用户名: 密码: 验证码:
墨西哥柏幼苗生长规律及其耐盐抗旱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以10种不同种源墨西哥柏D1(La presa)、D2(Pinal de amoles)、D3(La cienega),D4(Lacumbre del manzano)、D5(Dos aguas)、D6(Camino a la mesa)、D7(Ejido pio frio)、D8(Comunalsan francisco)、D9(Tequesquinahuac)、D10(Ejido sierra de agua)为研究对象,采用野外观测与室内实验相结合的方法,系统研究了墨西哥柏幼苗生长规律及光合作用特性、各种施肥措施对墨西哥柏幼苗生长特性的影响、旱盐逆境胁迫对墨西哥柏的生理生化影响,获得的主要成果如下:
     各种源地墨西哥柏幼苗均符合“S”型生长曲线的累计生长规律,回归效果显著,R2达到0.98以上。不同种源间地上地下特征差异显著。D2拥有较为发达的根系组织;D5地上部分高生长生长较为明显;D1各生长指标都较为均衡。
     在种子萌发期,低盐浓度胁迫下,D1、D10种源的墨西哥柏种子的发芽率有所略微提高,其余种源都下降,下降幅度较小,但发芽势、发芽指数和种子活力指数均随NaCl浓度的增加而明显下降。一年生苗木,盐分胁迫对各种源墨西哥柏苗木形态及生长均产生显著影响,苗高生长和地径生长均受到明显的抑制,对苗高生长的影响大于对地径生长的影响,且各种源间苗高影响差异显著。
     轻度干旱对苗木生长有促进作用,重度干旱抑制苗木生长。干旱胁迫抑制了墨西哥柏苗高的生长,D4种源受抑制程度最大。重度干旱下对根系生长抑制作用显著,与对照相比根系总长度均大幅度下降,轻度干旱促进了根系的均匀生长;重度干旱只能促进0.0~1.0mm等级的根系生长。干旱胁迫促进了墨西哥柏幼苗地径的生长,除D6、D7、D9和D10种源,其他均出现明显的促进作用。
     在胁迫初期干旱对细胞膜系统造成了伤害,而后期则可能因为适应干旱环境从而恢复了膜系统,导致电导率含量下降。随着胁迫时间的延长和胁迫梯度的增大,墨西哥柏的叶绿素a(Chla)、叶绿素b(Chlb)和叶绿素总量(Chla+Chlb)都有不同程度的下降,在一定程度上降低了叶片的光合作用能力。
     干旱胁迫导致墨西哥柏针叶丙二醛(MDA)含量有不同程度的增加,最大为D3种源,在干旱T4处理下MDA含量高达290.41nmol/g。D5-D10六个种源仅在干旱胁迫在土壤含水量低于田间最大持水量的10%以下时伤害最大。墨西哥柏过氧化物酶(POD)活性在持续干旱胁迫下随着胁迫梯度的增大和胁迫时间的延长变化趋势不明显,在干旱胁迫下墨西哥柏能够通过POD活性的提高而在一定程度上保护细胞膜,使自由基维持在一个较低水平上,从而防止自由基对细胞膜更严重的伤害。在胁迫末期还出现了POD活性下降的现象,暗示了墨西哥柏抗氧化能力的衰退。
     干旱胁迫下,随干旱时间和干旱程度的增加,墨西哥柏脯氨酸含量均有不同程度的积累。可溶性蛋白质含量变化与可溶性糖浓度变化相似。10种墨西哥柏在干旱强度T1和T2处理下随时间的延长,可溶性糖浓度呈先上升而后下降的趋势。D6、D8、D9和D10种源只在干旱强度T4处理下可溶性糖浓度呈一直上升的趋势,说明在这种干旱强度下这四种植株受到了伤害,其它处理下可溶性糖浓度的变化趋势与对照相似,无显著差异,抗旱性较好;D1和D7种源在处理T3和T4两个梯度下可溶性糖浓度呈一直上升的趋势,抗旱性较差。
     采用主成分分析法、隶属函数法、权重法等多种方法对实验中分析的16个指标(苗高、地径等)进行综合评价,10种墨西哥柏种源的抗旱性由强到弱的顺序为:D9、D5、D3、D10、D8、D7、D6、D1、D4、D2。把苗高、地径、叶片含水量、叶绿素总含量、相对电导率含量、脯氨酸和丙二醛含量7个参数因子值代入模型,根据隶属函数法综合评价各种源耐盐能力,筛选出了强耐盐抗旱种源为:D10(Ejido sierra de agua)、D3(La cienega)。
Cupressus lusitanica, a provenance from Mexico, is an evergreen arbor tree with highdrought tolerance and saline tolerance. With10provenances of Cupressus lusitanica fromMexico, D1(La presa), D2(Pinal de amoles),D3(La cienega),D4(La cumbre del manzano)、D5(Dos aguas), D6(Camino a la mesa), D7(Ejido pio frio), D8(Comunal san francisco)、D9(Tequesquinahuac), D10(Ejido sierra de agua), their growth law, photosynthesischaracteristics and physiological characteristics under drought and saline diversity stress wasstudied and results are as follows:
     Cupressus lusitanica grew well in Nanjing and their growth of seedlings showed logisticcurve with growing days, whose R2was all more than0.98. There was great difference for theroot system and above ground growth among different types of provenance. For the D2provenance, it was with developed root system while the D5provenance was the highest. The D1provenance grew averagely for root, height and stem.
