sci. Technol.200944(1):121-130.
    [116] Dixon M.B., Falconet C., Ho L., Chow C.W.K., O’Neill B.K., Newcombe G.Nanofiltration for the removal of algal metabolites and the effects of fouling [J]. Wat.Sci. Technol.,201061(5):1189-1199.
    [117] Li L., Gao N.Y., Deng Y., Yao J.J., Zhang K.J. Characterization of intracellular&extracellular organic matter (AOM) of Microcystic aeruginosa and formation ofAOM-associated disinfection byproducts and odors&taste compounds [J]. Wat.Res.,201246(4):1233-1240.
    [118] Dixon M.B., Richard Y., Ho L., Chow C.W.K., O’Neill B.K., Newcombe G. Acoagulation-powdered activated carbon-ultrafiltration–Multiple barrier approachfor removing toxins from two Australian cyanobacterial blooms [J]. J. Hazard. Mater.2011186(2-3):1553-1559.
    [119] Campinas M., Rosa M.J. The ionic strength effect on microcystin and naturalorganic matter surrogate adsorption onto PAC [J]. Journal of Colloid and Interfacescience,2006299(2):520-529.
    [120] Fang J.Y., Yang X., Ma J., Shang C., Zhao Q. Characterization of algal organicmatter and formation of DBPs from chlor(am)ination [J]. Wat. Res.201044(20):5897-5906.
    [121] Huang J., Graham N., Templeton M.R., Zhang Y., Collins C. Nieuwenhuijsen M.A comparison of the role of two blue-green algae in THM and HAA formation [J].Wat. Res.200943(12):3009-3018.
    [122] Henderson, R.K., Parsons, S.A., Jefferson, B. The impact of algal properties andpre-oxidation on solid-liquid separation of algae [J]. Wat. Res.200842(8-9):1827-1845.
    [123]马华,王振江,贾柏樱,刘志泉,王连旺.预氯化处理高藻原水的特性分析[J].供水技术,20071(4):23-26
    [124]马军,石颖,刘伟等.高铁酸盐复合药剂预氧化除藻效能研究[J].中国给水排水,199814(5):10-11.
    [125]石颖,马军,蔡伟明,李圭白.湖泊、水库水的强化混凝除藻的试验研究[J].环境科学学报,200121(2):251-253.
    [126]王付林,王晓昌,黄廷林,何文杰等.高锰酸钾和氯对高藻水的氧化助凝作用[J],中国给水排水,200420(3):9-11.
    [127]李秀芝.直接超滤工艺处理引黄水库水的试验研究[M].山东建筑大学工学硕士论文.2007:35-36.
    [128]马蓉,吕锡武,李发战.超滤组合工艺出水及消毒方法[J].水处理技术,2005,31(12):74-75
    [129]周征宇.曝气生物滤池-超滤组合型净水工艺[D].东南大学工学硕士论文.2002:20-30
    [130]吕锡武,乐林生,康兰英,王华成,吴今明,鲍士荣,朱光灿,张东.跌水曝气生物预处理-超滤组合饮用水净化工艺[P].中国发明专利CN1807277.2006
    [131] Kwon B., Park N., Cho J. Effects of algae on fouling and efficiency of UFmembranes [J]. Desalination,2005179(1-3):203-214.
    [132] Babel S., Takizawa S. Microfiltration membrane fouling and cake behavior duringalgal filtration [J]. Desalination,2010261(1-2):46-51.
    [133] Lee N., Amy G., Croue J.P. Low-pressure membrane fouling associated withallochthonous and autochthonous natural organic matter [J]. Wat. Res.200640(12):2357-2368.
    [134] Henderson R.K., Baker A., Parsons S.A., Jefferson B. Characterization ofalgogenic organic matter extracted from cyanobacteria, green algae and diatoms [J].Wat. Res.200842(13):3435-3445.
    [135] Her N., Amy G., Park H.R., Song M. Characterizing algogenic organic matter(AOM) and evaluating associated NF membrane fouling [J]. Wat. Res.200438(6):1427-1438.
    [136] Li T., Dong B.Z., Chu W.H. Characteristic of algogenic organic matter and itseffect on UF membrane fouling [J]. Water Sci.&Technol.201164(8):1685-1691.
    [137] Chow C.W.K., Panglisch S., House J., Drikas M., Burch M.D., Gimbel R. A studyof membrane filtration for the removal of cyanobacterial cells [J]. Aqua,199746(6):324-334.
