用户名: 密码: 验证码:
鲜食葡萄果实糖酸组分遗传及葡萄糖苷酶基因的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续两年对104个葡萄品种果实中糖酸组分的测定表明:葡萄果实中糖的主要组分是葡萄糖和果糖,蔗糖含量较少,葡萄糖的含量变化范围为46.26~120.86mg ml-1;果糖的含量变化范围为48.64~128.09mg ml-1,蔗糖含量的变化范围为0~21.27mgml-1。葡萄果实中酸的主要组分为酒石酸和苹果酸,其中,酒石酸的含量显著高于苹果酸的含量,两年间酒石酸的含量变化范围分别为1.68~9.05mg ml-1(?)1.67~9.03mgml-1,苹果酸分别为0.39~6.15mg ml-1和0.34~6.98mg ml-1.欧美杂交种葡萄果实中的糖组分含量更高而酸组分含量更低。连续2年对不同类型葡萄杂交后代群体果实中糖酸含量的遗传力分析显示,杂交后代果实中含糖量平均值低于亲本平均值,超亲单株出现的比例较低。欧亚种之间杂交及欧亚种与欧美杂交种之间杂交时其糖组分遗传表现出相同的遗传力。葡萄糖含量的遗传力为0.60~0.85;果糖含量的遗传力为0.57~0.75;总糖含量的遗传力为0.62~0.83。苹果酸的遗传表现为加性效应,两种类型杂交时苹果酸的遗传力变化较大,范围为0.37~0.88;杂交后代群体苹果酸含量的平均值高于亲本平均值,表现为超亲遗传。酒石酸的遗传力较高,变化范围为0.75-0.89,杂交后代群体酒石酸含量平均值低于亲本平均值。葡萄果实中总酸含量遗传表现为加性效应,在不同类型品种间杂交时表现不一,更易受到苹果酸遗传的影响,总酸的遗传力为0.42~0.91。
     为了解葡萄糖苷酶基因与ABA之间的关系,在玫瑰香葡萄果实发育至成熟阶段及脱水胁迫条件下,分析了编码成熟果实β-葡萄糖苷酶的3个-cDNAs(VvBG1,VvBG2和VvBG3)表达方式,结果表明:这三个VvBG基因的表达显著不同。VvBG1and VvBG2基因的表达从果实开始成熟时迅速增加,并在采收达到最大值,这与ABA在果实发育与成熟时的积累相一致。然而,VvBG3的表达与VvBG1和VvBG2不同,从葡萄的幼果期到始熟期,其转录水平持续降低,随后没有进一步变化。在果实采收前10天,离体果实脱水胁迫处理后,上调了VvBG1表达并出现了ABA积累现象,相反下调了VvBG2的表达,VvBG3则对脱水胁迫没有响应。在葡萄叶片内,脱水胁迫处理后上调了VvBG1表达并有ABA积累,同时下调了VvBG2和VvBG3的表达。基于获得的结果,可得出如下结论:3个VvBGs基因的表达方式具有时间和组织上的差异性,在葡萄果实成熟期间和应对脱水胁迫反应时,VvBGs基因的表达变化与组织内ABA含量变化间存在明显关联性。
Two consecutive years' measurement of the sugar and acid content among104grape varieties suggested that:the major sugar components in grape were glucose and fructose, and less sucrose. The content of glucose ranged from46.26to120.86mg ml-1; the content of fructose ranged from48.64to128.09mg ml-1; and the content of sucrose ranged from0to21.27mg ml-1. The major acid components in grape were tartaric acid and malic acid, which the content of the former was significantly higher than that of the later. The range of tartaric acid in two years were1.68~9.05mg ml-1and1.67~9.03mg ml-1, and the range of malic acid in two years were0.39~6.15mg ml-1and0.34~6.98mgml-1, respectively. There was a higher sugar level and a lower acid level in hybrids of American and European varieties. Two consecutive years' analysis of the sugar and acid heritability in different types of filial generation showed that the average of sugar content in filial generation was lower than that in parent generation, and the propotion of transgressive segregation was low. There was a similar heritability between hybrids of Asian and European varieties and American and European varieties. The heritability of glucose was0.60~0.85, the heritability of fructose was0.57~0.75, and the heritability of total sugar was0.62~0.83. The total acid content was additive inheritance and was mainly influenced by malic acid, and the heredity of total acid was0.42~0.91.