     Under low stress of saline, germination rate of D1, D10types improved a little while that forthe other tree types decreased a little. Germination energy, germination index, and seed viabilitydecreased with NaCl concentration. For one year seeding of Cupresses lusitanica, saline stressaffected their shape and growth of all types of provenance outstandingly. Height growth andground diameter growth was urged and its effect on height was higher than that of grounddiameter. There existed outstanding difference among10types of provenance.
     Light drought improved the growth of seeding and heavy drought urged the growth ofseeding of Cupressus lusitanica and the extent differed quietly according to its provenance.Drought urged the growth of Cupressus lusitanica, especially the D4provenance suffered themost seriously. Under heavy drought, there root growth decreased sharply except the root withdiameter between0.1-1.0mm grew well compared with the contrast. Light drought improved theaverage growth of root system. Drought also improved the growth of ground diameter ofCupressus lusitanica seedlings form the province of D1, D2, D3, D4, D5and D8.
     Their physiology and biochemistry reaction to light drought showed uniform while variedgreatly to heavy drought. At the early stage of drought stress, conductivity increased due to thedamage to the cell membrane by water loss. While in the lateral stage of drought, conductivitydecreased, which may be inferred due to the adaptability of seedlings to drought stress. With theextending of time and increase for drought stress, content of a(Chla),b(Chlb)and (Chla+Chlb)decreased and the ability for photosynthesis of leaves decreased correspondingly.
     Under drought stress,(MDA)in the needle leave of seeding of Cupressus Lusitania increased,among which, it was the highest for the D3provenance under T4drought level, whose MDAcontent in the leave was as high as290.41nmol/g. For the D5-D10provenances, drought stressmade the great damage when the soil water content was less than10%of the max field capacity of soil water. The activity of(POD)did not show outstanding change with the increase of droughtstress and time, showing strong function of protecting cell membrane. At the end of drought stress,it decreased suddenly, showing decline of antioxidant capacity. Proline content increased with thedrought stress at different levels for the ten provenances.
     For the10provenances, under drought stress of T1and T2level, soluble sugar content in theleaves increased at first and then decreased to its original level. For the D6,D8,D9and D10provenances, their soluble sugar content increased from1.0μ mol/g to3.5μ mol/g under T3and T4levels of drought stress, showing strong damage to seedlings. For the other provenances, therechange of soluble sugar content in the leaves varied similiarly with the contrast, showing lowdamage. For theD1and D7provenances, their soluble sugar content increased from1.0μ mol/g to4.5μ mol/g under T3and T4levels of drought stress, showing high damage.
     With principal component analysis, membership functions, weighting method, syntheticevaluation model of seeding saline and drought resistant ability was constituted. Instituting thevalues of height, ground diameter, volumetric water content, total content of chlorophyll, relativepermeability of cell membrane, mda and proline under saline stress and drought stress respectivelyinto the models, the order for drought resistance was D9、D5、D3、D10、D8、D7、D6、D1、D4、D2, while the order for saline resistance was D10(Ejido sierra de agua)and D3(La cienega).
