用户名: 密码: 验证码:
不同环境条件下玉米穗部和籽粒性状的QTL定位及玉米穗行数主效QTL的验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米产量受各种生物与非生物胁迫的制约,并且与穗部和籽粒性状紧密相关。通过QTL定位和全基因组关联分析等方法,发掘玉米与产量性状相关的关键基因/QTL及其所在染色体区段,开发紧密连锁的分子标记和功能标记,对作物育种尤其是分子育种具有非常重要的实践意义。本研究的目的是,通过图谱整合和元分析发掘玉米产量性状QTL的热点区域:利用F2:3和F2:4群体对不同环境条件下的穗部和籽粒性状进行QTL定位,发掘穗行数的主效QTL位点,通过高代分离群体确认穗行数主效QTL的具体位置,为进一步对主效QTL进行精细定位打下基础;通过全基因组关联分析对不同环境条件下的穗行数性状进行关联分析,对相关联的遗传位点进行深入的挖掘。主要研究结果如下:
     1、玉米穗部和籽粒性状一致性QTL的发掘:对来自不同玉米产量及其相关性状定位群体获得的946个QTL座位,通过QTLFinder软件的图谱映射和元分析功能构建了玉米产量性状QTL的一致性图谱。玉米产量性状QTL在10条染色体上分布不均匀,10号染色体上QTL最少,只有62个;1号染色体上QTL最多,有174个;控制轴粗和粒宽的QTL主要分布在1号和2号染色体上,控制穗长、百粒重、产量和行粒数的QTL主要分布在1号染色体上,穗粗QTL在2号和5号染色体上分布较多,而控制秃尖长等性状的QTL在各染色体上的分布差异不大。借助QTLFinder的元分析功能,共发掘出287个玉米产量性状的一致性QTL座位,一致性QTL存在成簇分布的现象。为玉米产量及其相关性状QTL的精细定位、基因克隆和分子标记辅助选择提供了参考依据。
     2、玉米穗部和籽粒性状的QTL定位:以实验室自己选育的两个自交系Y1648和Y2348(穗部和籽粒性状存在较大差异)构建的F2:3和F2:4家系群体为实验材料,分别于2008年和2009年在不同环境条件下对玉米穗部和籽粒性状(穗长、穗粗、行粒数、穗重、轴重和粒重)进行统计分析,结果表明:除穗粗和穗长外,其它穗部和籽粒性状在同一环境条件下都呈显著或极显著相关;同一穗部和籽粒性状在不同环境条件下都是极显著相关。对不同环境条件下的玉米穗部和籽粒性状进行QTL分析,三种环境条件下一共检测到33个QTL位点,分布于10条染色体上;其中控制穗粗的QTL最多,有11个;控制穗重、穗长、轴重、行粒数和粒重的QTL分别有7、4、4、1个和6个,单个QTL能够解释表型变异的6.22-14.96%。通过发掘不同环境条件下可以稳定遗传的QTL位点,为玉米穗部和籽粒性状的分子改良以及精细定位提供有价值的参考。
     3、玉米穗行数QTL定位及主效QTL验证:利用实验室内部选育的两个穗行数差异较大的自交系Y1648和Y2348构建的F23家系和F24家系群体,分别于2008年和2009年在不同环境条件下对控制玉米穗行数的QTL进行检测,三种环境条件下一共检测到13个QTL位点,分布于2号、3号、5号、8号和10号染色体上,单个QTL的贡献率在5.52%-12.95%之间。用来源于同一亲本材料的BC3F23家系群体对穗行数进行定位,在两种环境条件下共检测到4个QTL位点,位于5号和10号染色体上,单个QTL能够解释表型变异的9.19%-34.59%,基因作用方式以加性和部分显性为主。通过对BC5F23群体后代基因型和穗行数统计分析发现,在SSR1430和umc1077位置上具有Y2348带型的株系穗行数普遍比具有Y1648带型的株系穗行数多,杂合体的穗行数居于两者之间,且不同基因型间的穗行数差异极显著;按照穗行数进行分组,穗行数少的株系中主要为Y1648的基因型,穗行数多的株系中主要为Y2348的基因型。虽然不能在这3个群体中发现符合孟德尔分离规律的现象,但是可以证明目标QTL的存在,并且确认了目标QTL位于分子标记SSR1430和umc1077之间。这将为进一步精细定位和基因克隆该主效QTL提供依据和基础。
     4、不同环境条件下玉米穗行数的全基因组关联分析:利用TASSEL3.0软件中的混合线性模型对不同环境条件下的玉米穗行数进行了关联分析。以P值小于0.0001为标准,对不同环境条件下的穗行数进行分析,一共检测到390个控制穗行数的SNP位点。其中有35个SNP位点在两种环境条件下检测到,有4个SNP位点在三种环境条件下检测到,有2个SNP位点可以在四种环境条件下检测到。在不同环境条件下稳定检测到的SNP位点为穗行数基因发掘提供了可能。
The maize production is affected by various biotic and abiotic stress, and is closely related with the ear and kernel traits. To identify the key QTL/gene for maize yield that could be used in the maize breeding by QTL mapping or GWAS is of great importance for maize yield improvement. In this study, in order to dissect the QTL controlling maize ear and kernel traits, we constructed an integration and consensus map for maize yield related traits. With the derivative F2:3and F2:4families to do QTL mapping for maize ear and kernel traits, and get the major QTL for maize kernel row number. Based on the primary mapping results, we foused on a major QTL on chromosome10for kernel row number and three segregation populations were constructed to confirm it. At the same time, we used genome-wide association mapping strategy to decipher the genetic basis of maize kernel row number in order to find more closely related SNPs. The main results are as follows:
     1. In this research,946QTL for grain yield and its related traits in maize were collected from36experiments and were used to construct the integration and consensus map. QTL-Finder was used for QTL integration and meta-analysis with IBM22008Neighbors as a reference map. As shown in the result, the QTL for maize yield and related traits were unevenly distributed on all10chromosomes, with most of174QTL on chromosome1and least of62QTL on chromosome10. QTL for ear length,100kernel weight, kernel number per row and grain yield were mainly distributed