     In order to understand more about the role of b-glucosidase gene expression in modulating ABA level, the expression pattern of three cDNAs (VvBG1, VvBG2and VvBG3) which encode b-glucosidase in ripening grape berries was analyzed in the presence or absence of dehydration stress. The results show that expression of these three VvBG genes was markedly different. Expression of VvBG1and VvBG2increased rapidly from ve'raison to reach a maximum at harvest or several days immediately before harvest, and coincident with ABA accumulation during berry development and ripening. However, expression of VvBG3differed from VvBG1and VvBG2in that transcript levels declined from the early young fruit stage through ve'raison after which there was no further change. At10days before harvest, dehydration treatment of detached grape berries up-regulated the expression of VvBG1and enhanced ABA accumulation whereas the expression of VvBG2was down-regulated, VvBG3was unaffected by dehydration stress. However, in the leaves, dehydration treatment up-regulated the expression of VvBG1and stimulated the accumulation of ABA but downregulated expression of VvBG2and VvBG3. Based on the results obtained, it is concluded that the expression pattern of the three VvBGs is both temporal and tissue specific.Furthermore, expression of the VvBGs might play a role in the regulation of ABA content during berry ripening and in the response of berries to dehydration stress.
引文
1. FAOstat. http://faostat.fao.org.2012
    2. Alleweldt G., Spiegel-Roy P., and Reiscb B. Grapes(vitis). Acta-Horticulturae,1991,290:289-327
    3. 贺普超.葡萄学[编].北京,中国农业出版社,1999
    4. 刘怀锋.葡萄果实糖酸构成特点、遗传规律及蔗糖与相关代谢酶关系的研究.中国农业大学博士学位论文.2005
    5. Lott R.V. and Barrett H.C. The dextrose levulose, and acid content of the juice from 39 grape clones. Vitis.1967,6:257-268
    6. Kliewer W.M. Concentration of tartrates, malates, glucose and fructose in the fruits of genus Vitis. Am J Enol Vitic.1967,18:87-96
    7. Mikio Shiraishi, Ryo Shinomiya, Hiroyuki Chijiwa. Preliminary genetic analysis of sucrose accumulation in berries of table grapes. Scientia Horticulturae.2012,137(1):107-113
    8. Campostrini F., Micheli L., Stefanini M., et al. Genetic variance and stability about some quantitative traits in a population of vine (Vitis vinifera). In:VIth Int Symp on Grape Breed, Yalta, Crimea, Ukraine 4-10 September,1994,9-20
    9. Saito B.B.and Kasai Z. Accumulation of tartaric acid in the repining process of grapes. Plant Cell Physiol.1968,9:529-537
    10. Wei X., Sykes S.R., and Clingeleffer P.R. An investigation to estimate genetic parameters in CSIRO's table grape breeding program.2. Quality characteristics. Euphytica.2002,128:343-351
    11. 黎盛臣,钟静懿,文丽珠.葡萄种间杂交某些性状遗传规律的初步分析.北京,植物引种驯化论文集.科学出版社,1965
    12. 林兴桂,尹立荣,沈育杰,等.山葡萄种内杂交后代的性状遗传.园艺学报,1993,20:231-236
    13. 王军,宋润刚,尹立荣,等.山葡萄与欧亚种葡萄杂交后代性状遗传.特产研究,1997,(1)5-9
    14. Huai-feng Liu.et al. Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica.2007,(153):99-107
    15. Shiraishi M. Three descriptors for sugars to evaluate grape germplasm. Euphytica.1993,71: 99-106
    16. Carroll, D.E.and Marcy J.E. Chemical and physical changes during maturation of muscadine grapes (vitis rotundifolia). Am J Enol Vitic.1982,33:168-172
    17. 潘照明,葡萄浆果的酸代谢生理.中外葡萄与葡萄酒.1991,01:1-3
    18.马会琴,罗国光.葡萄浆果生长过程中的酒石酸、苹果酸含量变化.葡萄栽培与酿酒.1997,(2):1-3
    19. Robert A.P., Mattick L.R., and Weirs L.V.D. An acidity index for the taste of wines. Am J Enol Vitic.1980,31:265-268