引文
[1]张承芬,汪萍珍.藏柏、墨西哥柏引种造林试验[B].贵州林业科技.2001,29(2):14-18
    [2]曾德贤,朱仁刚.墨西哥柏52个优树自由授粉子代遗传测定[A].西南林学院学报.2006,26(4):22-26
    [3]潘攀,李荣伟.墨西哥柏人工林生物量和生产力研究[A].长江流域资源与环境.2002,11(2):133-136
    [4] Murray R. Davis,Graham Coker, Roger L. Parfitt, Robyn Simcock,Peter W. Clinton, Loretta G. Garrett,Michael S. Watt.Relationships between soil and foliar nutrients in young densely planted mini-plots ofPinus radiata and Cupressus lusitanica[J]. Forest Ecology and Management240(2007)122-130
    [5] Hassanzadeh, Sara L. The chemical composition and antimicrobial activity of the leaf oil of Cupressuslusitanica from Monteverde, Costa Rica [J]. Pharmacognosy research.2010(2):19-21
    [6]朱仁刚,吴子欢.墨西哥柏优树自由授粉子代测定初报[A].西南林学院学报.2002,22(1):20-22
    [7] Heidi S.Dungey,John H. Russell,Joao Costa e Silva,Charlie B. Low,Mark A. Miller,Kane R. Fleet,Graham T.Stovold.The effectiveness of cloning for the genetic improvement of Mexican white cypress Cupressuslusitanica (Mill.)[J].Tree Genetics&Genomes (2013)9:443-453
    [8]赵盛军.应用模糊相似优先比法对大理州墨西哥柏引种适应性分析[A].林业调查规划.2005,30(3):99-101
    [9] Tesfaye Teshome.A ratio method for predicting stem merchantable volume and associated taper equationsfor Cupressus lusitanica, Ethiopia [J]. Forest Ecology and Management204(2005)171-179
    [10] Michael S.Watt, Peter W. Clinton, Graham Coker,Murray R. Davis, Robyn Simcock,Roger L. Parfitt,John Dando. Modelling the influence of environment and stand characteristics on basic density andmodulus of elasticity for young Pinus radiata and Cupressus lusitanica[J]. Forest Ecology andManagement255(2008)1023-1033
    [11]杨益军,彭金贵,徐光田.墨西哥柏引种栽培试验[A].四川林业科.1995,16(2):35-39
    [12]鲁克成,刘奎.抗旱保水剂在墨西哥柏工程造林上的试验研究[A].林业调查规划.2003,28(1):99-102
    [13]史富强,袁连珍,许林红.半干热石质山地墨西哥柏伴生树种选择研究[A].林业调查规划.2009,34(5):139-142
    [14] Watt, Michael S.; Davis, Murray R.; Parfitt, Roger L. Improved nutritional status of Cupressus lusitanicawhen grown adjacent to Pinus radiata [J]. Canadian Journal Of Forest Research-revue Canandenne derecherche Forestiere.2009(39):882-887
    [15] Berhe, Leakemariam. Tree taper models for Cupressus lusitanica plantations in Ethiopia[J]. SouthernForests.2008(70):193-203
    [16] Abrham Abiyu, Mulugeta Lemenih, Georg Gratzer Raf Aerts, Demel Teketay, and Gerhard Glatzel.Statusof Native Woody Species Diversity and Soil Characteristics in an Exclosure and in Plantations ofEucalyptus globulus and Cupressus lusitanica in Northern Ethiopia[J].Mountain Research andDevelopment,2011,31(2):144-152
    [17] Mulugeta Lemenih, Mats Olsson, Erik Karltun.Comparison of soil attributes under Cupressus lusitanicaand Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands andnatural forest in Ethio pia[J]. Forest Ecology and Management195(2004)57-6.
    [18]赵英,张文辉,何景峰.瑞典能源柳引种苗期生长特性的研究[J].西北林学院学报,2009,24(4):80-84.
    [19]邢世岩,周蔚,马颖敏.侧柏林天然更新及苗期生长特性[J].林业科技开发,2009,23(1):52-54.
    [20]王桂珍,刘朝奎,陈道静.落羽杉1年生播种苗生长特性研究[J].西南林学院学报,2007,27(5):5-7.
    [21]冯研,宁晓光,郭喜军.北温带欧洲赤松苗期生长性状分析[J].林业科技,2010,35(3):4-5.
    [22]兰士波.高寒地区欧洲赤松引种苗期试验及早期评价[J].林业科技开发,2010,24(3):22-25.
    [23]杨卫明,甘家生,陆斌等.银荆、墨西哥柏施肥试验初报[J].云南林业科技,1996,(1):30-35.
