用户名: 密码: 验证码:
海上浮式风力机系统环境载荷及耦合运动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋风资源具有风速高、稳定的主导方向及能量收益高等优势。目前,世界上已建成的海上风电场因安装于近海水域,水深较浅,因而采用固定基础作为风力机支撑结构。但近海风资源能量相对深海风能资源而言,能量相对较小且开发区域有限,因而海上浮式风电场建设逐渐成为了海上风电场发展的新方向,海上浮式风力机也成为了国际研究热点。因此,本文以海上浮式风力机系统为研究对象,以空气动力学、水动力学等为理论基础,采用理论推导、数值模拟及模型试验三者相结合的方法,对海上浮式风力机系统的环境载荷及运动耦合问题开展了研究。这对全面深入地掌握海上浮式风力机系统的耦合机理、现象和规律具有重要的指导意义,也为海上浮式风力机系统的总体设计和系统性能分析奠定理论与技术基础。
     风力机气动性能研究方面,首先概述了水平轴变桨矩风力机的气动性能特点。然后基于湍流风谱模型描述了海上风电场的湍流特性,采用谐波合成法模拟了海上风电场的湍流风速;基于经典动量叶素理论和动态失速修正、动态尾流模型等计算了定常来流风速与非定常来流风速下的水平轴风力机的气动性能,并且采用PID控制技术对叶片的变速变桨过程进行了仿真。最后将湍流风速模拟、动量叶素理论及修正和控制系统仿真相结合,开发了水平轴变桨矩风力机定常与非定常气动性能(包括功率、载荷等参数)的数值计算程序,并以美国可再生能源实验室提出的5MW风力机为算例,对气动性能进行了模拟,模拟结果与Bladed软件吻合较好,验证了本文计算程序的可靠性。
     SPAR水动力性能研究方面,首先采用细长体理论预报了SPAR平台的波浪载荷,考虑了非线性波浪载荷对SPAR的影响,并且每个时间步的波浪载荷都是基于瞬时位置而得到的,然后建立了海上浮式风力机系统时域耦合的非线性运动方程,形成了SPAR浮式平台运动响应的时域预报方法,并以支撑5MW风力机的SPAR式风力机平台为算例,求解了SPAR在规则波和不规则波中的运动响应性能。
     风力机-浮式平台-锚泊系统耦合研究方面,主要研究内容与结果如下:
     1)首先阐释了浮式平台的运动响应对水平轴风力机的作用规律,分析了浮式平台对风轮载荷、功率等参数的影响规律。分析了波浪诱导的水平轴风力机的气动阻尼对浮式平台运动响应的影响规律。
     2)将锚泊系统简化为水平和垂直方向的非线性弹簧来模拟锚泊载荷,弹簧刚度由锚泊系统的静力分析得到。然后,综合风力机气动性能预报程序、浮式平台水动力性能预报程序、锚泊系统模拟的方法,形成了风力机-浮式平台-锚泊系统时域耦合程序。
     3)利用耦合程序,探索了风力机-浮式平台-锚泊系统之间的耦合机理,分析了随机海况条件下风力机功率、载荷及浮式平台的运动响应等参数的耦合特性。
     水动力模型试验研究方面,设计了5MW SPAR海上浮式风力机水动力试验模型,给出了海上浮式风力机的水动力性能试验方案。将试验结果与本文计算程序结果对比,吻合较好。试验中,通过对比带垂荡模型和不带垂荡板模型的运动响应测量值,分析了垂荡板对海上浮式风力机垂荡、纵摇等自由度运动性能的作用机理,并将垂荡板的自由衰减阻尼结果应用于理论计算中。
The offshore wind resources have many advantages that the wind speed is high andstable dominant direction, and high energy gain. Currently, due to waters depth is veryshallow in the installation site, wind turbines are supported by fixed infrastructure in theoffshore wind farms which have been built in the world. But offshore wind resource energy inshallow water is relatively small and the development area are limited, so floating offshorewind farm in deep water become a new development direction of offshore wind farms, andfloating offshore wind turbine(FOWT) has become an international research focus. Therefore,as the research object of floating offshore wind turbine, based on aerodynamic, hydrodynamictheory, environment loads of FOWT and coupling motion are studied by the combination oftheoretical analysis, numerical simulation and model test. It has important theoretical andpractical significance for deeply master coupled characteristic, the phenomena and laws offloating offshore wind turbine, and for provide theoretical methods and design techniques fordeveloping reliable platform concept design.