    [138] Gijsbertson-Abrahamse A.J., Schmidt W., Chorus I., Heijman S.G.J. Removal ofcyanotoxins by ultrafiltration and nanofiltration [J]. J. Membr. Sci.2006276(1-2):252-259.
    [139] Campinas M., Rosa M.J. Evaluation of cyanobacterial cells removal and lysis byultrafiltration [J]. Sep. Purif. Technol.201070(3):345-353.
    [140] Ladner, D.A., Vardon, D.R., Clark, M.M. Effects of shear on microfiltration andultrafiltration fouling by marine bloom-forming algae. J. Membr. Sci.2010.356(1-2),33-43.
    [141] Babel S., Takizawa H., Ozaki H. Factors affecting seasonal variation of membranefiltration resistance caused by Chlorella algae [J]. Wat. Res.200236(5):1193-1202.
    [142] Babel S., Takizawa S. Chemical pretreatment for reduction of membrane foulingcaused by algae [J]. Desalination,2011274(1-3):171-176.
    [143] Liang H., Yang Y.L., Gong W.J., Li X., Li G.B. Effects of pretreatment bypermanganate/chlorine on algae fouling control for ultrafiltration (UF) membranesystem [J]. Desalination,2008222(1-3):74-80.
    [144] Chen J.J., Yeh H.H. The mechanisms of potassium permanganate on algaeremoval [J]. Wat. Res.200539(18):4420-4428.
    [145] Zhang Y., Tian J.Y., Nan J., Gao S.S., Liang H., Wang M.L., Li G.B. Effects ofPAC addition on immersed ultrafiltration for the treatment of algal-rich water [J]. J.Hazard. Mater.2011186(2-3):1415-1424.
    [146] Sheng G.P., Yu H.Q., Li X.Y., Extracellular polymeric substances (EPS) ofmicrobial aggregates in biological wastewater treatment systems: A review [J].Biotechnology Advances.201028(6):882-894.
    [147] Sheng G.P., Zhang M.L., Yu H.Q. Characterization of adsorption properties ofextracellular polymeric substances (EPS) extracted from sludge. Colloids andsurfaces B: Biointerfaces,200862(1):83-90.
    [148] Domínguez L., Rodríguez M., Prats D. Effects of different extraction methods onbound EPS from MBR sludges. PartⅠ: Influence of extraction methods overthree-dimensional EEM fluorescence spectroscopy fingerprint [J]. Desalination,2010261(1-3):19-26.
    [149] Comte S., Guibaud G., Baudu M. Effects of extraction method on EPS fromactivated sludge: An HPSEC investigation [J]. J. Hazard. Mater.2007140(1-2):129-137.
    [150] Thurman E.M., Malcolm R.L. Preparative isolation of aquatic humic substances[J]. Environ. Sci. Technol.1981,15(4):463-466.
    [151] Jarusutthirak C., Amy G., Croué J.P. Fouling characteristics of wastewatereffluent organic matter (EfOM) isolates on NF and UF membrane [J]. Desalination,2002145(1-3):247-255.
    [152] Labanowski J., Feuillade G. Dissolved organic matter: Precautions for the studyof hydrophilic substances using XAD resins [J]. Wat. Res.2011,45(1):315-327.
    [153] Ma H.Z., Allen H.E., Yin Y.J. Characterization of isolated fractions of dissolvedorganic matter from natural waters and a wastewater effluent [J]. Wat. Res.200135(4):985-996.
    [154] Her N., Amy G., Chung, J., Yoon, J., Yoom, Y. Characterizing dissolved organicmatter and evaluating associated nanofiltration membrane fouling [J]. Chemosphere.200870(3):495-502.
    [155] Chen W., Westerhoff P., Leenheer J.A. et al. Fluorescence excitation-emissionmatrix regional integration to quantify spectra for dissolved organic matter [J].Environ. Sci. Technol.200337(24):5701-5710.
    [156] Saadi I., Borisover M., Armon R., Laor Y. Monitoring of effluent DOMbiodegradation using fluorescence, UV and DOC measurements [J]. Chemosphere.200663(3):530-590.
    [157] Peiris R.H., Halle C., Budman H., Moresoli C., Peldszus S., Huck P.M., LeggeR.L. Identifying fouling events in a membrane-based drinking water treatmentprocess using principal component analysis of fluorescence excitation-emissionmatrices [J]. Wat. Res.201044(1):185-194.