    [24]陆斌,甘家生,杨卫明.墨西哥柏壮苗培育技术的初步探讨[J].云南林业科技,1996,(1):14-18.
    [25]孙洪刚.杉木人工林断面积生长规律及动态模拟[D].北京:中国林业研究科学院,2008.6.
    [26]陈瑞炳.3种相思类树种生长对比试验[J].陕西林业科技,2008.3(1):17-19.
    [27]李秋元,孟德顺. Logistic曲线的性质及其在植物生长分析中的应用[J].西北林学院学报,1993,8(3):81-86.
    [28]张国珍,李策宏,谢孔平等.凹叶厚朴种子保存方法及幼苗生长规律[J].林业科技发展,2008,22(5):19-21.
    [29]赵体顺,袁其站,齐宗俭等.伏牛山区日本落叶松生长规律研究[J].河北林业科技,1995.9(3):1-4.
    [30]李兴业,刘录,张玉柱等.黑龙江省西部地区日本落叶松幼苗生长规律初步研究[J].林业科技发展,1999(4):13-14.
    [31]严洪,李同立,区凯明.不同楸树品种(类型)苗木生长及光合作用日变化规律研究[J].林业勘察设计(福建),2009,(1):65-69.
    [32]于世河,颜廷武,陆爱君等.东部白松叶片光合作用日变化特征的研究[J].辽宁林业科技,2010,(4):8-11.
    [33]甘肖梅,杨红兰,李军伟等.互花米草成熟期光合作用日变化特征研究[J].安徽农业科学,2010,38(1):143-145,149.
    [34]李文文,黄秦军,丁昌俊等.南方型和北方型美洲黑杨幼苗光合作用的日季节变化[J].林业科学研究,2010,23(2):227-233.
    [35]丁小涛,金海军,张红梅等.遮荫处理对温室四种蔬菜生长及光合作用日变化的影响[J].浙江农业学报,2010,22(1):51-56.
    [36]潘攀等.墨西哥柏人工林生物量和生产力研究[J].长江流域资源与环境,2002,02(11):133-136.
    [37]Ali Bagherzadeh, Rainer Brumme, Friedrich Beese. Biomass and nutrients allocation in pot cultured beechseedlings: influence of nitrogen fertilizer [J]. Journal of Forestry Research,2008,19(4):263-270.
    [38] Jarvis P G,Morison JIL.1981.The eontort of transpiration and photosynthesis by the set stomata,In Jarvis,PG,Mansfield.Jam,Somali Physiology,Cambridge Univ.Press.247-279.
    [39]贾志军,宋长春.湿地生态系统CO2净交换、水汽通量及二者关系浅析[J].生态与农村环境学报,2006,22(2):75-79.
    [40]安国英,陈玉娥等.施肥对毛白杨叶片鲜重、电导和酸度的影响[J].河北林业科技,1997(2):6-8.
    [41]王华芳.树木矿质营养与生长相关性研究进展[J].世界林业研究,1993,(4):41-47.
    [42]曹帮华,巩其亮,齐清.毛白杨苗期不同配方施肥效应的研究[J].山东农业大学学报,2004,35(4):512-51.
    [43]陈竣,李贻铨,陈道东等.杉木中龄施肥效应探讨[J].中国林业科学研究,1996,(4):23-27.
    [44]陈竣,李贻铨,杨承栋.中国林木施肥与营养诊断研究现状[J].世界林业研究,1998,(3):58-65.
    [45]侯扶江.施肥对牧草光合作用、呼吸作用和氮、碳吸收与转化的影响[J].应用生态学报,2001,12(6):938-942.
    [46]金建忠.杨树二耕土施肥肥效的研究[J].中南林业调查规划,1995,4(4):250-251.
    [47]吴惠仙,唐新民,文二华.施肥对杨树后期生长及养分的影响[J].中南林业调查规划,2000,19(3):61-62.
    [48]姜岳忠,吴晓星,马玲.毛白杨苗期生长特性及需肥量研究[J].甘肃农业大学学报,2004,(4):423-426.
    [49]姜岳忠,吕方泉,许玉堂.鲁西平原沙地毛白杨幼林间作试验[J].山东林业科技,2004,(6):12-13.
    [50]李大和.沙田柚配方施肥试验[J].热带亚热带土壤科学,1995,4(4):250-251.
    [51]V· Kothiyal. A. Negi Wood quality of eighteen year old Cypresses iusitaniea form Maharshtra. WoodScience and Teehnology.1998,32:119-127.