     In aerodynamic performance research of wind turbine, firstly, the aerodynamicperformance of the horizontal axis variable-pitch wind turbine are summarized.turbulencecharacteristics of offshore wind farm is described based on wind spectral, turbulent wind ofoffshore wind farm is simulated by means of harmonic synthesis method. Steady and unsteadyaerodynamic performances of horizontal axis wind turbine are calculated by blade elementtheory and dynamic stall, dynamic wake model. Variable-speed and variable-pitch process ofwind turbine are simulated by PID control technology. Finally, numerical calculation programof steady and unsteady aerodynamic performance (including power, load, and otherparameters) for a horizontal axis variable pitch wind turbine are developed by combinationsof the above three methods. The simulation agrees well with the result calculated by Bladedsoftware of a5MW horizontal-axis offshore wind turbine designed by National RenewableEnergy Laboratory.
     In SPAR hydrodynamic performance research, wave loads of SPAR platform arepredicted by use of Full Slender Formulation. Considering the influence of SPAR nonlinearwave loads, in each time step, wave loads are based on SPAR instantaneous position. Nonlinear motion equations of FOWT system are established in time domain. Finally,dynamic response of SPAR platform is developed in time-domain. The wave loads anddynamic response of SPAR are predicted by means of my codes under regular and irregularwave.
     In coupled research of wind turbine-platform-mooring system, the main research and theresults are as follows:
     1) Firstly, the effects on the horizontal axis wind turbine from platform motion areillustrated. The influence laws on Power and other parameters from platform are analyzed.Then variation laws of platform motion response caused by aerodynamic damping ofhorizontal axis wind turbine are analyzed.
     2) Mooring system loads are simulated by means of horizontal and vertical nonlinearspring. The spring stiffness is obtained by static analysis of the mooring system. Thenaerodynamic performance prediction program of wind turbine, hydrodynamic performanceprediction program of the platform and mooring system simulation method are integrated,coupled program of wind turbine-platform-mooring system are developed in time domain.
     3) By use of the coupling program, coupling characteristic of windturbine-platform-mooring system is investigated and coupling characteristics of power, loadand platform motion response parameter are analyzed under random sea conditions.
     In hydrodynamic model test, hydrodynamic model test of5MW SPAR FOWT isdesigned. Hydrodynamic performance model test scheme of FOWT is established and modeltest method of hydrodynamic performance is mastered. Test results agree with results bynumerical simulation. In the test, heave motion response measured value of model withoutheave plate and model with it are compared. heave plate decreased heave and pitch motionresponse. Then free decay damping results of model with heave plate are applied to thenumerical calculation.
引文
[1]郭越,王占坤.中欧海上风电产业发展比较.中外能源.2011;26
    [2]贺德馨.我国风工程研究现状与展望[J].力学与实践,2002,24(4):10-19
    [3]李晓燕,余志,海上风力发电进展[J].太阳能学报,2004,25(1):78-84
    [4]施鹏飞.21世纪风力发电前景[J].中国电力,2000(9):78-84
    [5]张德.风能资源数值模拟及其在中国风能资源评估中的应用研究[D].兰州:兰州大学博士学位论文,2009
    [6] John Twidell,Gaetano Gaudiosi,Offshore wind power[M]. United Kingdom,Multi-Science Publishing Co. Ltd,2009:2-14
    [7] Yi,Wang, Menglan, Duan, and Jinghong, Shang. Application of an AbandonedJacket for an Offshore Structure Base of Wind Turbine in Bohai Heavy IceConditions[C].Proceedings of the Nineteenth (2009) International Offshore and PolarEngineering Conference, Japan,2009:384389
    [8]林毅丰,东海大桥海上风电场风机地基基础特性及设计[J].上海电力,2007(2):153-157
    [9]全国最大海上风电场投产发电—人民网[R].2012
    [10] http://www.bluehgroup.com
    [11] http://www.statoil.com/en/Pages/default.aspx
    [12] http://sway.no/?page=166&show=177
    [13] Andrew R.H.David Witcher.Floating Offshore Wind Energy-A Review of the CurrentStatus and Assessment of the Prospects[J].wind engineering.2010:34(1)
    [14] P. J. Moriarty, G., Colorado. AeroDyn Theory Manual. National Renewable EnergyLaboratory,2005:2-3p.