on chromosome1, while QTL for cob diameter and kernel width on chromosome1and2, QTL for ear diameter are mainly on chromosome1and5. QTL for other traits are evenly distributed on the10chromosomes. Two-hundreds and eighty-seven consensus QTL for grain yield and its related traits were identified by the meta-analysis function of QTLFinder, some consensus QTL for different traits located on the same or near chromosome regions. These results provide a good basis for studying genetic mechanism and molecular marker assisted selection for maize yield improvement.
     2. In this research, six ear and kernel related traits including ear weight, ear length, ear diameter, kernel number per row, cob weight and kernel weight, were investigated using F2:3and F2:4populations, which were derived from two inbred lines of Y1648and Y2348cultivated by our lab. Respectively, the two populations were evaluated under different regions in2008and2009. The results showed that the maize ear and kernel traits under the same environment are significantly correlated, except for ear diameter and ear length, the same traits under different environments are significantly correlated. A total of33QTLs for maize ear and kernel traits were identified under different environments, including12QTLs for maize ear diameter,7QTLs for ear weight,4QTLs for ear length,4,1,6for cob weight, kernel number per row and kernel weight respectively. The phenotypic variation explained by each QTL is from6.22-14.96%, some QTLs can be detected under more than one environments. These results may help to further elucidate the genetic basis of maize yield.
     3. In this paper, with the F2:3and F2:4population development from two inbred lines of Y1648and Y2348cultivated by our lab,13QTLs for maize kernel row number are identified under different environments, and these QTL are distributed on chromosome2、3、5、8and10, for each single QTL can explain5.52%to12.95%of the kernel row number variation. Meantime, with a BC3F2:3population developed from the same two parental lines,4QTLs located on chromosome5and chromosome10for maize kernel row number are identified under two environments, the contribution for each single QTL is between9.19%and34.59%, the QTL on chromosome10between ssr1430and umc1077is in good accordance with the QTL identified in the F2:3and F2:4population, and can explain more phenotype variation. Three BC5F2:3populations which segregated at qKRN10, the major QTL for maize kernel row number on chromosome10were used to reconfirm the target QTL. The lines that could amplify the same size with Y2348at the marker loci umc2348and umc1077generally have more maize kernel row number than lines that amplify the same product with Y1648, while the heterozygous lines are between the two homozygous types, the maize kernel row number between different genotypes are significantly varied. Though we could not mendelize of this QTL, we confirmed this locus in the marker region from ssr1430to umc1077. This result further confirm the major QTL for maize kernel row number on chromosome10and imply the possibility for fine mapping and map-base cloning of this major QTL.
     4. By the MLM model of TASSEL3.0,390SNP significant loci that associate with the kernel row number were identified. And35SNP could be detected under2environments,4SNP under3different environments,2SNP for kernel row number under4conditions, these SNP supply a good basis for the gene discovery for maize kernel row number.
