用户名: 密码: 验证码:
小麦抗蚜机制研究及利用植物介导的RNAi创制小麦抗蚜新种质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦蚜是小麦生产中的主要害虫之一,麦蚜通过吸取植物汁液、排泄蜜露、分泌毒素、传播病害等方式严重影响小麦产量和品质。近年来,随着麦田水肥条件的改善和农业生态环境的变化,麦蚜危害日趋加重;我国麦蚜防治主要依靠杀虫剂,不仅有害人类健康,而且污染环境,甚至造成害虫产生抗药性。本文通过对孕穗期和灌浆期小麦品种(系)的田间抗蚜性进行评价,研究抗、感蚜小麦的生理生化机制,旨在为下一步抗蚜育种提供参考;并以植物介导的RNAi技术创制抗麦长管蚜新种质。主要研究内容如下:
     1、本研究在自然感虫的条件下,于2010/2011和2011/2012年度在中国农业大学上庄实验站采用蚜量比值法分别对孕穗期和灌浆期的150份小麦品种进行田间抗蚜性鉴定,结果表明,08P20、KOK1679、衡6632、冀38、临抗15号和漯麦4号等6个品种(系)在孕穗期和灌浆期达到中抗及以上水平。利用55对SSR标记检测了43份不同抗蚜性品种(系)的遗传多样性;其中等位变异共有370个,平均每个引物检测6.7个,等位变异范围为2~18个;多态性信息量在0.04~0.88之间,平均为0.65;43个小麦品种间的相对遗传距离在0.30~0.90之间,平均为0.52;SSR标记聚类分析在相对遗传距离为0.55处将43个材料分为5大类群。
     2、对小麦灌浆期生理机制、形态特征与其蚜量比值进行了研究,结果表明,小麦株高、穗长、小穗数、旗叶长和抽穗期与其蚜量比值呈显著相关,而旗叶宽、叶夹角、穗下节长、芒长和穗密度与抗蚜水平无显著相关。蚜虫侵染小麦植株后,旗叶游离脯氨酸含量、总酚含量、苯丙氨酸解氨酶活性均比对照增加,且增加量与抗蚜水平呈显著相关;蚜虫侵染会使旗叶可溶性糖含量和总蛋白含量比对照降低,且损失量与抗蚜水平呈显著相关。
     3、克隆了麦长管蚜羧酸酯酶基因(CbE E4)、脂蛋白脂肪酶基因(LPL)和嗅觉相关蛋白Gqa基因片段,CbE E4与豌豆蚜(GenBank:X74554)序列相似性为83.1%,LPL片段与豌豆蚜序列(GenBank:XM-0019507372; XM-001944358.2; FF314537)相似性分别为86.79%、75.37%、78.86%,Gqa基因与麦长管蚜序列(GenBank:EF638906)相似性为98%。麦长管蚜不同龄期(1龄、2龄、3龄、4龄、成虫)的CbE E4表达量呈上调趋势,而LPL基因和Gqa基因在不同龄期表达量无显著差异,且辛硫磷溶液能够诱导3个基因表达量比对照增加。
     转羧酸酯酶基因株系dsCbE1-5和dsCbE2-2使麦长管蚜CbE E4表达量显著降低、羧酸酯酶活性降低,并抑制了麦长管蚜繁殖量。麦长管蚜取食转脂蛋白脂肪酶基因株系dsLPL-1和dsLPL-4第5天时,能分别使麦长管蚜脂蛋白脂肪酶基因表达量比对照下调27.6%、11.4%;其中dsLPL-1能显著抑制麦长管蚜的繁殖率,而dsLPL-4对麦长管蚜繁殖率无显著影响。蚜虫取食转嗅觉相关蛋白基因株系dsGqa6-4叶片第1天、3天和7天,分别使Gqa基因表达量比对照下调6.8%、11.4%、12.8%,当麦长管蚜取食转基因株系第11天时,转基因株系上的蚜虫总量比对照减少了21%;当麦长管蚜取食转基因株系dsGqa6-4第15天时,蚜虫总量比对照减少了26%,但未达到显著水平。
Wheat aphid, an important pest in the wheat planting areas of China, can cause considerable damages to wheat production and quality by sucking plant juice, excreting of honeydew, and spreading virus, respectively. With the changes of irrigation conditions and agricultural ecological environment, the wheat production and quality were easily affected by aphids in recent years. The Chemical pesticides are now used to control the wheat aphids, which may lead to many problems about human health, environment and pest resistance in using pesticides. In order to offere reference to crop breeding for aphid resistance, resistant varieties and lines to aphid were screened from150materials in2010/11and2011/12in this study, and then their morphological characters and physiological traits were studied. The transgenic wheat lines for aphid-resistance were developed by using plant-mediated RNAi. The key results are as follows:
     1,150wheat accessions were evaluated to aphid at booting stage and grain-filling stage in field conditions in2010/11and2011/12in Shangzhuang experiment stations of china agricultural university. The results showed that6resistant varieties/lines,08P20, KOK1679, Heng6632, Ji38, Lingkang15and Luomai4showed resistant to aphids.43wheat varieties/lines with different degrees of aphid resistance were studied by55SSR markers to explore the genetic diversity. Fifty-five markers were screened and a total of370allelic variants were detected in43wheat varieties, ranging from2to18alleles per marker with an average value of6.7. The PIC (polymorphism information contents) for each polymorphic primer varied from0.02-0.91, with an average value of0.65. The mean genetic distance (GD) among43genotypes was0.52, varying from0.3-0.90, and43varieties were clustered into five groups under the genetic distance.
     2, There were correlation between Plant height, spike length, spikelet number, flag leaf length, growing period and the ratio of aphid number, but there were not associated between peduncle length, awn length, spikelet density and ratio of aphid numbers. The physiological responses of6wheat genotypes to Sitobion avense (Hemiptera:Aphidoidea) were examined in grain-filling stage. Soluble sugar content, protein content and chlorophyll content of6cultivars showed a general trend of reduction after aphid-infestation compared to their respective controls. However, it showed that there were relatively higher content of free proline, total phenols and phenylalanine ammonialyase activity after aphid-infestation, and the susceptible cultivars had greater increases compared to resistant cultivars.