    [52]Michael S. Watt. Modelling the influence of environment and stand characteristics on basic density andmodulus of elasticity for young Pinus radiata and Cupressus lusitanica[J]. Forest Ecology andManagement2008(255):1023-1033.
    [53]武维华.植物生理学[M].北京:科学出版社,2003.
    [54]LEVITT J. Response of plants to environmental stress[M].2nd ed, New York: Academic Press,1980.
    [55]TURNER N C. Adaptation to water deficit: A changing per-spective[J]. Australian Journal of PlantPhysiology,1983(13):175-190.
    [56]刘建锋,史胜青,江泽平.几种引进柏树的抗旱性评价[J].西北林学院学报,2011,26(1):13-17
    [57]郁万文.刺槐无性系耐盐差异性研究[D].山东农业大学,2005:10-15,70-79
    [58]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展,植物学通报,1999,16(5):555-560
    [59]胡学俭.10树种苗期抗旱特性及抗旱评价指标体系的研究[D].山东:山东农业大学,2005.
    [60]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-97.
    [61]Li W.L., Berlyn G.P., Ashton P.M.S. Polyploids and their structure and physiological characteristics relativeto water detict in Betula papyrifera. American J. of Botany,[J].1996,83(1):15-20
    [62]王虹,邓彦斌,许秀珍等.新疆10种旱生、盐生植物的解剖学研究[J].新疆大学报,1998:66-73.
    [63]邓艳,蒋忠诚,曹建华等.弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J].广西植物,2004,24(4):317-322.
    [64]M.F. Ortu noa, J.J. Alarc′ona,b, E. Nicol′asa, A. Torrecillasa, b. Sap flow and trunk diameter fluctuationsof young lemon trees under water stress and rewatering[J].Environmental and Experimental Botany,2005,54:155-162.
    [65]Myers B, Landsberg J. Water stress and seedling growth of two eucalypt species from contrasting haitats[J].Tree Physiol,1989,5:207-218.
    [66]王洪春.植物抗性生理[J].植物生理学通讯,1981(6):72-81.
    [67]刘建伟,刘雅荣.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,(4):14-18.
    [68]孟林,毛培春,张国芳,史晓霞.17个苜蓿品种苗期抗旱性鉴定[J].草业科学,2008,25(1):21-22.
    [69]殷秀杰,王明玖,石凤翎,崔国文.三种三叶草幼苗期抗旱性差异的研究[J].中国草地学报,2008,30(2):69-71.
    [70]Hsiao, T. C., Plant responses to water stress[J]. Ann. Rer. Plant physiol,1973,24:519-570.
    [71]杨敏生,裴保华,张树常.树木抗旱性研究进展[J].河北林果研究,1997,12(1):88-89.
    [72]S.J. Litea, K.J. Bagstadb, J.C. Stromberg. Riparian plant species richness along lateral and longitudinalgradients of water stress and flood disturbance, San Pedro River, Arizona, USA[J]. Journal of AridEnvironments,2005,63:785-813.
    [73]姬谦龙.不同基因型美国黑核桃对干旱胁迫的适应机制研究[D].山东:山东农业大学,2002.
    [74]张福锁.环境胁迫与植物营养[M[.北京:北京农业大学出版社,1993.
    [75]许桂芳,吴铁明,向佐湘.干旱胁迫对两种过路黄抗性生理生化指标的影响[J].作物研究,2006(2):138-140.
    [76]陈柯,王小德.常春油麻藤等3种藤本植物抗旱性生理指标研究[J].浙江林学院学报,2008,25(3):314-318.
    [77]沈艳,兰剑.干旱胁迫下苜蓿抗旱性参数动态研究[J.农业科学研究,2006.27(3):21-30.
    [78]娄晓瑞,万福绪,孙波.水分胁迫对10种墨西哥柏生长及生理生化指标的影响[J].安徽农业科学,2012,40(7):4072-4075.
    [79]龚明,丁念诚,贺子义等.盐胁迫下大麦和小麦叶片膜脂过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846
    [80]JiaWS, ZhangJH. Stomatal movements and long-distance signaling in plants. Plant Signaling and Behavior,2008,3(10):772-777.
    [81]Yam auchiA, Paradales Jr JR, Kono Y. Root system structure and is relation to stress tolerance Ito O,Katayama K, Johansen JV D K, Kumar Rao JJ eds. Root and Nitrogen in Cropping Systems of theSemiarid Tropics. Tsukuba, Japan: Cultio Corporation,1996:211-233.