    [15]王承煦,张源.风力发电[M].北京:中国电力出版社,2003:48-56
    [16]张希良.风能开发利用[M].北京:化学工业出版社,2005:12-26
    [17] Prandtl L,Tietjens O G.Applied hydro and aerodynamics[M].Dover Publications,1957
    [18] J.G.Leishman.T.S.Beddoes. A Semi-Empirical Model for Dynamic Stall.[J]Journal ofthe American Helicopter Spciety.1989:1(3-17)
    [19] Leishman,J.G,and Beddoes,T.S., A generalized method for unsteady airfoil behavior anddynamic stall using the indicial method,42"d Annual forum of the American helicoptersociety,Wahington DC,June1986
    [20] Beddoes,T.S.,A synthesis of unsteady aerodynamic effects including stall hysteresis,Vertica,1976,1:113-123
    [21] S. ye. Dynamic stall, simulated as a time lag of separation. Proceedings of the4thIEA Symposium on the Aerodynamics of Wind Turbines, Harwell Laboratory, Harwell,UK,1991:1-6p.
    [22] H. Snel, J. G. Schepers. Joint Investigation of Dynamic Inflow Effects andImplementation of an Engineering Method. ECN-C--94-107, Petten, The Netherlands,1995:3-4p
    [23] H. Glauert. Aerodynamic Theory. Springer press,1935:169–360p.
    [24] H. Glauert. A General Theory of the Autogyro. ARCR R&M No.1111,1926:2-5p.
    [25]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型--I.理论基础.太阳能学报,1999,20(4):392-397p.
    [26]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型--II.模型建立及应用.太阳能学报,2000,21(1):1-6p.
    [27]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型--III模型改进.太阳能学报,2000,20(2):145-150p.
    [28] Hernandez J.and A. Crespo. Aerodynamic calculation of the performance of horizontalaxis wind turbines and comparison with experimental results. Wind Eng,1987,11(4):177-187.
    [29] Robison D J.,F.N.Coton, R.A.McD.Galbraith and M.Vezza. The development of aprescribed wake model for the prediction of the aero街namic performance of horizontalaxis wind turbines in steady axial flow. GU AERO Reort-9403, University of Glasgow,1994.
    [30] Duque,E.P.N.,C.P.van Dam and S.C.Hughes.Navier-Stokes simulations of the NRELCombined Experiment Phase II rotor.In:A Coll.1999ASME Wind Energy Symp. Tech.Papers Presented37thAIAA Aerospace Sci.MeetingandExh.Reno,USA,AIAA-99-0037.1999
    [31] Suzuki H, Sato A. Load on turbine blade induced by motion of floating platform anddesign requirement for the platform[C]//Proceedings of the ASME26th InternationalConference on Ocean, Offshore and Arctic Engineering, San Diego: ASME,2007:1-7.
    [32] Larsen T J, Hanson T D. A method to avoid negative damped low frequent towervibrations for a floating, pitch controlled wind turbine [J]. Journal of Physics,2007,75(1):012073-1.
    [33] Skaare B, Hanson T D, Nielsen F G. Importance of control strategies on fatigue life offloating wind turbine[C]//Proceedings of the ASME26th International Conference onOcean, Offshore and Arctic Engineering, San Diego: ASME,2007:1-8.
