用户名: 密码: 验证码:
青藏高原高寒草地对土地利用格局变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高寒草地是青藏高原畜牧业发展的基础。土地利用是自然条件和人为活动的综合反映,土地利用变化对土壤养分含量有着重要影响,同时也影响着生态系统的结构和功能,以及物质循环和能量流动。由于畜牧业需求、草地退化和鼠害猖獗等因素,青藏高原土地利用格局正变得多样。为了解土地利用格局变化对青藏高原高寒草地的影响,于青海省门源县门源种马场、共和县塔拉滩、玛多县鄂陵湖管理站、曲麻莱县约改滩和安多县县城大滩,选择具有典型性和代表性原生草地、封育草地、退化草地、人工草地和农田等土地利用格局分层(0~10cm,10~20cm,20~40cm…)进行全剖面土壤样品采集,研究高寒草地对土地利用格局的响应机制。
     通过调查确定门源种马场高寒草地利用格局有原生矮嵩草草甸、原生灌丛草甸、退化矮嵩草草甸、退化灌丛草甸、人工草地和农田六种;塔拉滩有封育芨芨草草原、退化芨芨草草原、取土坑、农田、和人工草地草地五种;鄂陵湖管理站有双叉细柄茅原生草原、双叉细柄茅退化草原和人工草地三种;约改滩有原生高寒草甸草原、退化高寒草甸草原、退化高寒草原细柄茅和人工草地四种;安多有原生草甸草原和退化草甸草原两种。研究结果表明:
     1.青藏高原高寒草地退化导致地上部生物量显著降低,草地生产力下降,但退化使地下生物量普遍有增加的趋势;开垦为农田和人工草地虽然可以获得较高的地上生物量,但地下生物量却很少,这不利于草地的培育和恢复。
     2.退化使门源和塔拉滩表层土壤的容重明显升高,鄂陵湖管理站和约改滩由于土壤容重整体较大,退化对土壤容重并未产生明显影响。开垦由于翻耕的作用土壤容重有降低的趋势。
     3.退化导致高寒草地0-10cm土层土壤有机碳、全氮和全磷含量显著降低,但降低的程度因区域而有差异。门源有机碳、全氮和全磷含量平均降低了40.7%、36.0%和17.3%,开垦导致有机碳和全氮均损失了一半左右;塔拉滩退化导致有机碳含量降低了23.2%,而全氮和全磷的降低幅度不大,开垦也导致有机碳损失了一半左右;约改滩有机碳降低了52.9%;安多草地退化导致土壤有机碳、全氮和全磷含量均升高,分别升高了42.6%、104.5%和31.6%。
     4.退化导致门源和塔拉滩土壤有效氮和有效磷含量显著下降,这也是草地生产力下降的原因之一。由于施肥的作用,开垦种植使得表层土壤有效氮和有效磷含量均较高,但下层变化不大,这对于人工草地的可持续性的不利。退化和开垦均导致玛多鄂陵湖站和曲麻莱约改滩研究区域土壤表层的有效氮和有效磷含量有升高的趋势。
     5.安多草地土层很薄,土壤整体肥力水平极低,有机碳最高仅为5g/kg,全氮最高仅为0.45g/kg,全磷最高仅为4.4g/kg,有效氮最高仅为27mg/kg,有效磷最高仅为5mg/kg。
     6.研究区域中除门源研究区域外,土壤的全氮含量普遍偏低,大部分土壤的全氮含量都低于0.5g/kg,属于极度缺乏,研究区域自东北向西南土壤全氮含量逐渐降低。除门源县外,原生草地和退化草地土壤的全磷和全磷含量相对比较稳定,受利用格局的影响较小,全磷含量多在2~4g/kg,有效磷多在4~7mg/kg。
     7.塔拉滩的取土坑利用格局,由于取土过程拿走了上层土壤,现在的表层土壤是原来的下层土壤土壤碳氮磷的含量极低,是一种特殊的利用格局,恢复利用的难度较大,应持续加强营养元素的投入及整个土壤的培肥。
     8.青藏高原原生草地土壤碳氮磷沿土壤剖面自上而下普遍有明显的变异,而草地退化和开垦使土壤碳氮磷沿土壤剖面的变异消失或者减小。
Alpine grassland is the foundation for animal husbandry development onQinghai-Tibet Plateau. Land use is the comprehensive reflection of the naturalconditions and human activities. The land use changes has an important influence onsoil nutrient content, also affect the ecosystem structure and function, as well as thematerial circulation and energy flow. Because of the husbandry needs, grasslanddegradation and rodent overruning, the land use pattern is becoming diversity onQinghai-Tibet plateau. Soil carbon nitrogen and phosphorus are the essential nutrientelements for plant growth, especially grassland plants. The study was to find theeffects of land use changes on soil carbon nitrogen and phosphorus on Qinghai-TibetPlateau, and the typical and representative land use pattern five area on Qinghai-TibetPlateau were selected. The five area were Menyuan county, Tara beach in Gonghecounty, Maduo county, Qumalai county of Qinghai Province and Anduo county inTibet. The land use pattern included native grassland, enclosed meadow, degradedgrassland, artificial grassland and farmland. Soil land sample were collected by thesoil layer(0~10cm,10~20cm,20~40cm...) in every sample grassland in every landuse pattern.