     3, Three fragment of Carboxylesterase gene (CbE E4), Lipoprotein lipase gene (LPL) and Gqa gene were cloned by using specific primers. The fragment of CbE E4gene was sequenced, and its nucleotide sequence homology with Myzus persicae was83.1%. The fragment of LPL gene were sequenced and the nucleotide sequence homology with pea aphid (GenBank:XM-0019507372, XM-001944358.2, FF314537) LPL were86.79%,75.37%,78.86%, respectively. The cDNA sequences of Gqa fragment showed98.1%similarity to previous study (GenBank:EF638906). There was continuous higher expression in different development of aphid, but LPL and Gqa gene showed no significantly expression. Those3genes could be up-regulated by phoxim solution.
     The RNAi vectors were transferred to embryo callus of wheat by particle bombardment. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2and T3generation. Results revealed that continuous feeding of transgenic diet reduced CbE E4mRNA level in the fed S. avenae and inhibited CbE E4enzyme activity and insect reproduction. LPL mRNA level in the fed aphids was reduced of7.6%and11.4%afer feeding transgenic plants of dsLPL-1and dsLPL-4for five days, and the transgenic plant of dsLPL-1can significantly inhibited S. avenae reproduction, but the aphid reproduction was not affect by dsLPL-4. The Gqa mRNA level were respectively reduced of6.8%,11.4%and18.7%for1days,3days and7days; the reproduction of aphid was inhibited of21%and26%for11and15days on transgenic line of dsGqa6-4.
引文
[1]Acreman TM, Dixon AF. Developmental patterns in the wheat and resistance to cereal aphids. Crop Prot,1985,4(3): 322-328
    [2]Anderson JA, Churchill GA, Autrique JE, et al. Optimizing parental selection for genetic linkage maps. Genome, 1993,36(1):181-186
    [3]Ashrafi K, Chang FY, Watts JL, et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature,2003.421,268-272
    [4]Baum JA, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference. Nature Biotechnology,2007,25(11):1322-1326
    [5]Baulcombe D. RNA silencing in plants. Nature,2004,431:356-363
    [6]Betz F, Hammond B, Fuchs R. Safety and advantages of bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology,2000,32(2):156-173
    [7]Blain PG. Aspects of pesticide toxicology. Adverse Drug React Acute Poisoning Rev,1990,9(1-2):37-68
    [8]Bohidar K, Wratten SD, Niemeyer HM. Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Annals of Applied Biology,1986.109(1):193-198
    [9]Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002,296(5567):550-553
    [10]Brown P, Charlton A, Cuthbert M, et al. Identification of pesticide poisoning in wildlife. Journal of Chromatography A,1996,754(1-2):463-478
    [11]Bucher G, Scholten J, Klingler M. Parental RNAi in Tribolium(Coleoptera). Current Biology,2002.12,85-86.
    [12]Britt-Louise L, Eugene IS, Jan B, et al. dsRNA-mediated resistance to Beet Necrotic Yellow Vein Virus infections in sugar beet (Beta vulgaris L. ssp.vulgaris). Mol Breeding,2006,18:313-325
    [13]Browers WS, Nault LR, Webb RE, et al. Aphid alarm pheromone:isolation, identification. Aynthesis Science, 1972(177):11-21
    [14]Ciepiela A. Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomologia Experimentalis et Applicata,1989,51(3):269-275
    [15]Chung TC, Sun CN. Malathion and MIPC resistance in Nilaparvata lugens (Homoptera:Delphacidae). J. Econ. Ent., 1983,76:1-5
    [16]Chaman ME, Corcuera LJ, Zuniga GE, et al. Induction of soluble and cell wall peroxidases by aphid infestation in barley. J Agric Food Chem,2001,49(5):2249-53
    [17]Cheng D, Xia Q, Duan J, et al. Nuclear receptors in Bombyx mori:Insights into genomic structure and developmental expression. Insect Biochemistry and Molecular Biology,2008,38:1130-1137
    [18]Cruz J, Martin D, Belles X. Redundant ecdysis regulatory functions of three nuclear receptor HR3 isoforms in the direct-developing insect Blattella germanica. Mechanisms of Development,2007,124:180-189
    [19]Cygler M, Schrag JD, Sussman JL, et al. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases and related proteins. Protein Science,1993,366-382
    [20]Dahanukar A, Hallem E, Carlson J. Insect chemoreception. Current Opinion in Neurobiology,2005,15:423-430
    [21]Devonshire AL. The properties of a carboxylesterase from the peachpotato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochem. J.,1977,167:675-683
    [22]Dutton A, Klein H, Romeis J, et al. Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecological Entomology,2002,27(4):441-447