    [158] Liu T., Chen Z.L., Yu W.Z., You S.J. Characterization of organic membranefoulants in a submerged membrane bioreactor with pre-ozonation usingthree-dimensional excitation-emission matrix fluorescence spectroscopy [J]. Wat.Res.201145(5):2111-2121.
    [159] Cobles P.G. Characterization of marine and terrestrial DOM in seawater usingexcitation-emission matrix spectroscopy [J]. Mar. Chem.199651(4):325-346.
    [160] Baker A. Fluorescence excitation-emission matrix characterization of somesewage-impacted rivers. Environ. Sci. Technol.200135(5):948-953.
    [161] Zhang X., Bishop P.L., Kinkle B.K. Comparison of extraction methods forquantifying extracellular polymers in biofilms [J]. Water Sci. Technol.199939(7):211-218.
    [162] Fr lund B., Griebe T., Nielsen P.H. Enzymatic activity in the activated sludge folcmatrix [J]. Appl. Microbiol. Biotechnol.199543(4):755-761.
    [163] Lee S., Elimelech M. Relating organic fouling of reverse osmosis membranes tointermolecular adhesion forces [J]. Environ. Sci. Technol.200640(3):980-987.
    [164] Lisiarini K., Chun W., Sun D.D., Leckie J.O. Fouling mechanism and resistanceanalyses of systems containing sodium alginate, calcium, alum and theircombination in dead-end fouling of nanofiltration membranes [J]. J. Membr. Sci.2009344(1-2):244-251.
    [165] Howe K.J., Marwah A., Chiu K.P., Adham S.S. Effects of coagulation on the sizeof MF and UF membrane foulants [J]. Environ. Sci. Technol.200640(24):7908-7913.
    [166] Bessiere Y., Jefferson B., Goslan E., Bacchin P. Effects ofhydrophilic/hydrophobic fractions of natural organic matter on irreversible foulingof membranes [J]. Desalination,2009249(1):182-187.
    [167] Maximous N., Nakhla G., Wan W., Comparative assessment of hydrophobic andhydrophilic membrane fouling in wastewater applications [J]. J. Membr. Sci.2009339(1-2):93-99.
    [168] Zou L., Vidali, I., Steele D., Michelmore A., Low S.P., Verberk J.Q.J.C. Surfacehydrophilic modification of RO membranes by plasma polymerization for loworganic fouling [J]. J. Membr. Sci.2011369(1-2):420-428.
    [169] Li X.Y., Yang S.F. Influence of loosely bound extracellular polymeric substances(EPS) on the flocculation, sedimentation and dewaterability of activated sludge [J].Wat. Res.200741(5):1022-1030.
    [170] Peterson H.G., Hrudey S.E., Cantin I.A., Perley T.R., Kenefick S.L. Physiologicaltoxicity, cell membrane damage and the release of dissolved organic carbon andgeosmin by Aphanizomenon Flos-Aquae after exposure to water treatmentchemicals [J]. Wat. Res.199529(6):1515-1523.
    [171] Pearl H.W. Interactioins with bacteria. In: Carr, N.G., Whitton, B.A., The biologyof cyanobacteria [M]. Blackwell Scientific Publications, Boston,1982. pp.441-447.
    [172] Edzwald J.K., Coagulation in drinking water treatment: Particles, organics andcoagulants [J]. Water Sci. Technol.199327(11):21-23.
    [173] Hoiczyk E., Hansel A. Cyanobacterial cell walls: News from an unusualprokaryotic envelope [J]. Journal of Bacteriology,2000182(5):1191-1199.
    [174] Nobles D.R., Romanovicz D.K., Brown R.M. Cellulose in cyanobacteria. Originof vascular plant cellulose synthase?[J] Plant Physiol.2001127(2):529-542.
    [175] Ven W.J.C.V.D., Sant K.V.T., Punt I.G.M., Zwijnenburg A., Kemperman A.J.B.,derMeer W.G.J.V., Wessling M., Hollow fiber dead-end ultrafiltration: Influence ofionic environment on filtration of alginates [J]. J. Membr. Sci.2008308(1-2):218-229.
    [176] Alazmi R., Nassehi V. Calcium cation interactions with polysaccharides andproteins in wastewater UF membrane fouling [J]. Membrane technology,20102010(1):6-12.