    20. Ryan J.J. and Dupan JA. Identification and analysis of the major acids fruit juice and wines. J Agric Food Chem.1973,21:45-49
    21. Amerine M.A., Roessler E.B., and Ough C.S. Acids and the taste. Ⅰ. The effect of pH and titratable acidity. Am J Enol Vitic 1965,16:29-37
    22. Vesser T. and Verhaegh J.J. Inheritance and selection of some fruit characters of apple. Ⅰ.Inheritance of low and high acidity. Euphytica.1978,27:753-760
    23. Lamikanra O., Inyang I.D., and Leong S. Distribution and effect of grape maturity on organic acid content of red muscadine grapes. J Agric Food Chem.1995,43:3026-3028
    24. Chadha K.L. and Shikhamany S.D. Quality Improve, in:The grape, improvement, production and post-harvest management. Molhotra Publishing House, New Delhi.1999,343-346
    25. Shiraishi M. Proposed descriptors for organic acids to evaluate grape germplasm. Euphytica.1995,81:13-20
    26. Visser T., Schaap A.A., and Vries D. P. Acidity and sweetness in apple and pear. Euphytica.1968,17:153-167
    27. Brown A.G. and Harvey D.M. The nature and inheritance of sweetness and acidity in cultivated apple. Euphytica.1971,20:68-80
    28. Hardy P.J. Metabolism of sugar and organic acid in immature grape berries. Plant Physiol.1968,43:224-228
    29.李远华,茶树葡萄糖苷酶基因克隆、表达和分布定位.安徽业大学博士学位论文.2003
    30.王华夫,游小青.茶叶中葡萄糖苷酶活性的测定.中国茶叶.1996,(3):16-17
    31.陈向东,藤尾雄策.日本根霉IF05318胞外葡萄糖苷酶的纯化及部分特性.微生物学报.1997,37(5):368-373
    32. Gus mayer S. Avenacosidase from oat:purification sequence analysis biochemical characterization of a new member of the BGA family of beta-glucosidases. Plant Mol Boil.1994,26(3):909-921
    33. Leah R, Kigel J, Svendsen I, et al. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem.1995,270:15789-15797
    34. Cicek M. Structure and expression of a dhurrinase (beta-glucosidase) from sorghum [J]. Plant Physiol,1998,116(4):1469-1478
    35. Crombie H J. A xyloglucan oligosaccharide-active, transglycosylating beta-D-glucosidase from the cotyledons of nasturtium(Tropaeolum majus L) seedlings-purification, properties characterization of a cDNA clone. Plant J.1998,15 (1):27-38
    36. Minami Y. Cloning, seguencing, characterization, and expression of a beta-glucosidase cDNA from the indigo plant. Plant Science.1999,142(2):219-226
    37. Theologis A, Ecker JR, Palm CJ, et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature.2000,408:816-820
    38. Geerlings A. Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem,2000,275 (5):3051-3056
    39. Ketuat Cairns J R. Seguence and expression of Thai Rosewood beta-glucosidase/beta-fucosidase, a family 1 glycosyl hydrola glycoprotein. J Biochem (Tokyo).2000,128(6):999-1008
    40. Anders Falk and Lars Rask. Expression of a zeatin- O-glucoside-degrading β-glucosidase in Brassica napus. Plant-Physiolgy (USA).1995,108(4):1369-1377
    41. Giovannoni J. Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol.2001,52:725-749
    42. Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at tomato ripening-inhibitor (rin) locus. Science.2002,296:343-346
    43. Tieman DM, Ciardi JA, Taylor MG, et al. Members of the Tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 2001,26:47-58
    44. Tieman DM, Taylor MG, Ciardi JA, et al. The tomato ethylene receptors NR and LeETR4 are negative regulators of the ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA.2000,97:5663-5668
    45. Kevany BM, Tieman DM, Taylor MG, et al. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J.2007,51:458-4676