    [23]Dudley JW. Molecular markers in plant improvement:manipulation of genes affecting quantitative traits. Crop Sci, 1993,33:660-668
    [24]Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger:short RNAs that silence gene expression. Nature Reviews Molecular Cell Biology,2003,4:457-467
    [25]Eddleston M, Buckley NA, Eyer P, et al. Management of acute organophosphorus pesticide poisoning. The Lancet, 2008,371(9612):597-607
    [26]Farmer EE, Ryan CA. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell,1992,4:129-134
    [27]Fairbairn D, Cavallaro A, Bernard M, et al. Host-delivered RNAi:an effective strategy to silence genes in plant parasitic nematodes. Plant,2007,226:1525-1533
    [28]Felt-Bersma RJ, Klinkenberg-Knol EC, Meuwissen SG. Anorectal function investigations in incontinent and continent patients. Diseases of the Colon Rectum,1990,33(6):479-486
    [29]Ferry N, Edwards MG, Gatehouse JA, et al. Plant-insect interactions:molecular approaches to insect resistance. Current Opinion in Biotechnology,2004,15:155-161
    [30]Fire A, Xu S, Montgomery M k, et al. Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    [30]Field LM, Williamson MS, Moores GD, et al. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach potato aphid, Myzus persicae (Sulzer). Biochem. J.1993,294:569-574
    [31]Fischhoff DA, Bowdish KS, Perlak FJ, et al. Insect tolerant transgenic tomato plant. Bio Technology,1987,5:807-813
    [32]Francis MFN, Zilo LPS. A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochemistry and Molecular Biology,2009,39,157-160
    [33]Fraser AG, Kamath RS, Zipperlen P, et al. Functional genomic analysis of C.elegans chromosome I by systematic RNA interference. Nature,2000,408:325-330
    [34]Frost S, Harborne JB, King L. Identification of the flavonoids in five chemical races of cultivated barley. Hereditas, 1977,85:163-168
    [35]Gabrys B, Tjallingii WF. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl,2002,104(1):89-93
    [36]Gao C B, Li X M, Peng M, Cui B M. The construction of RNAi vector of Aphis gossypii Gene and the analysis of expression of dsRNA in transgenic tobacco inserted with RNAi vector. Chinese Agricultural Science Bulletin,2011, 27(15):229-232.(in china)
    [37]Givovich A, Niemeyer HM. Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomologia Experimentalls et Applicata,1995,74(2):115-119
    [38]Han Y. Wang Y, Bi JL, et al.Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol,2009.35(2):176-82
    [39]Havljckova, H. Some characteristics of flag leaves of two winter wheat cultivars infested by rose-grain aphid. Metopolophium dirhodum (waller). Plant.Dis.Prot,1995.102:530
    [40]Havlickova H, Cvikrova M, Eder J. Phenolic acids in wheat cultivars in relation to plant suitability for and response to cereal aphids. Zeitschrift fuer Pflanzenkranheiten and Pflanxcnxhutz,1996.103(5):535-542
    [41]Han Y, Wang Y, Bi JL, et al. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol,2009,35(2):176-82
    [42]Hale BK, Bale JS, Pritchard J, et al. Response of a sap feeding insect Phopalosiphum padi to drought stress in wild and cultivated plants. The ESA 2001 Annual Meeting-2001:An Entomological Odyssey of ESA. Http://esa. Confex. Com/esa/2001/techprogram/paper1423
    [43]Hemman EA, Gillingham D, Allison N. Evaluation of a Combat Medic Skills Validation Test. Military Medicine, 2007,172(8):843-851
    [44]Hemingway J, Karunaratne SH. Mosquito carboxylesterases:a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology,1998,12(1):1-12
    [45]Heidari M, Steppuhn H, Farzaneh F. Effects of nitrogen sources on nitrate reductase activity and some physiological parameters in psyllium(plantago ovata F.) under salinity stress. Journal of agricultural science and technology, 2011,5(4):412-419
    [46]Jeffrey SW, Mantouran RFC, Wright SW. Phytoplankton pigments in oceanography:guidelines to modern methods. UNESCO. Paris,1997
    [47]Jayawardena KGI, Karunaratne SHPP, Ketterman AJ, et al. Determination of the role of elevated B2 esterase in insecticide resistance in Culex quinquefasciatus (Diptera:Culicidae) from studies on the purified enzyme. Bull. Entomol. Res,1994,84:39-44
    [48]Kazemi MHv, Van Emden HE Partial antibiosis to Rhopalosiphum Padi in wheat and somephy to chemical correlations. Annals of Appli Biology,1992,121:1-9
    [49]Kalantidis K, Psaradakis S, Tabler M, et al. The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact, 2002,15,826-833
    [50]Karunaratne SHPP, Jayawardena KGI, Hemingway J, et al. Characterisation of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefasciatus. Boichem. J.,1993,294:575-579