    [177] Abrahamse A.J., Lipreau C., Heijman S.G.J. Removal of divalent cations reducesfouling of ultrafiltration membranes [J]. J. Membr. Sci.2008323(1):153-158.
    [178] Brink P.V.D., Zwijnenburg A., Smith G., Temmink H., Loosdrecht M.V. Effects offree calcium concentration and ionic strength on alginate fouling in cross-flowmembrane filtration [J]. J. Membr. Sci.2009345(1-2),207-216.
    [179] Ahn W.Y., Kalinichev A.G., Clark M.M. Effects of background cations on thefouling of polyethersulfone membranes by natural organic matter: Experimental andmolecular modeling study [J]. J. Membr. Sci.2008309(1-2):128-140.
    [180] Shibutani T., Kitaura T., Ohmukai Y., Maruyama T., Nakatuka S., Watabe T.,Matsuyama H. Membrane fouling properties of hollow fiber membranes preparedfrom cellulose acetate derivatives [J]. J. Membr. Sci.2011376(1-2):102-109.
    [181] Kim H.C., Dempsey B.A. Effects of wastewater effluent organic materials onfouling in ultrafiltration [J]. Wat. Res.200842(13):3379-3384.
    [182] Contreras A.E., Kim A., Li Q.L. Combined fouling of nanofiltration membranes:Mechanisms and Effects of organic matter [J]. J. Membr. Sci.2009327(1-2):87-95.
    [183] Yao M., Zhang K.S., Cui L. Characterization of protein–polysaccharide ratios onmembrane fouling [J]. Desalination,2010259(1-3):11-16.
    [184] Parlanti E., W rz K., Geoffroy L., Lamotte M. Dissolved organic matterfluorescence spectroscopy as a tool to estimate biological activity in a coastal zonesubmitted to anthropogenic inputs [J]. Organic Geochemistry200031(12):1765-1781.
    [185] Ng H.Y., Tan T.W., Ong S.L. Membrane fouling of submerged membranebioreactors: Impact of mean cell residence time and the contributing factors [J].Environ. Sci. Technol.200640(8):2706-2713.
    [186] Fonseca A.C., Summers R.S., Greenberg A.R., Hernandez M.T. Extra-cellularpolysaccharides, soluble microbial products, and natural organic matter impact onnanofiltration membranes flux decline [J]. Environ. Sci. Technol.200741(7):2491-2497.
    [187] Park N., Kwon B., Kim I.S., Cho J. Biofouling potential of various NFmembranes with respect to bacteria and their soluble microbial products (SMP):Characterizations, flux decline, and transport parameters [J]. J. Membr. Sci.2005258(1-2):43-54.
    [188] Pivokonsky M., Kloucek O., Pivokonska L. Evaluation of the production,composition and aluminum and iron complexation of algogenic organic matter [J].Wat. Res.200640(16):3045-3052.
    [189] Lim Y.P., Mohammad A.W. Effects of solution chemistry on flux decline duringhigh concentration protein ultrafiltration through a hydrophilic membrane [J].Chemical Engineering Journal.2000199(1-3):91-97.
    [190] Gray S.R., Ritchie C.B., Tran T., Bolto B.A., Greenwood P., Busetti F., Allpike B.Effects of membrane character and solution chemistry on microfiltrationperformance. Wat. Res.200842(3):743-753.
    [191] Teixeira M.R., Rosa M.J. pH adjustment for seasonal control of UF fouling bynatural waters [J]. Desalination.2002151(2):165-175.
    [192] Wang Y.N., Tang C.Y. Nanofiltration Membrane Fouling by Oppositely hargedMacromolecules: Investigation on Flux Behavior, Foulant Mass Deposition, andSolute Rejection [J]. Environ. Sci. Technol.2001145(20):8941-8947.
    [193] Susanto H., Ulbricht M. Influence of ultrafltration membrane characteristics onadsorptive fouling with dextrans [J]. J. Membr. Sci.2005266(1-2):132-142.
    [194] Brinck J., J nsson A., J nsson S., B., Lindau J. Influence of pH on the adsorptivefouling of ultrafltration membranes by fatty acid [J]. J. Membr. Sci.2000164(1-2):187-194.