引文
[]]Agrama H A S, Moussa M E. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.)[J]. Euphytica,1996,91(1):89-97.
    [2]Ajnone-Marsan P, Monfredini G, Ludwig W F, et al. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield[J]. Theoretical and Applied Genetics,1995,90(3-4):415-424.
    [3]Akagi H, Yokozeki Y, Inagaki A, et al. Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci[J]. Theoretical and Applied Genetics,1997,94(1):61-67.
    [4]Andersen J R, Schrag T, Melchinger A E, et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.)[J]. Theoretical and Applied Genetics,2005,111(2):206-217.
    [5]Atwell S, Huang Y S, Vilhjalmsson B J, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines[J]. Nature,2010,465(7298):627-631.
    [6]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J]. Theoretical and Applied Genetics,1996,92(7): 817-826.
    [7]Beavis W D, Smith O S, Grant D, et al. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize[J]. Crop Science,1994,34(4):882-896.
    [8]Bello O B, Abdulmaliq S Y, Afolabi M S, et al. Correlation and path coefficient analysis of yield and agronomic characters among open pollinated maize varieties and their F 1 hybrids in a diallel cross[J]. African Journal of Biotechnology,2010,9(18):2633-2639.
    [9]Belo A, Zheng P, Luck S, et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize[J]. Molecular Genetics and Genomics,2008, 279(1):1-10.
    [10]Bomblies K, Doebley J F. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zf12 and zfl2 on traits under selection during maize domestication[J]. Genetics,2006,172(1): 519-531.
    [11]Bommert P, Nagasawa N S, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus[J]. Nature genetics,2013.
    [12]Bommert P, Nardmann J, Vollbrecht E, et al. thick tassel dwarfl encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005,132(6):1235-1245.
    [13]Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize[J]. The Plant Cell Online,2006,18(3):574-585.
    [14]Buckler E S, Holland J B, Bradbury P J, et al. The genetic architecture of maize flowering time[J]. Science,2009,325(5941):714-718.
    [15]Buckler E S, Holland J B, Bradbury P J, et al. The genetic architecture of maize flowering time[J]. Science,2009,325(5941):714-718.
    [16]Chinnadurai I S,Pothiraj N.Interrelationship and Path-coefficient Studies for Quanlitative Traits,Grain Yield and other Yield Attributes among Maize.International Journal of Plant Breeding And Genetics.2011,10:1-15
    [17]Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by theAPETALA2-like gene indeterminate spikelet1 [J]. Genes & development,1998,12(8):1145-1154.
    [18]Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1 [J], Development,2008,135(18):3013-3019.
    [19]Chuck G, Meeley R, Irish E, et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikeletl [J]. Nature genetics,2007,39(12):1517-1521.
    [20]Chuck G, Muszynski M, Kellogg E, et al. The control of spikelet meristem identity by the branched silklessl gene in maize[J]. Science,2002,298(5596):1238-1241.
    [21]Cook J P, McMullen M D, Holland J B, et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels[J]. Plant physiology, 2012,158(2):824-834.
    [22]DeLong A, Calderon-Urrea A, Dellaporta S L. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion[J]. Cell,1993,74(4):757.
    [23]Devos KM, Moore G, Gale M. Conservation of marber synteny during evolution.Euearpia genetic manipulation in plant breeding section meeting[J]. Euphytica,1995,85(1-3):367
    [24]Doebley J, Bacigalupo A, Stec A. Inheritance of kernel weight in two maize-teosinte hybrid populations:implications for crop evolution[J]. Journal of Heredity,1994,85(3):191-195.
    [25]Drmanac R, Sparks A B, Callow M J, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays[J]. Science,2010,327(5961):78-81.
    [26]Frova C, Krajewski P, Di Fonzo N, et al. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components[J]. Theoretical and Applied Genetics,1999,99(1-2):280-288.
    [27]Fujioka S, Yamane H, Spray C R, et al. The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins[J]. Proceedings of the National Academy of Sciences,1988,85(23):9031-9035.
    [28]Gallavotti A, Long J A, Stanfield S, et al. The control of axillary meristem fate in the maize ramosa pathway [J]. Development,2010,137(17):2849-2856.
    [29]Giulini A, Wang J, Jackson D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1[J]. Nature,2004,430(7003):1031-1034.
    [30]Grivet L, D'Hont A, Dufour P, et al. Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe[J]. Heredity,1994,73(5):500-508.