    [51]Ketterman AJ, Karunaratne SHPP, Jayawardena KGI. Qualitative differences between populations of Culex quinquefasciatus in both the esterase A2 and B2 which are involved in insecticide resitance. Pestic Biochem. Physiol,1993,47:142-148
    [52]Kennedy JS, Fosbrooke IHM. The plant in the life of an aphid. In:van Emden (Editor), Insect/plant relationships. Symposia of the Royal Entomological Society of London,1972,6:129-140
    [53]Kumar M, Gupta GP, Rajam MV. Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J. Insect Physiol,2009,55:273-278
    [54]Lan WS, Jian C, Jiang H, et al. Expression and characterization of carboxylesterase E4 gene from peach-potatoaphid (Myzus persicae) for degradation of Carbaryl and Malathion. Biotechnology Letters,2005,27:1141-1146
    [55]Lee M. DNA markers in plant breeding programs. Advances in Agronomy,1995,55:265-344
    [56]Leszczynski B. Winter wheat resistance to the grain aphid Sitobion avenae(Fabr.)(Homoptera, Aphididae). Insect Sci,1987,18:251-254
    [57]Levin DA. The role of trichomes in plant defense. Q Rev Biol,1973,48:3-15
    [58]Leszczynski B. Plant allelochemicals in aphids management. Basic and Applied Aspects,1999, pp:285-320
    [59]Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25(4):402-408
    [60]Liu XL, Yang XF, Wang CY, et al. Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273. Theor Appl Genet,2010,124:287-293
    [61]Lozzia GC, Furlanis C, Manachini B, et al. Effects of Bt corn on Rhopalosiphum padi L. (Rhynchota Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera Chrysopidae) Bollettino di Zoologia Agraria e di Bachicoltura,1998,30(2):153-164
    [62]Lowe HJB. Grain aphid infestations of winter wheat variety trials. Ann Appl Bio,1985,106:591-594
    [63]Lisa D, Franzen, Andrea R. et al. Physiological responses of wheat and barley to Russian wheat aphid, Diuraphis noxia (Mordvilko) and bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera:Aphididae). Arthropod-Plant Interactions,2008,2:227-235
    [64]Li SJ, Wu YQ, Liu AZ, et al. Studies on biochemical mechanism of resistance to phopalosiphum padi on wheat in milking stage Acta phytophylacica sinica.2001,4(28):331-334
    [65]Liu Y, Wang WL, Guo GX, et al. Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomol. Exp. Appl,2009,130(3):215-221
    [66]Mao JJ, Zeng FR. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus Persicae Transgenic Research [J].2013, DOI 10.1007/s11248-013-9739-y
    [67]Myburg AA, Cawood M, Wingfield BD, et al. Development of RAPD and SCAR markers linked to the Russian wheat aphid resistance gene Dn2 in wheat. Theoretical and Applied Genetics,1998,96:1162-1169
    [68]Mao JJ, Zeng FR (2013) Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persica. Transgenic Research DOI,10,1007/sl 1248-01309739-y
    [69]Mao YB, Cai WJ, Wang JW, et al. Silencing a cotton bollworw P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol [J]. Nature Biotechnology,2007,11(25):1307-1313
    [70]Martin D, Maestro O, Cruz J, et al. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Journal of Insect Physiology,2006,52:410-416
    [71]Macedo TB, Higley LG, Ni X, et al. Light activation of Russian wheat aphid-elicited physiological responses in susceptible wheat. J. Econ. Entomol,2003b,96:194-201
    [72]Mello CC, Conte D. Revealing the world of RNA interference. Nature,2004,431:338-342
    [73]Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature,2004,431:343-349
    [74]Meller VH, Gibert LI. Occurrence, quaternary structure and function of G protein subunits in an insect endocrine glant, molecular and cellular endocrinology. Occurrence,1990,74(2):133-141
    [75]Miller HD, Porter R, Burd RD, et al. Physiological effects of Russian wheat aphid (Homoptera:Aphididae) on resistant and susceptible barley. J Econ Entomol,1994,87:493-499
    [76]Michael A, Birkett, colin AM, et al. New roles for cis-jasmone as an insect semiochemical and in plant defense. Plant Biology,2000,97(16):9329-9334
    [77]Mouches C, Pasteur N, Berge JB, et al. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science,1986,233:778-780.
    [78]Mutti N S, Park Y, Reeck G R. RNAi knockdown of a salivary transcript leadingto lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science,2006,6:1-7
    [79]Nault LR, Edwards LJ, Styer WE. Aphid alarm pheromone secretion and reception. Environmental Entomology, 1973,2:101-105