    [82]慕自新,张岁岐,郝文芳,梁爱华,梁宗锁.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报,2005,25(11):2895-2900.
    [83]李文娆,张岁岐.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J].生态学报2010,30(19):5140-5150.
    [84]张喜英.高粱根系生长发育规律及动态模拟[J].生态学杂志,1999,18(5):65-67.
    [85]冯广龙,刘昌明,王立.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究,1996,4(3):5-9.
    [86]白文明,左强,黄元仿,李保国.乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究[J].植物生态学报,2001,25(1):25-31.
    [87]Chrispeels M J, Maurel C. Aquaporins, the molecular basis of facilitated water movement through livingplant cell[J].Plant Physiol,1994,105:9-13.
    [88]Maggio A, Joly R T. Effects of mercuric chloride on the hydraulic conductivity of tomato systems.Evidence for a channel-mediated water pathway [J]. Plant Physiol,1995,109:331-335.
    [89]顾汤华.墨西哥柏引种适应性及耐盐性研究[D].南京林业大学,2011.
    [90]Rodriguez HG,Bobert JKM,Jordan WR,Drew MC.Growth,water relations and accumulation of orgnic andinorganic studies in roots of Maize seedlings during salt stress.Plant Physiol.1997,113:881-893
    [91]曹帮华.刺槐抗旱抗盐特性研究[D].北京林业大学,2005,1-2,33-56
    [92]Maslenkora LT.Adaptation to salinity as monitored By PSII oxygen evolving reactions in barley thylakoids.J Plant Physiol.1993,142:629-634.
    [93]张金凤.盐胁迫下8个经济林树种苗木反应特性的研究[D].山东农业大学,2004:7-11.
    [94]白根本,王沙生,沈昕,李金克.用蛋白电泳分析方法探讨胡杨远缘杂种鉴定及其抗盐性[J].北京林业大学学报,2000,22(3):5-7
    [95]Bolwer C,Montagu MC.Superoxide Dismutase and stress tolerance. Plant Physiol,1992,98(1):83-85.
    [96]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通迅,1991,27(2):.84-90.
    [97]Salin MI.Toxic Oxygen Species and Protective System of the Chloroplast [J].Physiol Plant,1998,25(3):241-24.
    [98]许大全.气孔的不均匀关闭与光合作用非气孔限制.植物生理学通迅,1995,31(4):246-252.
    [99]Muller M, Santarius KA.Changes in chloroplast membrane lipids during adaptation of barley to extremesalinity.Plant Phyiol.1978,62:326-333.
    [100]Carter DR, Cheeseman JM.The effect of external Nacl on thylakoid stacking in lettuce plants.Plant CellEnviron.1993,16:215-223.
    [101]马建华,郑海雷,赵中秋等.植物抗盐机理研究进展.生命科学研究进展.2001,5(3):220-226.
    [102]孙方行.紫荆苗期在盐分、干旱及其交叉胁迫下反应的研究[D].山东农业大学,2006:6-13,15-43.
    [103]赵可夫,李法曾主编.中国盐生植物.北京:科学出版社,1999,1.
    [104]高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(2):1-6.
    [105]刘桂丰,杨传平,温绍龙等.盐逆境条件下三个树种的内源激素变化[J].东北林业大学党报,1998,26(1):1-3.
    [106]刘家尧,衣艳君,赵可夫等.甜菜碱的测定技术及其在植物抗盐生理中的作用山东农业大学[J].曲阜师范大学学报.1994,20(2):66-69.
    [107]殷晓军,赵彦修,张慧.甜菜碱的合成及其相关基因的遗传工程[J].植物生理学通迅,2008,38(3):299-303.
    [108]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [109]赵福庚,何龙飞,罗庆云.植物逆境生理生态学.化学工业出版社,2004:2-3.
    [110]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):77-89.
    [111]范杰英.9个树种抗旱性的分析与评价[D].西北农林科技大学,2005:7-9,66-67.
    [112]郁万文.刺槐无性系耐盐差异性研究[D].山东农业大学,2005:10-15,70-79.
    [113]罗音,李卫民,孙明高,孟庆伟.几个经济树种抗旱性的评价及其抗旱指标的选取.山东林业科技.2003(3):3-5.