    [31]Guo J, Su G, Zhang J, et al. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition[J]. African Journal of Biotechnology,2008,7(12).
    [32]Hallauer A R, Carena M J, Miranda Filho J B. Quantitative genetics in maize breeding[M]. Springer,2010.
    [33]Hirose N, Makita N, Kojima M, et al. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism[J]. Plant and Cell Physiology,2007,48(3):523-539.
    [34]Ho J, McCouch S, Smith M. Improvement of hybrid yield by advanced backcross QTL analysis in elite maize[J]. Theoretical and Applied Genetics,2002,105(2-3):440-448.
    [35]Holland J B, Nyquist W E, Cervantes-Martinez C T. Estimating and interpreting heritability for plant breeding:An update[J]. Plant breeding reviews,2003,22:9-112.
    [36]Karen Sabadin P, Lopes de Souza Junior C, Pereira de Souza A, et al. QTL mapping for yield components in a tropical maize population using microsatellite markers[J]. Hereditas,2008, 145(4):194-203.
    [37]Kerstetter R A, Laudencia-Chingcuanco D, Smith L G, et al. Loss-of-function mutations in the maize homeobox gene, knotted 1, are defective in shoot meristem maintenance[J]. Development, 1997,124(16):3045-3054.
    [38]Kover P X, Valdar W, Trakalo J, et al. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana[J]. PLoS genetics,2009,5(7):e1000551.
    [39]Kump K L, Bradbury P J, Wisser R J, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J]. Nature genetics,2011,43(2):163-168.
    [40]Lan J H,Li X H,Gao S R,et al.QTL Analysis of Yield Components in Maize under Different Environments.Acta Agronomica Sinica,2005,31:1253-1259.
    [41]Lander E S, Green P, Abrahamson J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987,1(2):174-181.
    [42]Lee M, Godshalk E B, Lamkey K R, et al. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses[J]. Crop Science, 1989,29(4):1067-1071.
    [43]Li H, Ribaut J M, Li Z, et al. Inclusive composite interval mapping (ICIM) for digenic epi stasis of quantitative traits in biparental populations[J]. Theoretical and Applied Genetics,2008, 116(2):243-260.
    [44]Li Y L, Li X H, Li J Z, et al. Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize[J]. Euphytica,2009,169(2):273-284.
    [45]Lima M L A, de Souza Jr C L, Bento D A V, et al. Mapping QTL for grain yield and plant traits in a tropical maize population[J]. Molecular Breeding,2006,17(3):227-239.
    [46]Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0[J]. Cambridge:Whitehead Institute Technical Report,1992.
    [47]Long A D, Langley C H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits[J]. Genome Research,1999,9(8):720-731.
    [48]Lu G H, Tang J H, Yan J B, et al. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time[J]. Journal of Integrative Plant Biology,2006,48(10):1233-1243.
    [49]Lu M, Xie C X, Li X H, et al. Mapping of quantitative trait loci for kernel row number in maize across seven environments[J]. Molecular Breeding,2011,28(2):143-152.
    [50]Ma X Q, Tang J H, Teng W T, et al. Epistatic interaction is an important genetic basis of grain yield and its components in maize[J]. Molecular Breeding,2007,20(1):41-51.
    [51]Malcomber S T, Kellogg E A. Evolution of unisexual flowers in grasses (Poaceae) and the putative sex-determination gene, TASSELSEED2 (TS2)[J]. New phytologist,2006,170(4): 885-899.
    [52]Malik H N, Malik S I, Hussain M, et al. Genetic correlation among various quantitative characters in maize (Zea mays L.) hybrids[J]. J. Agri. Soc. Sci,2005,1(3):262-265.
    [53]Marsan P A, Gorni C, Chitto A, et al. Identification of QTLs for grain yield and grain-related traits of maize (Zeamays L.) using an AFLP map, different testers, and cofactor analysis[J]. Theoretical and Applied Genetics,2001,102(2-3):230-243.
    [54]Melchinger A E, Utz H F, Schon C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects[J]. Genetics,1998,149(1):383-403.
    [55]Messmer R, Fracheboud Y, Banziger M, et al. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits[J]. Theoretical and applied genetics,2009,119(5):913-930.
    [56]Michaels S D, Amasino R M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR[J]. The Plant Journal,1998,14(3):381-385.
    [57]Moreau L, Charcosset A, Gallais A. Use of trial clustering to study QTL×environment effects for grain yield and related traits in maize[J]. Theoretical and Applied Genetics,2004,110(1): 92-105.