    [80]Ni XZ, quisenberry SS, Heng-Moss T et al. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera:Aphididae) Feeding. Journal of Economic Entomology, 2001,94(3):743-751
    [81]Ni X, Quisenberry SS, Heng-Moss T, et al. Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomol Exp Appl,2002,105:43-53.
    [82]Niemeyer HM, Perez FJ. Potential of hydroxamic acids in the control of cereal pests, diseases, and weeds. ACS Symposium Series,1995,582:260-270
    [83]Ni X, Quisenberry SS, Heng-MossTM. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera:Aphididae) feeding. J Econ Entomol,2001,94:743-751
    [84]Nasr SH, Satoskar A, Markowitz G. Proliferative glomerulonephritis with monoclonal IgG deposits. J Am Soc Nephrol,2009,20:2055-2064
    [85]Ohnishi Y, Tamura Y, Yoshida M, et al. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi. Plos One,2008,3(5):e2248
    [86]Pascual AE, Cuevas RP, Que SM, et al. Interactions between galling insects and leaf-feeding insects:the role of plant phenolic compounds and their possible. J. Trop. Ecol,2008,24:329
    [87]Painter RH. Insect resistance in crop plants. MacMillan, New York,1951, pp:520
    [88]Peumans WJ, Van Damme EJM. Lectins as plant defense proteins. Plant Physiol,1995,109(2):347-352
    [89]Peng JH, Bai Y, Haley SD, et al. Microastellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica,2009,135:95-122
    [90]Pascual AE, Cuevas RP, Que SM, et al. Interactions between galling insects and leaf-feeding insects:the role of plant phenolic compounds and their possible. J. Trop. Ecol,2008,24:329
    [91]Ponder KL, Pritchard J, Harrington R, et al. Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedings. Bull. Entomol. Res,2001,91:125-130
    [92]Pietro JP di; Chaubet B; Caillaud CM. Stable resistance to the cereal aphid Sitobion avenae F. in the ancient diploid wheat Triticum monococcum L. Bulletin OILB/SROP,1996,19:88-94
    [93]Pierson LM, Heng-Moss TM, Hunt TE, et al. Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding. Arthropod Plant Interactions,2011,5:49-58
    [94]Pettersson J, Pickett JA, Pye BJ, et al. Winter host component reduces colonization by bird-cherry-ort aphid, Rhopalosiphum padi (L) (Homoptera:Aphididae), and other aphids in cereal fields odours. Journal of Chemical Ecology,1994,20(10):2565-2574
    [95]Porter DR, Baker CA, EI-Bouhssini M. Resistance in wheat to a new North American-Russian wheat aphid biotype. Plant Breeding,2005,124:603-604
    [96]Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. Plos one 6(10):1-8
    [97]Pray C, Huang J, Hu R, et al. Five years of Bt cotton in China:The benefits continue. The Plant Journal,2002,31(4): 423-430
    [98]Pettersson J, Karunaratne S, Ahmed E, et al. The cowpea aphid, shape aphis craccivora, host plant odours and pheromones. Entomologia Experimentalis et Applicata,1998,88(2):177-184
    [99]Quiroz A, Pettersson J, Pickett JZ, et al. Semiochemicals mediating spacing behavior of bird cherry-oar aphid, Rhopalosiphum path feeding on cereals. Journal of Chemistry and Ecology,1997,23(11):2599-2607
    [100]Rutzler M, Zwiebel LJ. Molecular biology of insect olfaction:recent progress and onceptual models. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural and Behavioral Physiology,2005,1:1-14
    [101]Rudiger H, Gabius HJ. Plant lectins:occurrence, biochemistry, functions and applications. Glycoconjugate J,2001, 18(8):589-613
    [102]Ribaut JM, Hoisington D. Marker-assisted selection:new tools and strategies. Trends in Plant Sci,1998,3:236-239
    [103]Roder M S, Plaschke J, Konig S U, et al. Tanksley S D, Ganal M W. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet,1995,246:327-333
    [104]Robert G, Quivey J R, Kriger P S. Raffinose-induced mutanase production from Trichoderma harzianum. FEMS Microbiology Letters,1993,112:307-312
    [105]Stark R S. Morphological and biochemical factors relating to spider mite resistance in the geranium,1975. Pennsylvania State University, University Park, PA,83 pp
    [106]Sonoda S, Igaki C. Characterization of acephate resistance in the diamondback moth Plutella xylostella [J]. Pesticide Biochemistry and Physiology,2010,98(1):121-127
    [107]Stephanie JP, Gael LT, Joel B, Georges KC, Claude R, Denis T. Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum [J]. BMC Biotechnology,2007,7(63):1-8
    [108]Stout MJ, Fidantsef AL, Duffey SS, et al. Signal interactions in pathogen and insect attack:systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology,1999,54:115-130