    [114]任君.牧草抗旱综合评价指标体系的AHP模型设计与应用研究.草业学报.1999.9:34-40.
    [115]张绪元.热带牧草抗旱性综合评价[D].华南热带农业大学,2005:8-19.
    [116]刘淇景.辽西阜新地区主要造林树种抗旱性的研究[J].东北林业大学学报,1989,17(1):93-98.
    [117]郭连生,田有亮.对几种阔叶树种耐旱性生理指标的研究[J].林业科学,1989,25(5):389-394.
    [118]裴保华.741杨耐旱性的研究.河北林学院学报,1994,9(4):282-287.
    [119]侯建华,吕凤山.玉米苗期抗旱性鉴定研究[J].华北农学院,1995,10(3):89-93.
    [120]杨敏生等.水分胁迫下白杨无性系生理和生长的数量遗传分析[J].北京林业大学学报,1997,19(2):50-56.
    [121]吕凤山,侯建华等.陆稻抗旱性主要指标的研究[J].华北农学报,1994,9(4):7-12.
    [122]王庆石.统计指标间信息重迭的消减办法[J].统计研究,1994,1:57-61.
    [123]陈京,谈峰.甘薯品种抗旱性的主成份分析[J].西南农业大学学报,1994,16(2):156-159.
    [124]周竹青.不同类型小麦品种农艺性状、生理指标与产量关系的多元统计分析[J].种子,2002,3:18-23.
    [125]杨敏生等.白杨又交无性系抗旱性鉴定研究[J].河北农业大学学报,1997,20(1):17-23.
    [126]李春喜,王志和,王文林,等.生物统计学[M].北京:科学出版社,2000.
    [127]赖文胜.长序榆一年生播种苗的年生长规律[J].南京林业大学学报,2001,25(4):57-60.
    [128]余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    [129]董江水.应用SPSS软件拟合Logistic曲线研究[J].金陵科技学院学报,2007,3.23(1):21-24.
    [130]崔党群.logistic曲线方程的解析与拟合优度测验[J].数理统计与管理,2005,1.24(1):112-115.
    [131]郑益兴,冯永刚,彭兴民等.印楝1年生苗木生长节律与数量分级标准[J].南京林业大学学报,2008,5.32(3):25-30.
    [132]赖文胜.长序榆一年生播种苗的年生长规律[J].南京林业大学学报,2001,7.25(4):57-60.
    [133]陈江南,辛瑛,李贵,等.砒砂岩地区沙棘根系的初步调查与分析[J].沙棘,1998,11(2):10-12.
    [134]林文景,乳源木莲苗木质量评价[J].亚热带农业研究,2008,4(1):26-28.
    [135]邱学清,江希锢.回归积分在树木生长与气候关系中的应用[J].福建林学院学报,1989,9(4):418-422.
    [136]马志波,马饮彦,韩海荣等.北京地区6种落叶阔叶树光合特性的研究[J].北京林业大学学报,2004,26(3):13-18.
    [137]廖建雄,王根轩.谷子叶片光合速率日变化及水分利用率的研究[J].植物生理学报,1999,25(4):362-368.
    [138]山仑.植物水分利用效率与半干早地区农业节水[J].植物生理学通迅,1994,30(l):61-66.
    [139]陆钊华,徐建民,陈儒香等.按树无性系苗期光合作用特性研究[J].林业科学研究,2003,16(5):575-580.
    [140]石培华,冷石林.植物气孔导度与表面温度的环境响应模型研究综述[J].水土保持研究,1995,2(l):23-26.
    [141]马书荣,阎秀峰,陈伯林等.裂叶沙参气孔行为与光合蒸腾特性通径分析[J].木本植物研究,2000,20(4):411-415.
    [142]Farquhar G.D., Sharkeyr T.D. Stomatal Conductance and Photosynthesis [J].Ann Rev Plant Physiol.1982,33:313-317.
    [143]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [144]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报,2003,27(3)11-74.
    [145]AndersonJ.M. Photo regulation of composition.function and structure of the lakod menbranes[J]. Ammu.Rev.Plant Physiol,1986.37(2):93-136.
    [146]王忠,王三根,李合生.植物光合作用[M].北京:中国农业出版社,2000,131-169.
    [147]朱万泽,樊秀芳.四川恺木光合生理特性研究[J].西南林学院学报.2001,2(4):96-204.