    [58]Muhammad B A,Muhammad R,Muhammad S T.Character Association and Path Coefficient Analysis of Grain Yield and Yield Component Maize.Pakistan Journal of Biological Science.2003,6:136-138.
    [59]Palaisa K, Morgante M, Tingey S, et al. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(26): 9885-9890.
    [60]Pereira M G, Lee M, Bramel-Cox P, et al. Construction of an RFLP map in sorghum and comparative mapping in maize[J]. Genome,1994,37(2):236-243.
    [61]Poland J A, Bradbury P J, Buckler E S, et al. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize[J]. Proceedings of the National Academy of Sciences,2011,108(17):6893-6898.
    [62]Purcell S, Cherny S S, Sham P C. Genetic Power Calculator:design of linkage and association genetic mapping studies of complex traits[J]. Bioinformatics,2003,19(1):149-150.
    [63]Pushkarev D, Neff N F, Quake S R. Single-molecule sequencing of an individual human genome[J]. Nature biotechnology,2009,27(9):847-850.
    [64]Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proceedings of the National Academy of Sciences, 2001,98(20):11479-11484.
    [65]Ribaut J M, Fracheboud Y, Monneveux P, et al. Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize[J]. Molecular Breeding, 2007,20(1):15-29.
    [66]Ribaut J M, Jiang C, Gonzalez-de-Leon D, et al. Identification of quantitative trait loci under drought conditions in tropical maize.2. Yield components and marker-assisted selection strategies[J]. Theoretical and Applied Genetics,1997,94(6-7):887-896.
    [67]Riedelsheimer C, Lisec J, Czedik-Eysenberg A, et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize[J]. Proceedings of the National Academy of Sciences,2012,109(23):8872-8877.
    [68]Ross A J, Hallauer A R, Lee M. Genetic analysis of traits correlated with maize ear length[J]. Maydica,2006,51(2):301.
    [69]Rusk N. Cheap third-generation sequencing[J]. Nature Methods,2009,6(4):244-244.
    [70]Salvi S, Sponza G, Morgante M, et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[J]. Proceedings of the National Academy of Sciences,2007,104(27):11376-11381.
    [71]Salvi S, Tuberosa R. To clone or not to clone plant QTLs:present and future challenges[J]. Trends in plant science,2005,10(6):297-304.
    [72]SAS I I. SAS/STAT user's guide, version 8[J]. Cary, NC:SAS Institute Inc,1999.
    [73]Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J]. Nature,2006,441(7090):227-230.
    [74]Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris[J]. Genetics,1923,8(6):552.
    [75]Schmidt R J, Veit B, Mandel M A, et al. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS[J]. The Plant Cell Online,1993,5(7):729-737.
    [76]Sch6n C C, Melchinger A E, Boppenmaier J, et al. RFLP mapping in maize:quantitative trait loci affecting testcross performance of elite European flint lines[J]. Crop science,1994,34(2): 378-389.
    [77]Senior M L, Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer[J]. Genome,1993,36(5):884-889.
    [78]Serapion J, Kucuktas H, Feng J, et al. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus)[J]. Marine biotechnology,2004,6(4): 364-377.
    [79]Setter T L, Yan J, Warburton M, et al. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought[J]. Journal of experimental botany,2011,62(2):701-716.
    [80]Shendure J, Ji H. Next-generation DNA sequencing[J]. Nature biotechnology,2008,26(10): 1135-1145.
    [81]Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics,1992, 132(3):823-839.
    [82]Su C F, Zhao T J, Gai J Y. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models[J]. Acta Agron Sin,2010,36(7):1100-1107.
    [83]Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1[J]. Development,2004,131(22):5649-5657.
    [84]Szalma S J, Buckler Iv E S, Snook M E, et al. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks[J]. Theoretical and Applied Genetics,2005, 110(7):1324-1333.
    [85]Taguchi-Shiobara F, Yuan Z, Hake S, et al. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize [J]. Genes & Development,2001,15(20):2755-2766.
    [86]Tang J, Yan J, Ma X, et al. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population[J]. Theoretical and applied genetics,2010, 120(2):333-340.
    [87]Tanksley S D. Mapping polygenes[J]. Annual review of genetics,1993,27(1):205-233.
    [88]Theissen G, Strater T, Fischer A, et al. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize[J]. Gene, 1995,156(2):155.
    [89]Thompson B E, Bartling L, Whipple C, et al. Bearded-ear encodes a MADS box transcription factor critical for maize floral development[J]. The Plant Cell Online,2009,21(9): 2578-2590.