    [109]Stadnichenko AP, Ivanenko LD, Sitniakovskaia AM. Effect of phenol and pesticides on the physicochemical properties of the hemolymph in fresh-water gastropod mollusks (Gastropoda, Pulmonata) infected by trematode parthenitae. Parazitologiia,1987,21(6):716-20
    [110]Salerno Ml. Gianinazzi S, Arnould C. et al. Ultrastructural and cell wall modifications during infection of Eucalytus viminalis roots by a pathogenic Fusarium oxysporum strain. Journal of General Plant Pathology,2004,70: 145-152
    [111]Trigueros V, Lougarre A, Ali-Ahmed D, et al. Xerocomus chrysenteron lectin:identification of a new pesticidal protein. Entomol Exp Appl,2003,1621(3):292-298
    [112]Thackray DJ, Wratten SD, Edwards PJ. Sitibion avenae and Rhopalosiphum Padi in Gramineae in relation to hydroxamic leves. Annals of Applied Biology,1990,116:573-582
    [113]Timmons L, Fire A. Specific interference by ingested dsRNA. Nature,1998. pp:395,854
    [114]Timmons L, Court D, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene,2001,263:103-112
    [115]Tomoyasu Y, Miller S, Tomita S, et al. Exploring systemic RNA interference in insects:a genome-wide survery for RNAi genes in Tribolium, Genome Biology,2008, pp:9-10
    [116]Weibull J. Screening for resistance against Rhopalosiphum padi L. (Ⅰ) Arena species and breeding lines. Euphytica.1986,35:993-999
    [117]Wu K M, Guo YY. The evolution of cotton pest management practices in china [J]. Annual Review of Entomology, 2005,50:31-52
    [118]Wojcicka A, Leszczynski B. Effect of ear awns and waxes on triticale resistance towards the grain aphid Sitobion avenae (F.). Aphids and Other Homopterous Insects,2005,12:195
    [119]Weng Y, Lazar MD. Amplified fragment length polymorphism and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breeding,2002,121:218-223
    [120]Watt AD. Effect of cereal growth stages on the reproductive activity of sitobion avenae and metopolophium dirhodum. Annals of Applied Biology,1979,91:147-157
    [121]Wang WL, Liu Y, Chen JL. et al. Impact of intercropping aphid-resistant wheat cultivars with oil seed rape on wheat aphid (Sitobion avenae) and its natural enemies. Acta Ecologica Sinica,2009,3(29):186-191
    [122]Van Rensburg JBJ. First report of field resistance by the stem borer, Busseola fusca(Fuller) to Bt-transgenic maize. S.Afr.J.Plant Soil,2007,24(3):147-151
    [123]van der Westhuizen A J, Pretorius Z. Protein composition of wheat apoplastic fluid and resistance to Russian wheat aphid. Aust.J.Plant Physiol,1996,23:645-648
    [124]Van Damme EJM, Lannoo N, Peumans WJ. Plant lectins. Adv Bot Res,2008,48:109-209
    [125]Vaeck M, Reynaerts A, Hofte H, et al. Transgenic plants protected from insect attack. Nature,1987,328(6125): 33-37
    [126]Van Emden HF, Harrington R. Aphids as crop pests, CAB International, Wallingford, UK.2007
    [127]Venter E, Botha AM. Development of markers linked to Diuraphis noxia resistance in wheat using a novel PCR-RFLP approach. Theoretical and applied Genetics,2000,100:965-970
    [128]Visser JH, Yan Fushum. Electroantennogram responses of the grain aphids Sitobion avenae (F.) and Metopolophium dirhodum (Walk.) (Homoptera, Aphidiae) to plant odour components. Journa of applied entomology,1995,119(8):539-542
    [129]Vogt RG. Molecular Bais of pheromone detection in insect. In:Gilbert LI, Latrou K, Gill SS eds. Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. Volume 3. Elsevier Press, London.2005, 735-804
    [130]Xia X J, Zhang Y, Wu J X, Wang J T, Zhou Y H, Shi K, Yu Y L, Yu J Q. Brassinosteroids promote metabolism of pesticides in cucumber [J]. Journal of Agricultural and Food Chemistry,2009,57(18):8406-8413
    [131]Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat [J]. Theoretical and Applied Genetics,1996,93(1-2):275-281
    [132]Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T. Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics,2000,101(1-2): 21-29
    [133]Zhang TW, Liu CZ. Influences of Rhopalosiphumpadi onoxidasesofthree wheat Seedlings. Plant Protection,2011, 37(4):72-75
    [134]Zhou HB, Chen JL, Cheng DF, et al. Evaluation on the resistance to aphids of wheat germplasm resources in china. African Journal of Biotechnology Vol,2011,10(63):13930-13935
    [135]Zhu F, Sams S, Moural T, Haynes K F, Potter M F, Palli S R. RNA interference of NADPH-Cytochrome P450 reductase results in reduced insecticide resistance in the Red Bug, Cimex lectularius. Plos one,2012,7(2):e31037
    [136]白莉,郑王,任东植,等.麦长管蚜为害损失及防治闽值研究.山西农业科学,2006,34(1):61-66
    [137]陈建新,宋敦伦,采长群,等.小麦抗禾谷缢管蚜的生化研究.昆虫学报,1997,140(增刊):86-189
    [138]陈巨莲,丁红建,李志坚,等.麦蚜在不同抗级小麦上刺吸行为的比较.昆虫学报,1997,40(增刊):196-202