    [34] Tong KC, Quarton DC, Standing R, Float-a Floating Offshore Wind Turbine System, inWind Energy Conversion, Proceeding of the1993BWEA Wind Energy Conference.York, England. p.407-413,1993.
    [35] Andrew R. Henderson, Bernard Bulder, Feasibility study of floating windfarms inshallow offshore sites, WIND ENGINEERING.2003.27(5): p.405-418
    [36] Jon.E.Withee.Fully Coupled Dynamic Analysis of a Floating Wind Turbine System.美国麻省理工大学博士学位论文.2004
    [37] Zhen-Zhe, C., N.J. Tarp-Johansen, and J.J. Jensen, Mechanical characteristics of somedeepwater floater designs for offshore wind turbines.2006.30(5): p.417-30.
    [38] Shim, S. and M.H. Kim. Rotor-floater-tether coupled dynamic analysis of offshorefloating wind turbines.18th2008International Offshore and Polar EngineeringConference, ISOPE2008, July6,2008.
    [39] Nielsen, F.G., T.D. Hanson, and B. Skaare. Integrated dynamic analysis of floatingoffshore wind turbines.25TH International Conference on Offshore Mechanics andArctic Engineering, OMAE2006.
    [40] http://www.force.dk/en
    [41] C.A. Cermelli, D.G. Roddier.MINIFLOAT: A Novel Concept of Minimal FloatingPlatform for Marginal Field Development[C].Proceedings of The Fourteenth (2004)International Offshore and Polar Engineering conference,Toulon,France,2004:538-545
    [42] Roddier D., Cermelli C., Weinstein A.. WindFloat: A Floating Foundation for OffshoreWind Turbines---Part I: Design Basis and Qualification Process. Proceedings of theASME200928th International Conference on Ocean, Offshore and Arctic Engineering,OMAE2009, May31-June5,2009, Honolulu, Hawaii, USA.
    [43] Roddier D., Cermelli C., Weinstein A.. WindFloat: A Floating Foundation for OffshoreWind Turbines---Part II: Hydrodynamic Analysis. Proceedings of the ASME200928thInternational Conference on Ocean, Offshore and Arctic Engineering, OMAE2009, May31-June5,2009, Honolulu, Hawaii, USA.
    [44] Aubault A., Cermelli C., Roddier D., Weinstein A., WindFloat: A Floating Foundationfor Offshore Wind Turbines---Part III: Structural Analysis. Proceedings of the ASME200928th International Conference on Ocean, Offshore and Arctic Engineering,OMAE2009, May31-June5,2009, Honolulu, Hawaii, USA.
    [45] Takeshi Ishihara, Pham Van Phuc, Hiroyuki Sukegawa, Kenji Shimada, TakumiOhyama. A study on the dynamic response of a semi-submersible floating offshore windturbine system Part1: A water tank test[C].Proc of12th ICWE2007, pp.2511-2518,2007.
    [46] Pham Van Phuc,Takeshi Ishihara. A study on the dynamic response of asemi-submersible floating offshore wind turbine system Part2: numericalsimulation[C].Proc of12th ICWE2007, pp.2511-2518,2007.
    [47] Utsunomiya, T., E. Nishida, and I. Sato. Wave response experiment on SPAR-typefloating bodies for offshore wind turbine.19th (2009) International OFFSHORE ANDPOLAR ENGINEERING CONFERENCE,2009.
    [48] Toshiki Chujo, Shigesuke Ishida, Yoshimasa Minami,Tadashi Nimura,Shunji Inoue.Model experiments on the motion of a spar type floating wind turbine in wind andwaves[C].The Netherlands:Proceedings of the ASME201130th InternationalConference on Ocean, Offshore and Arctic Engineering,2010:1-8
    [49] Takeshi Ishihara. Muhammad Bilal Waris. Hiroyuki Sukegawa.A Study on Influence ofHeave Plate on Dynamic Response of Floating Offshore Wind Turbine System[J].