    [90]Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nature genetics,2001,28(3):286-289.
    [91]Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population[J]. Nature genetics,2011,43(2):159-162.
    [92]Tuberosa R, SALVI S, SANGUINETI M C, et al. Mapping QTLs regulating morpho-physiological traits and yield:Case studies, shortcomings and perspectives in drought-stressed maize[J]. Annals of Botany,2002,89(7):941-963.
    [93]Turner S. DNA Sequencing/Genomics:Toward Personalized Medicine:3G DNA Sequencing[J]. BioOptics World,2010:31-46.
    [94]Velappan N, Snodgrass J L, Hakovirta J R, et al. Rapid identification of pathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis[J]. Diagnostic microbiology and infectious disease,2001,39(2):77-83.
    [95]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments:I. Grain yield and yield components [J]. Crop Science,1996,36(5): 1310-1319.
    [96]Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize. Ⅱ:Determination of QTLs for grain yield and yield components [J]. Theoretical and Applied Genetics,1994,89(4):451-458.
    [97]Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1[J]. Development,2000,127(14):3161-3172.
    [98]Vollbrecht E, Springer P S, Goh L, et al. Architecture of floral branch systems in maize and related grasses[J]. Nature,2005,436(7054):1119-1126.
    [99]Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic acids research,1990,18(22):6531-6535.
    [100]Wilson L M, Whitt S R, Ibanez A M, et al. Dissection of maize kernel composition and starch production by candidate gene association[J]. The Plant Cell Online,2004,16(10):2719-2733.
    [101]Xi Z Y. Principle and Methodology of QTL Analysis in Cron. Chinese Agricultural Science Bulletin,2005,21:88-92.
    [102]Xiao Y N, Li X H, George M L, et al. Quantitative trait locus analysis of drought tolerance and yield in maize in China[J]. Plant Molecular Biology Reporter,2005,23(2):155-165.
    [103]Yan J, Kandianis C B, Harjes C E, et al. Rare genetic variation at Zea mays crtRB 1 increases [beta]-carotene in maize grain[J]. Nature genetics,2010,42(4):322-327.
    [104]Yan J, Tang H, Huang Y, et al. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid[J]. Euphytica, 2006,149(1-2):121-131.
    [105]Yan J, Warburton M, Crouch J. Association mapping for enhancing maize (L.) genetic improvement[J]. Crop Science,2011,51(2):433-449.
    [106]Yan J, Yang X, Shah T, et al. High-throughput SNP genotyping with the GoldenGate assay in maize[J]. Molecular Breeding,2010,25(3):441-451.
    [107]Yang J P, Rong T Z, Xiang D Q, et al. QTL mapping of quantitative traits in maize[J]. Acta Agron Sin,2005,314:188-196.
    [108]Yang J, Hu C, Hu H, et al. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations[J]. Bioinformatics,2008,24(5):721-723.
    [109]Yang X, Quiros C. Identification and classification of celery cultivars with RAPD markers[J]. Theoretical and Applied Genetics,1993,86(2-3):205-212.
    [110]YongXiang L, Yang W, YunSu S, et al. Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize[J]. Scientia Agricultura Sinica,2009,42(2):408-418.
    [111]Yu H, Xie W, Wang J, et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers[J]. PLoS One,2011,6(3): e17595.
    [112]Yu J, Holland J B, McMullen M D, et al. Genetic design and statistical power of nested association mapping in maize[J]. Genetics,2008,178(1):539-551.
    [113]Yu S W,Yang C D,Li X M.Strategy For QTL Fine Mapping ang QTL Mapping for Yield Traits In Rice.China Rice,2008,3:13-16.
    [114]Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci[J]. Proceedings of the National Academy of Sciences,1993,90(23): 10972-10976.
    [115]Zhang X, Tang B, Yu F, et al. Identification of Major QTL for Waterlogging Tolerance Using Genome-Wide Association and Linkage Mapping of Maize Seedlings[J]. Plant Molecular Biology Reporter,2012:1-13.
    [116]Zirehzadeh M, Shahin M, Hedayat N. Evaluation of Correlation between Morph-Physiological Characters in Maize Hybrids by Kernel Yield using Path Analysis[J].
    [117]曹家树,曹寿椿.白菜及其相邻类群基因组DNA的RAPD分析[J].园艺学报,1995,22(1):47-52.
    [118]陈发辉,郑常祥.玉米产量构成因素分析[J].贵州农业科学,2007,35(2):47-48.