    [148]Farquhar G.D,Sharkeyr T.D.Stomatal Conductance and Photosynthesis[J].Ann Rev Plant Physiol,1980,17(1):313-317.
    [149]许大全.光合作用“午睡”现象的生态、生理与生化[J].植物生理学通讯,1990,26(6):5-10.
    [150]Xu Daquan,Shen Yungang.Diurnal variations in the photosynthetic efficiency in plants[J].Aeta Phytoph-ysiologica Sinica,1997,23(4):410-416.
    [151]Ganatsas Petros,Tsakaldimi Marianthi,Thanos Costas. Seed and cone diversity and seed germination ofPinus pinea in Strofylia Site of the Natura2000Network[J]. Biodiversity and Conservation,2008,17(10):2427-2439.
    [152]Tadeusz Aniszewski, Mervi Hanele Kupari, Akijuhani Leinonen. Seed number, seed size and seeddiversity in Washington Lupin(Lupinus polyphyllus LindL.)[J]. Annals of Botany,2001,87:77-82.
    [153]高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000.
    [154]张志良.植物生理学实验指导(第二版).高等教育出版社,2000,北京:1-5,154-155.
    [155]张治安,陈展宇.植物生理实验技术[M].吉林:吉林大学出版社,2008,7-9.
    [155]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003.
    [156]Read, M S. Minimization of variation in the response to different protein of the Coomassic Blue Gyedinding: assay to protein [J]. Annal biochem.1981,116:53-64
    [157]张力君.驼绒藜属几种植物的持水力和蒸腾作用研究[D].内蒙古农业大学,2004.
    [158]刘勇.我国苗木培育理论与技术进展[J].世界林业研究.2000,13(5):43-49.
    [159]Pierret A, Doussan C, Capowiez Y, Bastardiec F, Pagsd Loc. Root functional architecture: A frameworkform od eling the in terplay between roots and soil. Vadose Zone Journal,2007,(6):269-281.
    [160]齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应[J].生态环境,2006,15(6):1264-1268.
    [161]TUBEROSA R, SANGUINETI M C, LANDI P, et al. Identification of QTLs for root characteristics inmaize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at tworegimes[J] Plant Molecular Biology,2002,48:697-12.
    [162]高世斌,冯质雷,李晚忱,等.干旱胁迫下玉米根系性状和产量的QTLs分析[J].作物学报,2005,31(6):718-722.
    [163] D. Cravena,b,D.Dentb, D.Bradena, M.S.Ashtona,b, G.P.Berlyna, J.S.Hallb. Seasonal variability ofphotosynthetic characteristics influences growth of eight tropical tree species at two sites with contrastingprecipitation in Panama[J]. Forest Ecology and Management,2010.
    [164]韩瑞宏.苗期紫花苜蓿对干旱胁迫的适应机制研究[D],北京林业大学,2006,6-7.
    [165]苗海霞.干旱胁迫下6种经济林树种苗期反应特性的研究[D].山东农业大学,2005:29-34.
    [166]Long S. P. Plant Cell Environ.[M].1963,(6):345-363.
    [167]王惠群,孙福增,彭克勤等,淹水处理对水稻叶片膜质过氧化作用及细胞透性的影响[J].湖南农业大学学报,1996,22(3):222-224.
    [168]邵艳军.高粱、玉米苗期抗旱生理与分子机制的比较研究[D].西北农林科技大学,2005:18-20.
    [169]Chance B, Maehly A C. Assay of catalase and peroxidase[J]. Methods Enzymol,1955,2:764-775.
    [170]邵钰,邱菊,干友民,张晓慧,任婷.干旱胁迫对西南野生马蹄金生理特性的影响[J].草业科学,2011,28(6):1004-1008.
    [171]罗大庆,郭其强,王贞红,赵垦田.西藏半干旱区3种柏树对干旱胁迫的生理响应特征[J].西北植物学报,2011,31(8):1611-1617
    [172]孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响[J].林业科学研究,2009,22(3):315-324.
    [173]王月英,卢翔,刘洪见,郑九丈.盐分胁迫对厚叶石斑木苗木生长影响试验初报[J].2011,6:29-30.
    [174]倪细炉,岳延峰等.4种盐生植物抗盐能力的综合评价[J].中国农业学报,2010,26(6):138-141.
    [175]杨涛,严重玲,李裕红.盐胁迫下木麻黄幼苗的Na+,C1-累积及其抗盐能力评价[J].福建农业学报,2003,18(3):155-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700