    46. Itkin M, Seybold H, Breitel D, et al. Tomato agamous-like I is a component of the fruit ripening regulatory network. Plant J.2009,60:1081-1095
    47. luchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J.2001,27:325-333
    48. Chernys JT, Zeevaart JAD. Characterization of the 9-cisepoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol.2007,124:343-353
    49. Huang CL, Zhang DP, Jia WS. A study of the sources of abscisic acid in grape berry during its late developmental phases. Acta Horticulturae Sinica.2001,28:385-391
    50. Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol. 2005,56:165-185
    51. Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002,7:41-48
    52. Taylor IB, Burbidge A, Thompson AJ. Control of abscisic acid synthesis. J Exp Bot. 2000,51:1563-1574
    53. Ren J, Sun L, Wu JF, et al. Cloning and expression analysis of cDNAs for ABA 80-hydroxylase during sweet cherry fruit maturation and under stress conditions. J Plant Physiol. 2010,167:1486-1493
    54. Ren J, Sun L, Wu JF, et al. Expression analysis of the cDNA for Magnesium Chelatase H Subunit (CHLH) during sweet cherry fruit ripening and under stress conditions. Plant Growth Regul.2011, 63:301-307
    55. Sun L, Wang YP, Chen P, et al. Transcriptional regulation of S1PYL, S1PP2C and S1SnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot.2011,62:5659-5669
    56. Sun L, Zhang M, Ren J, et al. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol.2010,10:257
    57. Barthe P, Garello G, Bianco-Trinchant J,et al. Oxygen availability and ABA metabolism in Fagus sylvatica seeds. Plant Growth Regul.2000,30:185-191
    58. Cowan AK. Abscisic acid biosynthesis in vascular plants is a constitutive process. S Afr J Bot. 2001,67:497-505
    59. Oritani T, Kiyota H. Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep.2003,20:414-425
    60. Lee KH, Piao HL, Kim HY,et al. Activation of glucosidase via stressincreases active pools of abscisic acid. Cell.2006,126:1109-1120
    61. Zheng-Jun Xu, Masatoshi Nakajima, Isomaro Yamaguchi,et al. Cloning and Characterization of the Abscisic Acid-Specific Glucosyltransferase Gene from Adzuki Bean Seedlings. Plant physiology, 2002,129(3):1285-1295
    62. Hartung W., Sauter A.& Hose E. Abscisic acid in the xylem:where dose it come from and where dose it go?. Journal of Experimental Botany,2002,53(366):27-32
    63. Sauter A, Hartung W. The contribution of internode and mesocotyl tissues to root-to-shoot signalling of abscisic acid. Journal of experimental botany,2002,53(367):297-302
    64. Chiwocha, Adrian J. Cutler, Suzanne R. Abrams, et al. The etrl-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. The Plant Journal,2005,42:35-48
    65. Wan CY, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem.1994,223:7-12
    66.陈昆松,徐昌杰,李方,等.HPLC法检测果实组织中内源IAA,ABA方法的改进.果树学报,2003,20(1):4-7
    67. Laurentin A, Edwards CA. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem.2003,)315:143-145
    68.龙淑珍,何永群.荔枝可滴定酸与维生素C的测定及其相关性.广西农业科学,2002(4):188-189
    69. Opassiri R, Cairns JRK, Akiyama T, et al. Characterization of a rice β-glucosidase highly expressed in flower and germinating shoot. Plant Sci.2003,165:627-638
    70. Krochko JE, Abrams GD, Loewen MK, et al. Abscisic acid 80-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol.1998,118:849-860
    71. Saito S, Hirai N, Matsumoto C et al. Ara-bidopsis CYP707 As encode (β)-abscisic acid 80-hydroxylase, a key