    [50] Christian A., Cermelli, Dominique G. Roddier.Experimental and numerical investigaitonof the stabilizing effects of a water-entrapment plate on a deepwater minimal floatingplatform[C].Proceedings of the24th International Conference on Offshore Mechanicsand Arctic Engineering, Halkidiki,Greece,2005:1-9
    [51]阮胜福.海上风电浮式基础动力响应研究[D].天津:天津大学硕士论文,2010.6
    [52]李溢涵.海上风机Spar型浮式基础的运动特性研究[D].天津:天津大学硕士论文,2011.12
    [53]高伟,李春,刘全.上海理工大学深海漂浮式风力机的概念设计与气动—水动力耦合特性评述[J].能源研究与信息.2011,27(3):168-173.
    [54] HUANG Hu.ZHANG She-rong.Dynamic Analysis of Tension Leg Platform forOffshore Wind Turbine Support as Fluid-Structure Interaction[J]. Chinese OceanEngineering.2011,25(1):123–131
    [55]任年鑫.海上风力机气动特性及新型浮式系统[D].哈尔滨:哈尔滨工业大学博士论文.2011.9
    [56] G.R.Fulton, D.j.Malcolm,Semi-Submersible Platform and anchor Foundation Systemfor Wind Turbin Support[R]. NREL/SR-500-40282.2007
    [57] Hansen M H, Hansen A, Larsen T J, et al. Control design for a pitch-regulated, variablespeed wind turbine [J]. Ris-R-1500(EN). Ris National Laboratory Denmark.2005,1(1):1-85
    [58] Puneet Agarwal, Lance Manuel,On the modeling of nonlinear waves for prediction oflong-term offshore wind turbine loads[C].Proceedings of27th International Conferenceon Offshore Mechanics and Arctic Engineering, Portugal,2008:1-9
    [59] Christian Cermelli, Alexia Aubault and etc. Qualification of a Semi-SubmersibleFloating Foundation for Multi-Megawatt Wind Turbines[C].The2010OffshoreTechnology Conference, USA,2010:1-15
    [60] Zambrano T, Cready T M, Kiceniuk T, et al. Dynamic modeling of deepwater offshorewind turbine structures in Gulf of Mexico storm conditions[C].Proceedings of25thInternational Conference on Offshore Mechanics and Arctic Engineering, Hamburg,Germany,2006:1-6
    [61] Tong K.C. Technical and economic aspects of a floating offshore wind farm[J].Journalof Wind Engineering and Industrial Aerodynamics,1998(74-76):399-410
    [62] Utsunomiya, T., E. Nishida, and I. Sato. Wave response experiment on SPAR-typefloating bodies for offshore wind turbine.19th (2009) International OFFSHORE ANDPOLAR ENGINEERING CONFERENCE,2009.
    [63] Tomoaki Utsunomiya, Tomoki Sato, Hidekazu Matsukuma, Kiyokazu Yago.Experimental validation for motion of a spar–type floating offshore wind turbine using1/22.5scale model[C].Proceedings of the ASME200928th International Conference onOcean, Offshore and Arctic Engineering,2009:1-9
    [64] Utsunomiya T, Matsukuma H,Minoura S et al.On sea experiment of a hybrid spar forfloating offshore wind turbine using1/10scale model [C].Proceedings of the ASME201029th International Conference on Ocean, Offshore and Arctic Engineering,China,2010:1-8
    [65]袁海.兆瓦级风力机变桨矩控制系统的研究[D].上海:上海交通大学硕士论文,2007.
    [66]王浩.大型风力发电机组变桨距控制技术研究[D].:中南大学硕士论文,2010.
    [67]张希良.风能开发利用[M].北京:化学工业出版社,2005:12-26
    [68]刘雄,陈严,叶枝全.水平轴风力机气动生能计算模型[J].太阳能学报,2005,26(6):792-800
    [69]张仲柱,王会社,赵晓路,徐建中.水平轴风力机叶片气动性能研究[J].工程热物理学报,2007,28(5):781-783
    [70]王芳.水平轴风力机三维非定常气动特性计算研究.南京航空航天大学,2008:6-8p.