    [139]陈巨莲,孙京瑞,丁红建,等.主要抗蚜小麦品种(系)的抗性类型及其生化抗性机制.昆虫学报,1997,40(增刊):190-194
    [140]陈巨莲,倪汉祥,丁红建,等.主要次生物质对麦蚜的抗性阈值及交互作用.植物保护学报,2000,29(1):7-12
    [142]陈巨莲,Weng GZ,倪汉祥.G蛋白及其偶联信号传导途径的研究进展.生物工程学报,2001,17(2):113-117
    [143]陈晓亚等.植物次生代谢途径及其调节.见:许智宏主编,植物生物技术.上海:上海科学技术出版社,1998,37-46
    [144]蔡青年,张青文,高希武,等.小麦体内次生物质对麦蚜的抗性作用研究.中国农业科学,2003,36(8)910-915
    [145]蔡青年,张青文,王宇,等.小麦体内次生物质在抗蚜中的作用.昆虫知识,2003,40(5):391-395
    [146]常金华,张丽,夏雪岩,等.不同基因型高粱植株的物理性状与抗蚜性的关系.河北农业大学学报,2004,27(2):5
    [147]崔彦玲,张环.番茄叶霉病抗性与苯丙氨酸解氨酶的相关性.华北农学报,2003,(1):79-82
    [148]仇松英,张松令,史忠良,等.小麦抗蚜品种的遗传多样性SSR标记分析.农学学报,2011,5-10
    [149]丁蕙淑.贵州小麦蚜虫调查.应用昆虫学报,1958,02
    [150]童和平,朱希孟,曹雅忠,等.冬小麦抗蚜性田间鉴定研究初报.作物品种资源,1991(2):29-30
    [151]杜利锋,赵出燕,袁锋,等.小麦抗蚜品种(系)或材料的抗性遗传测定及筛选.西北植物学报,1999,19(6):68-73
    [152]狄莹,石碧.植物单宁化学研究进展.化学通报,1999(3):1-5
    [153]段灿星,王晓鸣,朱振东,等.我国小麦抗麦长管蚜研究概况.植物遗传资源学报,2003,4(2):175-178
    [154]段灿星,王晓鸣,朱振东.小麦种质对麦长管蚜的抗性鉴定与评价.植物遗传资源学报,2006,7(3):297-300
    [155]董会,李照会.小麦不同品种(品系)抗蚜性及其机理研究.硕士学位论文,2006,12-15
    [156]付晶,张树华,温树敏,等.用SSR分子标记定位普通小麦品种正科1号中的抗麦蚜基因.河北农业大学学报,2008,31(5):1-4
    [157]冯英,薛庆中.作物抗虫基因工程及其安全性.遗传,2001,23(6):571-576
    [158]范佳.麦长管蚜嗅觉相关蛋白Gqa基因的克隆及真核表达.中国农业科学院,硕士论文,2008
    [159]高崇省.小麦品种抗性对麦长管蚜种群增长的影响.昆虫知识,1994,04
    [160]高崇省,刘绍友,侯有明.冬小麦品种中的游离氨基酸种类及其与抗麦长管蚜的关系.植物包括学报,1998,25(1):1-5
    [161]管存才,王才贤,段峰.麦长管蚜量与千粒重、穗粒重及防治指标的关系.甘肃农业科技,1989,11:35-36
    [162]侯丽荣,盖玉红,林大鹏.作物抗性遗传与育种.河北农业科学,2008,12(6):80-81,138
    [163]黄荣汉,谢新民,曾伟,等.四川小麦蚜虫优势种群演替的研究.西南农业大学学报,1996,06
    [164]韩德元.植物生长调节剂--原理与应用.北京:科学技术出版社,1997
    [165]胡想顺,赵惠燕,Udo.Heimbach,等.3个新引进小麦品种对麦长管蚜抗性的初步研究.西北植物学报,2004,24(7):1221-1226
    [166]胡想顺,赵惠燕,胡祖庆,等.小麦苗期禾谷缢管蚜生物学反应及抗蚜性分析.西北农林科技大学学报(自然科学版),2007,06
    [167]胡想顺,刘小凤,赵惠燕.刺探电位图谱(EPG)技术的原理与发展.植物保护,2006,3
    [168]胡想顺,刘小凤,胡祖庆,等.10个小麦品种(材料)对麦长管蚜的室内苗期抗蚜性.植物保护,2011,37(5):81-85
    [169]胡远,韩颖,赵欣,等.小麦不同抗蚜品种中3种酚酸类化合物的含量变化及其作用评价.应用与环境生物学报,2008,06
    [170]胡国强,李晓凤,王长娜.麦长管蚜的研究.2012,40(18):9748-9750
    [171]蒋红玲,陈巨莲,倪汉祥,等.麦长管蚜信号传导G蛋白r亚基的基因克隆与组织分布.2006中国科协年会论文集(下册),2006:53-57
    [172]蒋红玲.麦长管蚜G蛋白B、r亚基基因克隆及相互作用蛋白的筛选[博士论文].北京:中国农业科学院,植物保护研究所,2004
    [173]柯琴.春小麦抗蚜品种相关生化指标的测定.中国科技论文在线http://www.paper.edu.cn
    [174]李昌盛,尚勋武,师桂英,等.北方春小麦抗蚜水平与形态特征的相关性研究.甘肃农业大学学报,2007,42(6):80-83
    [175]李索娟,张志勇,王兴远,等.用模糊识别技术鉴定小麦品种(系)抗蚜性研究.植物保护,1998,24(5)15-16
    [176]刘谦,朱鑫泉主编.生物安全.北京:科学出版社,2002
    [177]刘勇,陈巨莲,倪汉祥,等.茉莉酸诱导小麦幼苗对麦蚜取食行为的影响.植物保护学报,2001,28(4):325-330
    [178]李艳茹,许广波,郑大浩,等.作物抗虫育种的研究进展.延边大学农学学报,27(4)
    [179]李素娟,张志勇,王兴运.用模糊识别技术鉴定小麦品种(系)抗蚜性研究.植物保护,1998,24(5):15-16
    [180]李素娟,武予清,刘爱芝,等.小麦灌浆期抗禾谷缢管蚜的生化机制.植物保护学报,2001,04
    [181]刘保川,陈巨莲,倪汉祥,等.丁布的分离、纯化和结构鉴定及其对麦长管蚜生长发育的影响.应用与环境生物学报,2002,8(1):71-74
    [182]李艳茹,许广波,郑大浩,等.作物抗虫育种的研究进展.延边大学农学学报,2005,27(4):306-310
    [183]罗晨,张芝利.北京农业科学,2000,18(增刊):4-13
    [184]刘旭明,金达生.北京地区麦二叉蚜生物型鉴定研究初报.昆虫学报,1998,02
    [185]刘亚光,李海英,杨庆凯.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究.大豆科学,2002,3
    [186]刘娜.地下水中阿特拉津污染的原位生物修复研究.吉林大学,2006
    [187]李昌盛.春小麦抗蚜机制及麦蚜对小麦面粉品质影响的研究.甘肃农业大学,2007
    [188]李昌盛,尚勋武,师桂英,等.北方春小麦抗蚜水平与形态特征的相关性研究.甘肃农业大学学报,2007,42(6):80-83
    [189]李庆,叶华智.小麦近缘野生植物对禾谷缢管蚜的抗性研究.中国农业科学,2002,35(6):719-723
    [190]李庆,叶华智,杨群芳,等.若干生化指标与山羊草对禾谷缢管蚜抗性的关系.中国农业科学,2003,36(9):1038-1043
    [191]刘保川,陈巨莲,倪汉样,等.小麦中黄酮类化合物对麦长管蚜生长发育的影响.植物保护学报,2003,3:8-12
    [192]刘勇,陈巨莲,倪汉祥.麦长管蚜和禾谷缢管蚜对小麦挥发物的触角电位反应.昆虫学报,2003,46(6):679-683
    [193]刘炜,李自超,史延丽,等.利用SSR标记进行粳稻品种的遗传多样性研究.西南农业学报,2005,18(5):509-513
    [194]李巧丝,武予清,李素娟,等.麦蚜危害对优质面包小麦品质的影响.植物保护,2003,29(1):43-44
    [195]李风珍,吉万全,吴金华.小麦抗蚜研究新进展.西北农林科技大学学报,2004,32(11):73-77
    [196]刘新伦.小麦基因资源抗麦长管蚜特性研究.陕西:西北农林科技大学,2006
    [197]刘绍友,侯有明,李定旭,等。小麦品种对麦长管蚜抗性机制的研究.西北农业学报,1993,(3):76-80
    [198]刘新伦,王亚娟,桑利群.小麦种质资源的抗蚜性及其与表型性状的关系.麦类作物学报,2006,26(6):24-28
    [199]李军,赵慧燕,李志刚,等.不同小麦品种对麦长管蚜的抗性.昆虫知识,2007,44(4):509-513
    [200]倪中福,张义荣,梁荣奇,等.普通小麦D染色体组微卫星分子标记遗传差异研究.作物学报,2003,(1):145-151
    [201]欧行奇,茹振俐,胡铁株,等.河南省主要小麦品种耐蚜性研究.麦类作物学报,2005,25(2):125-127
    [202]钦俊德.昆虫与植物的关系-论昆虫与植物的相互作用及其演化.北京:科学出版社,1987,62-78
    [203]屈会选,党建友,程麦风,等.小麦种质资源对麦长管蚜抗性的鉴定.华北农学报,2004,19(4):102-104
    [204]史忠良,马爱萍.光照强度对小麦不同品种结实率及千粒重的影响.山西农业科学,1998,4:16-18
    [205]孙多鑫,尚勋武,师桂英,等.四种酶与春小麦抗蚜性的相关性研究.甘肃农业大学学报,2006,05
    [206]师桂英,尚勋武.春小麦抗蚜机制及麦蚜对小麦品质的影响研究[J].甘肃农业大学博士论文,2007.
    [207]师桂英,尚勋武,王化俊,等.麦长管蚜(Sitobion avenae F.)危害对春小麦面粉品质性状及面团流变学特性的影响.作物学报,2009,35(12):2273-2279
    [208]孙大业,郭艳林,马力耕.细胞信号转导.北京:科学出版社,2001,41-52
    [209]魏岑,苑贤林,孙小平,等.张掖麦蚜对菊酯类杀虫剂的抗药性.昆虫学报,1990(1):117-120
    [210]王琛柱,张青文,杨奇华,等.植物抗虫性的化学基础.植物保护,1993,06
    [211]武予清,郭予元.棉花单宁黄酮类化合物对棉铃虫的抗性潜力.生态学报,2001,2(21):286-289
    [212]武予清,李素娟,刘爱芝,等.小麦抗蚜育种研究进展.河南农业科学,2002,(2):19-20
    [213]王随保,陈斌,王义,等.小麦蚜虫及黄矮病综合防治研究综述.山西农业科学,2003,31(2):69-71.