    72. enzyme in the oxidative catabolism of abscisic acid. Plant Physiol.2004,134:1439-1449
    73. deuterium-labeled internal standards. Plant Growth Regul.2005,45:183-188
    74. Setha S, Kondo S, Hirai N, et al. Quantification of ABA and its metabolites in sweet cherries using
    75. Cakir B, Agasse A, Gaillard C, et al. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell.2003,15:2165-2180
    76. Deluc LG, Grimplet J, WheatleyMD, et al. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics.2007,8:429
    77. Deluc LG, Quilici DR, Decendit A, et al. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics.2009,10:212
    78. Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp
    79. Leng P, Zhang GL, Li XX, et al. Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA regulated ethylene production in detached young persimmon calyx. Chin Sci Bull.2009,54:2830-2838
    80. Ji K, Chen P, Sun L,et al. Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Funct Plant Biol.2012,39:351-357
    81. Umezawa T, Okamoto M, Kushiro T, et al. CYP707A3, a major ABA 80-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J.2006,46:171-182
    82. Okamoto M, Tanaka Y, Abrams SR, et al. High humidity induces abscisic acid 80-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol.2009,149:825-834
    83. Ryan J.J.and Dupan JA. Identification and analysis of the major acids fruit juice and wines. J Agric Food Chem.1973,21:45-49
    84. Amerine M.A. and Thoukis G. The glucose-fructose ratio of California grapes. Vitis.1958,1: 224-229
    85. Kliewer W.M. Changes of concentration of glucose, fructose and total soluble solids in flowers and berries of Vitis Vinifera. Am J Enol Vitic.1965,16:101-110
    86. Kliewer W.M. Sugar and organic acids of Vitis vinifera. Plant Physiol.1966,41:923-931
    87. Carroll D.E., Hoover M.W., and Nesbitt W.B. Sugar and organic acid concentrations in cultivars of muscadine grapes. J Am Soc Hort Sci.1971,96:737-740
    88. Esteban M.A., Villannueva M.J., and Lissarrgue J.R. Effect of irrigation on changes in berry composition of Tempreanillo during maturation, sugars, organic acids and mineral elements. Am J Enol Vitic.1999,50:418-434
    89. Kanellis A.K. and Roubelakis-Angelakis K.A. Biochemistry of fruit ripening, in:Grapes, Ed by Seymour G.B., Taylor J.E. and Tucker G.A. Chapman & Hall. London.1993,189-220
    90. Crisosto C.H.and Crisosto G.M. Understanding American and Chinese consumer acceptance of 'Redglobe' table grapes. Postharvest Biol Tec.2002,24:155-162
    91. Pangborn R.M. Relative taste of selected sugars and organic acids. J Food Sci.1963,28:726-733
    92. Doty T.E. Fructose sweetness:a new dimension. Cereal Foods World.1976,21:62-63.
    93. Hawker J.S. a. Changes in the activities of malic enzyme, malate dehydrogenase,phosphopyruvate carboxylase and pyruvate decarboxylase during development of a non-climacteric fruit (the grape). Phytochem 1969,8:19-23
    94. Jesus M., Granda G, and Morrison J.C. Solute distribution and malic enzyme activity in developing grape berries. Am. J. Enol. Vitic.1992,43:323-328
    95. Amerine M.A.and Joslyn M.A. Table wines:The technology of their production. University of California, Berkeley, CA 1970
    96. Cash J.N., Sistrunk W.A., and Stutte C.A. Changes in nonvolatile acids of concord grapes during maturation. J Food Sci.1977,42:543-544
    97.路文鹏,宋润刚,李晓红,等.山葡萄种内杂交后代浆果色素、单宁和总酸含量的遗传分析.吉林农业大学学报,2003,25:629-633

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700