    [71] Du Z, Selig M S. The effect of rotation on the boundary layer of a wind turbine blade[J].Renewable Energy,2000,20:167-181.
    [72] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi. WIND ENERGY HANDBOOK. JohnWiley&Sons, Ltd,2001:11-29p.
    [73] Martin O.L.Aerodynamics of Wind Turbine.丹麦出版社.2008
    [74]中国船级社,海上移动平台入级与建造规范.人民交通出版社.2005.
    [75] Q. Ding, L. Zhu, H. Xiang. An efficient ergodic simulation of multivariate stochasticprocesses with spectral representation. Probabilistic Engineering Mechanics,2010,10:1-7p.
    [76]祝贺.基于修正冯—卡门谱输入的输电塔结构脉动风数值模拟[J].华东电力,2009,37(10):1702-1704p.
    [77]苏成,何滔.几种常用风谱模型的对比研究[C].全国结构计算理论与工程应用学术会议论文集.2003:260-264
    [78] Q. Ding, L. Zhu, H. Xiang. An efficient ergodic simulation of multivariate stochasticprocesses with spectral representation. Probabilistic Engineering Mechanics,2010,10:1-7p.
    [79] E. L. Petersen. Wind power meteorology. Part I: Climate and turbulence. Wind Energy,1998,1(1):2-22p.
    [80] CCS.风力发电机组规范.中国船级社,2008:3-6p.
    [81]贺艺华,蒋友宝,张建仁.考虑相位角的脉动风场模拟.工程力学,2008,25(12):
    [82]陈小波,李静,陈健云,海上风电机组随机风浪荷载时程数值计算[J].中国电机工程学报,2011,32(3):288-295
    [83]陈小波,陈健云,李静.海上风力发电塔脉动风速时程数值模拟[J].中国电机工程学报,2008,28(32):111-116
    [84] Deodatis G.Simulation ofergodic multivariate stochastic process[J].Journal ofEngineering Mechanics.ASCE.1996.122(8):778-787
    [85]叶杭冶.风力发电机组的控制技术(M).北京:机械工业出版社,2002
    [86]李强.兆瓦级风电机组变桨距机构及单击控制研究[M].沈阳:沈阳工业大学硕士学位论文.2003
    [87]黄朝阳.风力发电变桨距传动及控制系统的虚拟设计[M].西安:西安理工大学硕士学位论文.2005
    [88]林勇刚.大型风力机变桨距控制技术研究[M].浙江:浙江大学博士学位论文.2005
    [89] J. Jonkman, S. Butterfield, W. Musial, G. Scott. Definition of a5-MW Reference WindTurbine for Offshore System Development[R].Technical Report NREL/TP-500-38060,2009:2-16
    [90]白泉.朱浮声.康玉梅.风速时程数值模拟研究[J].辽宁科技学院学报.2006:8(1):1-4
    [91] Faltinsen, O., Sea loads on Ships and Offshore Structures [M].Cambridge UniversityPress, Cambridge, UK,1990.
    [92]刘岳元,冯铁成,刘应中.水动力学基础[M].上海:上海交通大学出版社,1990:208-230
    [93]戴遗山,段文洋.船舶在波浪中运动的势流理论[M].北京,国防工业出版社,2008
    [94]黄祥鹿.陆鑫森.海洋工程流体力学及结构动力响应[M]上海:上海交通大学出版社,1988
    [95]李远林.波浪理论及波浪载荷[M].广州:华南理工大学出版社,1994:137
    [96]邱大洪.波浪理论及其在工程上的应用[M].北京:高等教育出版社,1985:347-361
    [97]王超,海洋工程环境[M].天津:天津大学出版社,1993:77-84,98-128
    [98] Rainey RCT. New equation for calculating wave loads on offshore structures [J].FluidMech,1989,204:295-324
    [99] Ma Q W, Patel M H. On the non-linear forces acting on a floating spar platform inocean waves [J]. Applied Ocean Research:2001,23(1):29-40.