    [195] Sweity A., Ying W., Belfer S., Oron G., Herzberg M. pH effects on the adherenceand fouling propensity of extracellular polymeric substances in a membranebioreactor [J]. J. Membr. Sci.2011378(1-2):186-193.
    [196] Liang S., Zhao Y., Liu C., Song L. Effects of solution chemistry on the foulingpotential of dissolved organic matter in membrane bioreactor systems [J]. J. Membr.Sci.2008310(1-2):503-511.
    [197]曲久辉,贺泓,刘会娟.典型环境微界面及其对污染物环境行为的影响[J].环境科学学报.200929(1):2-10.
    [198] Hwang K. J., Liao C.Y., Tung K.L. Effects of membrane pore size on the particlefouling in membrane filtration [J]. Desalination.2008234(1-3):16-23.
    [199] Peeva P.D., Palupi A.E., Ulbricht M. Ultrafltration of humic acid solutionsthrough unmodifed and surface functionalized low-fouling polyethersulfonemembranes–Effects of feed properties, molecular weight cut-off and membranechemistry on fouling behavior and cleanability [J]. Sep. Purif. Technol.201181(2):124-133.
    [200] Jin L., Ong S.L., Ng H.Y. Comparison of fouling characteristics in differentpore-sized submerged ceramic membrane bioreactors [J]. Wat. Res.201044(20):5907-5918.
    [201] Xiao K., Wang X.M., Huang X., Waite T.D., Wen X.H. Combined Effects ofmembrane and foulant hydrophobicity and surface charge on adsorptive foulingduring microfltration [J]. J. Membr. Sci.2011373(1-2):140-151.
    [202] Ochoa N.A., Masuelli M., Marchese J. Effects of hydrophilicity on fouling of anemulsified oil wastewater with PVDF/PMMA membranes [J]. J. Membr. Sci.2003226(1-2):203-211.
    [203] J nsson C., J nsson A.S. Influence of the membrane material on the adsorptivefouling og ultrafiltration membranes [J]. J. Membr. Sci.200933(1-2):20-29.
    [204] Mendret J., Guigui C. Schmitz P., Cabassud C. In situ dynamic characterization offouling under different pressure conditions during dead-end filtration:Compressibility properties of particle cakes [J]. J. Membr. Sci.1995108(1-2):79-87.
    [205]齐鲁.浸没式超滤膜处理地表水的性能及膜污染控制研究[D].哈尔滨:哈尔滨工业大学.2010:123-125.
    [206]马军,石颖,陈忠林,张锦,李圭白.高锰酸盐复合药剂预氧化与预氯化除藻效能对比研究[J].给水排水.200026(9):25-28.
    [207]黄廷林,张红亮.微污染水源水预氧化除藻试验研究[J].给水排水.200430(8):1-5.
    [208]谢鹏超.化学预氧化对藻类特性及氯化消毒副产物生成规律的影响[D].哈尔滨:哈尔滨工业大学.2011:10-14.
    [209]王立宁,方晶云,马军,陈忠林.化学预氧化对藻类细胞结构的影响及其强化混凝除藻[J].东南大学学报(自然科学报).200535(1):182-185.
    [210]梁恒.水库水藻类的监测预测及其控制机理研究[D].哈尔滨:哈尔滨工业大学.2007:125-129.
    [211] Haberkamp J., Ruhl A.S., Ernes M., Jekel M. Impact of coagulation andadsorption on DOC fractions of secondary effluent and resulting fouling behavior inultrafiltration [J]. Wat. Res.200741(17):3794-3802.
    [212]陈卫,李圭白,邹浩春. PPC强化混凝除蓝藻除色度效果及致因研究[J].河海大学学报(自然科学版).200634(2):140-143
    [213]田家宇,陈伟雄,王威,陈忠林,李圭白.高锰酸钾复合药剂强化饮用水除污染生产性研究[J].环境工程学报.20071(7):42-46
    [214]纪洪杰,田希彬,郑玉清,蔡传义,于洁.混凝沉淀/PAC吸附/超滤处理引黄水库冬季原水[J].中国给水排水.200925(21):1-4.
    [215]李圭白,杨艳玲,马军.高锰酸钾去除天然水中微量有机污染物机理探讨[J].大连铁道学院学报.199819(2):1-4.
    [216]刘锐平,杨艳玲,夏圣骥等.水合二氧化锰界面特性及其除污染效能[J].环境化学.200524(3):338-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700