    [214]王莉.小麦蚜虫的发生规律及综合防治技术,种业导刊,2013,3:30
    [215]王美芳,原国辉,陈巨莲,等.麦蚜发生危害特点及小麦抗蚜性鉴定的研究.河南农业科学,2006,7:58-60
    [216]王美芳,陈巨莲,程登发,等.小麦叶片表面蜡质及其与品种抗蚜性的关系.应用与环境生物学报,2008,14(3):341-346
    [217]王继磊,刘迪秋,丁元明,等.Bt转基因抗虫植物研究进展.生物学杂志,2010,2(4):75-78
    [218]王美芳,杨会民,刘进前,等.黄淮冬麦区小麦品种抗蚜性鉴定及蚜虫对小麦产量和品质的影响.河南农业科学,2010,4:15-20
    [219]王春平,罗坤,赵惠燕,等.14份小麦种质资源抗麦长管蚜遗传多样性的SSR分析.核农学报,2011,25(4):0639-0644
    [220]王风宝,董立峰,付金锋-,J,麦抗穗发芽酶反应生化标记选择法.农业生物技术,2007,15(3):482-488.
    [221]王宇.小麦不同抗蚜品种体内几种酶活性差异研究,2005,北京:中国农业大学
    [222]王晖,张珉,张小红,夏兰琴.利用RNAi技术沉默麦长管蚜与桃蚜细胞色素P450.中国农业科学,2012,4(17):3463-3472
    [223]熊朝均.禾谷缢管蚜的发生与小麦生育期关系的研究.昆虫知识,1990,27(1):5-7
    [224]谢永寿,杨奇华,谢以铨,等.冬小麦品种中糖及氨基酸含量与抗麦长管蚜的关系.植物保护学报,1987,10
    [225]夏云龙,杨奇华,萧红.冬小麦形态特征与抗麦长管蚜的关系研究.植物保护学报,1991,18(1):5-10
    [226]谢先芝.抗虫转基因植物的研究进展及前景.生物工程进展,1999,19(6):47-51
    [227]夏启中,张明菊。分子标记辅助育种,黄冈职业技术学院学报,2002,4(2):36-47
    [228]徐利敏,齐凤鸣,张建平,等.麦长管蚜危害小麦产量损失的初步研究.内蒙古农业科技,1998,5:27-28
    [229]物益众,戴志一,黄东林,等.麦蚜的阶段貹为害对小麦产量和品质影响的研究.昆虫知识,1995,32(1):10-13
    [230]俞晓平,水稻抗生育种的现状和对策.农牧情报研究,1989(7):10-16
    [231]尹青云、仇松英,许钢垣,等.小麦抗麦红吸浆虫、麦长管蚜新品种选育及其抗虫机制.省应用科研三等奖,1991
    [232]袁锋.农业昆虫学.第三版.北京:中国农业出版社,2001
    [233]杨益众,印毅,王红,等.蜂蜜模拟麦蚜蜜露危害对小麦产量和主要营养品质的影响.中国农学通报,2005,21(1):268-271
    [234]于洋,庞保平,高书晶,等.春小麦品种对麦长管蚜生长发育和繁殖的影响.应用生态学报,2006,2(17):354-356
    [235]尹姣.茉莉酸诱导小麦抗病虫性初步研究.中国植保导刊,2006,06
    [236]郑王义,谢瑞材,王东升.冬小麦品种(品系)抗蚜性的初步研究.作物品种资源,1987,(1):21-22
    [237]周福才,陆自强,陈丽芳,等.小麦形态特征与抗禾谷缢管蚜的关系.江苏农学院学报,1998,19(4)39-42
    [238]周福才,陆自强,陈丽芳,等.小麦麦株内可溶性糖与抗禾谷缢管蚜的关系.江苏农业研究,1999,20(2):60-63
    [239]张志勇,李素娟,张屹东,等.小麦不同生育期抗蚜机制研究,华北农学报,2000,15(1)
    [240]张跃进,王建强,姜玉英,等.2005年全国农作物重大病虫发生趋势预报.中国植保导刊,2005,(04)
    [241]张丽,常金华,罗耀武.不同高粱基因型感蚜虫前后POD、PPO、PAL酶活性变化分析.中国农学通报,2005,7(21):40-42
    [242]张跃进,王建强,姜玉英,等.年全国农作物重大病虫害发生趋势预报.中国植保导报,2006,26(4):5-6
    [243]张跃进,王建强,姜玉英,等.2007年全国农作物重大病虫害发生趋势预测明.中国植保导刊,2007,(02).
    [244]张乃芹,侯传本,于凌春,等.麦田主要天敌昆虫种群动态及对麦蚜控制效应的研究.山东农业科学,2007,5
    [245]张跃进,王建强,姜玉英,等.2008年全国农作物重大病虫害发生趋势预测.中国植保导刊,2008,(03)
    [246]张廷伟,刘长仲.小麦抗禾谷缢管蚜的生理机制研究.学位论文:甘肃农业大学,2010,06
    [247]张廷伟,刘乾,刘长仲.小麦幼苗期抗禾谷缢管蚜的生理机制.贵州农业科学,2010,38(8):119-120
    [248]朱永峰,陈明,刘长仲.蚜虫为害对五个燕麦品种苗期体内几种物质的影响.植物保护,2011,02
    [249]朱永峰,陈明,刘长仲,等.蚜虫为害对五个燕麦品种苗期体内几种物质的影响.植物保护,2011,37(2):55-58
    [250]邹灵平,方婷婷,蒲桂林,等.麦类作物与蚜虫互作生化机制研究进展,应用昆虫学报,2011,(6):1816-1822
    [251]周明爿羊.作物抗虫性原理及应用.北京:北京农业大学出版社,1992
    [252]郑王义,尹青云,史忠良,等.冬小麦品种对麦长管蚜抗性机制与抗性遗传研究进展.小麦研究,1999,20(1):1-5
    [253]朱麟,杨振德,赵博光,等.植食性昆虫诱导的植物抗性最新研究进展.林业科学,2005,41(1):165-172
    [254]张德昌.G蛋白与细胞膜信息传递机制的研究进展.国外医学分子生物学分册,1992,14(3):105-111
    [255]张钟宪,胡德荣,游越,等.以绿色化学原则指导蚜虫报警信息素的合成.首都师范大学(自然科学版)2005,26(4):46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700