    [119]陈天青,鲜红,蔡一林,等.不同产量水平玉米的性状构成分析[J].西南师范大学学报:自然科学版,2007,32(1):87-90.
    [120]陈天青.玉米穗尖扁平及相关穗部性状的QTL分析[D][D].西南大学,2007.
    [121]陈向明,郑国生,孟丽.玫瑰,月季,蔷薇等蔷薇属植物RAPD分析[J].园艺学报,2002,29(1):78-80.
    [122]代国丽,蔡一林,徐德林,等.玉米穗部性状的QTL定位[J].西南师范大学学报(自然科学版),2009,34(5):133-138.
    [123]杜茂林,苟才明,杨荣志,等.高原玉米杂交种主要农艺性状的相关与通径分析[J].西北农林科技大学学报:自然科学版,2004,32(B11):15-18.
    [124]段院生,刘平武,杨光圣.甘蓝型油菜杂交种亲本指纹图谱分析[J].中国油料作物学报,2002,24(2):5-9.
    [125]冯友仁,牛安欧.微卫星体简单重复序列锚定PCR扩增技术(SSR-PCR)及其在寄生虫基因研究中的应用[J].实用寄生虫病杂志,2000,8(1):33-34.
    [126]冯宗云,张义正,凌宏清.大麦基因组中的微卫星标记及其应用[J].遗传,2002,24(6):727-733.
    [127]郭旺珍,何金龙.我国棉花主栽品种的RAPD指纹图谱研究[J].农业生物技术学报,1996,4(2):129-134.
    [128]何代元,吴广成,刘强,等.玉米主要农艺性状的相关通径分析[J].种子,2004,2.
    [129]侯爱民,孟长先,杨先文,等.玉米主要农艺性状的整齐度与产量的相关研究[J].玉米科学,2003,11(2):62-65.
    [130]侯娅丽,周倩,刘文忠.单核苷酸多态性及其猪育种中的应用[J][J]. Animal Science Veterinary Medicine,2004,6:46-46.
    [131]姜丽丽,樊明寿,郭九峰.干旱和灌溉两种处理条件下玉米株高,产量的QTL分析[J][J].华北农学报,2007,22(4):86-90.
    [132]姜有威,梁萍.玉米主要产量性状间的灰色关联度分析[J].甘肃农业科技,2007,8:11-14.
    [133]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999(4).
    [134]李泉木,王振华.玉米穗部性状与产量的相关分析[J].国外农学:杂粮作物,1999,19(3):26-27.
    [135]李新海,袁力行,李晓辉,等.利用SSR标记划分70份我国玉米自交系的杂种优势群[J].中国农业科学,2003,36(6):622-627.
    [136]李学慧.利用两个相关F2:3群体研究玉米穗粒性状QTL及粒重与籽粒品质性状遗传关系:[硕士论文]河南农业大学作物遗传育种,2008.
    [137]李艳杰,龙火生,李影,等.单核苷酸多态性(SNP)的研究进展和应用[J].畜牧兽医杂志,2003,22(4):16-18.
    [138]连艳鲜,何金环.高产玉米杂交种产量构成因素和穗部性状研究[J].安徽农业科学,2007,35(24):7430-7431.
    [139]梁晓玲,高慧慧,玉米杂交种的产量比较及主要农艺性状的相关和通径分析[J].玉米科学,2001,9(1):16-20.
    [140]梁晓伟,陈润玲,雷晓兵,等.杂交玉米产量相关性状的灰色关联度分析[J].江西农业学报,2010,22(002):16-18.
    [141]刘帆,石海春,余学杰.玉米果穗主要性状与产量间的相关与通径分析[J].玉米科学,2005,13(3):17-20.
    [142]刘志文,傅廷栋,刘雪平,等.作物分子标记辅助选择的研究进展影响因素及其发展策略[J].植物学通报,2005,22(B08):82-90.
    [143]刘志增,宋同明.玉米单倍体雌雄育性的自然恢复以及染色体的化学加倍[J].作物学报,2000,26(6):947-952.
    [144]刘宗华,汤继华,卫晓轶,等.氮胁迫和正常条件下玉米穗部性状的QTL分析[J].中国农业科学,2007,40(11):2409-2417.
    [145]卢道文,崔俊明,裴振群,等.夏玉米杂交种主要农艺性状与产量的相关和通径分析[J].杂粮作物,2003,23(3):129-131.
    [146]潘新法,孟祥勋,曹广力,等RAPD在枇杷品种鉴定中的应用[J].果树学报,2002,19(2):136-138.