    [100]李积德.船舶耐波性[M].哈尔滨:哈尔工程大学出版社,1992:3-11,17-28
    [101] Longbin Tao, Daniel Dray.Hydrodynamic performance of solid and porous heaveplates[J]. Ocean Engineering.2008.35:1006-1014
    [102]王春宝.Spar平台垂荡板的水动力特性自由振动试验研究[D].大连理工大学硕士论文.2011
    [103] J. Jonkman,Definition of the Floating System for Phase IV of OC3[R].Technical ReportNREL/TP-500-47535,2010:1-5
    [104] Prislin, Blevins, R. D. and Halkyard. J. E. Viscous damping and added mass of solidsquare plates[C]. Proceedings17th International Conference on Owshore Engineeringand Arctic Engineering (OMAE), Lisbon, Portugal.1998
    [105] DNV-OS-J101, Design of Offshore Wind Turbine Structures[S].Det NorskeVeritas:2004,15-16
    [106]范菊,陈小红.季春群.转塔式系泊储油轮的动力分析[J].上海交通大学报.2000:(34):18-26
    [107]余龙,谭家华.深水中悬链线锚泊系统设计研究进展.中国海洋平台.2004;.第19卷第3期:24-29
    [108]顾春江.潮流电站选型及锚泊系统设计.哈尔滨工程大学硕士学位论文.2009:87
    [109] Madjid Karimirad.Stochastic Dynamic Response Analisisi of Spar-Type Wind Turbinewith Catenary or Taut Mooring System[D].Norwegian Uuniversity of science andtechnology.2011.
    [110]白雪平.深水半潜式平台系统设计研究.哈尔滨工程大学硕士论文.2008;67
    [111]潘斌.移动式平台设计.上海交通大学出版社,1995;81,90-91
    [112]詹明珠.潮流电站稳定性分析及锚泊系统的设计计算[M].哈尔滨工程大学硕士论文.2006;23-24
    [113]刘应中,廖国平,李谊乐,刘滋源,刘和东.系泊系统动力分析的时域方法[J].上海交通大学学报.2000:(34):1-8
    [114] ARIANE7Theoretical Manual,2011
    [115] BV.Classification of Mooring Systems for Permanent Offshore Units[S].法国船级社.2004:NI493ARIANE7Theoretical Manual,2011
    [116]杨建民,肖龙飞,盛振邦,海洋工程水动力学试验研究[M].上海:上海交通大学出版社,2008:32-33,54-59
    [117]郝亚平,船舶性能试验技术[M].北京:国防工业出版社,1988:2-8,132-133
    [118] Zhang Fan.Yang Jianmin.Numerical and Experimental Reseach on the GlobalPerformances of Cell-Truss Spar Platform[J] China Ocean Engineering.2007.21(4):561-576
    [119]季春群,黄祥鹿,海洋工程模型试验的要求及试验技术[J].中国海洋平台,1996,11(5):234-237
    [120]张火明.基于等效水深截断的深海平台混合模型试验方法研究[D].上海交通大学硕士论文.2005
    [121]苏一华.深海平台系泊系统模型截断及试验研究[D].上海交通大学硕士论文.2005
    [122]张帆,深海立柱式平台概念设计及水动力性能研究[D].上海:上海交通大学博士学位论文,2008:50-68
    [123]乔东升,欧进萍,深海半潜式平台锚泊系统等效水深截断模型试验设计研究[J],东南大学学报(自然科学版)),2009. S2:17-25
    [124]俞幸修.随机波浪及其工程应用.大连:大连理工大学出版社,2003:74-77.
    [125]陈新权,谭家华,基于迎浪中垂荡响应最小化得超深水半潜式平台形式优化[J],上海交通大学学报,2008,42(06):934-938
    [126]杨建民,张火明,肖龙飞,彭涛.一种新型深海海洋平台-几何形Spar和集成浮力桶的试验研究[J].海洋工程.2003,(11), Vo1.21,No.4,p23-28
    [127] D.E.纽兰.随机振动与谱分析理论[M].北京:机械工业出版社,1980:42-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700