    [147]石桂双,王国栋,吕东梅,等.玉米杂交种主要农艺性状的通径分析[J].种子科技,2007,25(5):49-50.
    [148]石云素.玉米重要自交系遗传多样性分析及产量相关性状QTL研究[D].北京:中国农业科学院,2008.
    [149]宋继娟,柳金来,周柏明,等.玉米穗部性状与产量关系的研究[J].吉林农业科学,2006,31(4):11-13.
    [150]孙其信.小麦杂种优势群研究:Ⅰ.利用RAPD标记研究小麦品种间遗传差异[J].农业生物技术学报,1996,4(2):103-110.
    [151]汤继华,严建兵,马西青,等.利用“永久F2”群体剖析玉米产量及其相关性状的遗传机制[J].作物学报,2007,33(08):1299-1303.
    [152]王建波.ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,2002,24(5):613-616.
    [153]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245.
    [154]王启柏,李杰文,王守义,郭风法.玉米产量及其构成因素的通径分析[J].杂粮作物,2002,(03)
    [155]王志林,赵树进,吴新荣.分子标记技术及其进展[J].生命的化学.2001,21(4):39-42.
    [156]危文亮,赵应忠.分子标记在作物育种上的应用[J].生物技术通报.2000,22(2):12-16.
    [157]吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26(2):129-132.
    [158]席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J]. Chinese Agricultural Science Bulletin,2005,21(1).
    [159]向道权,杨俊品.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报,2001,28(8):778-784.
    [160]谢惠玲,冯晓曦,吴欣,等.玉米穗部性状的QTL分析[J].河南农业大学学报,2008,2.
    [161]谢振江,李明顺,李新海,等.密度压力下玉米杂交种农艺性状与产量相关性研究[J]….玉米科学,2007,15(4):100-104.
    [162]邢吉敏,蔡春泉.玉米单交种产量指示性状分析[J].玉米科学,2003,11(4):67-71.
    [163]严建兵,王毅,汤华,等.基于株高性状的玉米EST序列与水稻基因组的比较研究[J].作物学报,2004,30(7):657-667.
    [164]杨金慧,毛建昌,李发民,等.玉米杂交种农艺性状与籽粒产量的相关和通径分析Ξ[J].中国农学通报,2003,19(4).
    [165]杨俊品,荣延昭,向道权等.玉米数量性状基因定位.作物学报,2005,31(2):188-196.
    [166]杨小红,严建兵,郑艳萍等.植物数量性状关联分析研究进展.作物学报,2007,33(04):523-530.
    [167]杨晓军.玉米重要性状QTL定位与遗传效应分析[D].新疆农业大学,2008.
    [168]杨昭庆,洪坤学.单核苷酸多态性的研究进展[J].国外医学:遗传学分册,2000,23(1):4-8.
    [169]于明彦,张文君,代秀云.玉米几个主要农艺性状与单株产量关系的探讨[J].吉林农业科学,1998,(03)
    [170]袁力行,傅骏骅,Warburton M, et al利用RFLP, SSR, AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报,2000,27(8):725-733.
    [171]岳尧海,周小辉,任军.夏玉米杂交种产量性状与产量的通径分析[J].玉米科学,2006,14(6):59-61.
    [172]张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用[J].生物技术通报.1998,(5):915-912.
    [173]张浩.基于导入系群体的玉米产量性状QTL鉴定与配合力分析[D].河北农业大学,2009.
    [174]张建华,刘志增,祝丽英,等.不同密度下玉米DH群体果穗性状的QTL定位分析[J].河北农业大学学报,2009,32(5):1-6.
    [175]张秋芝,郝玉兰,南张杰,等.玉米杂交种的产量比较及主要农艺性状的相关和通径分析[J].北京农学院学报,2005,20(4):33-39.
    [176]张效萌,韩金祥.单核苷酸多态性的检测及其在医药领域的应用[J].生命的化学,2001,21(4):325-327.
    [177]赵中秋,张春光,郑海雷.分子标记的发展及其在植物研究中的应用.福建热作科技.2000,25(4):13-16.
    [178]郑租平.玉米产量构成因子的总贡献分析[J].1998.
    [179]周远和,吴永升,覃兰秋,等.玉米主要农艺性状与产量的相关及通径分析[J].广西农业科学,2007,38(4):356-358.
    [180]朱军.运用合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327.
    [181]朱玉贤,李教.现代分子生物学[M].第二版,北京:高等教育出版社,2002:371-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700