     The investigation showed that there were six land use patterns in Menyuancounty, the native Kobresia humilis meadow, native shrub meadow, degradedKobresia humilis meadow, degraded shrub meadow, artificial grassland and farmlandrespectively, five in Tara beach, enclosed Achnatherum splendens grassland,degraded Achnatherum splendens grassland, excavating pit, farmland and artificialgrassland, three in Maduo county, native Ptilagrostis diehotoma grassland, degradedPtilagrostis diehotoma grassland and artificial grassland, four in Qumalai County,native alpine meadow, native alpine grassland, degraded alpine grasslands andartificial grassland, and two in Anduo county, native meadow steppe and degradedmeadow steppe. The result showed that:
     Degradation of alpine grassland on Qinghai-Tibet Plateau resulted in theaboveground biomass significantly reduced and the grassland productivity declined,but the underground biomass showed increased trend. Reclamation for farmland andartificial grassland obtained higher aboveground biomass even than native grassland,but the underground biomass was small, which was not benificial to the cultivationand restoration of the grassland.
     Degradation made soil bulk density of the surface soil increased, whilereclamation decreased the surface soil bulk density because of tillage in Menyuan andGonghe county. Soil bulk density was wholely higher in Maduo and Qumalai studyareas, and degradation showed no significant effects on soil bulk density. Butreclamation resulted in soil bulk density of the surface soil decreased because of thecultivation.
     Soil organic carbon, total nitrogen and total phosphorus in0~10cm soil layerwere significant decreased because of the alpine grassland degradation, and there wasregional difference in the reduction. Soil organic carbon, total nitrogen and totalphosphorus reduced by an average of40.7%,36.0%and17.3%respectively, andreclamation led to the loss of organic carbon and nitrogen in about half in Menyuancounty. Soil organic carbon reduced by an average of23.2%, and total nitrogen andtotal phosphorus decreased little in Gonghe county. Reclamation had also led to theloss of organic carbon by about half. Soil organic carbon decreased52.9%in Qumalaicounty. Soil organic carbon of the artificial grassland in0~10cm is higher than175%of the native grassland. Soil organic carbon, total nitrogen and total phosphoruscontent has increased under degradation in Anduo county, and were increased by42.6%,104.5%and31.6%respectively.
     Degradation made soil available nitrogen and available phosphorus contentsignificantly decreased in the two research areas, Menyuan and Gonghe County by theQilian Mountain, which could be one of the reasons for the grassland productivitydecrease. Planting cultivation made soil available nitrogen and available phosphoruscontent in the surface soil higher due to the role of fertilization due to the role offertilization, but had no significant effects on the deeper soil layors, which was not infavor of the sustainable use of the reclaimed grassland and the management ofdegraded grassland restoration. Degradation and reclamation showed incredsedeffectc on soil available nitrogen and available phosphorus in surface soil in Maduoand Qumalai research areas of the Source Region of Three Rivers.
     Reclamation use pattern in Anduo area was less. Soil generally fertility level wasvery low in this region, the highest organic carbon only5g/kg, the highest totalnitrogen only0.45g/kg, the highest total phosphorus only4.4g/kg, the highestavailable nitrogen only27mg/kg, and phosphorus only up to5mg/kg.
     In the study areas, except for Menyuan area, soil total nitrogen content was generally low, soil total nitrogen content was lower than0.5g/kg in most, whichmeaned extreme shortage. Soil total nitrogen content was gradually decreaed fromnortheast to southwest in the study areas. Except for Menyuan county, soilphosphorus content of the native grassland and degraded grassland was relativelystable, available phosphorus content was generally low, and the spatial variability oftotal phosphorus and available phosphorus content was slight. The total phosphoruscontent variated from2g/kg to4g/kg, and available phosphorus conten from4to7mg/kg, which showed that the degradation has little effect on soil phosphorus.Grassland restoration and utilization needs phosphorus inputs.
     The excavating pit pattern in Taratan showed extremely lack of soil carbonnitrogen and phosphorus content,which is mainly because the topsoil in the area weretaken away and the current topsoil was the deeper soil formerly. Therefor, soilnutrient contents were extremely lack. Nitrogen and phosphorus input and total soilfertility increase should be strengthened in grassland recovery and utilization.
     Grassland degradation and reclaimed made soil nutrients variation along soilprofile disappeared or reduced. Soil carbon nitrogen and phosphorus in nativegrassland showed significant variation along soil profile, while that in artificialgrassland and farmland was not significant variation. Grassland degradation andreclaimed made grassland developed to the direction of farmland. Grasslanddegradation showed great loss effects on soil organic carbon, total nitrogen and totalphosphorus in surface soil, while have little effect on that in10~20cm soil, which isbecause degradation inproved soil organic carbon mineralization in surface soil,leading to the carbon oxidation loss.
引文
[1]胡自治.青藏高原的草业发展与生态环境[M].北京:中国藏学出版社,2000,1-24
    [2]尚占环,龙瑞军,马玉寿,等.青藏高原江河源区生态环境安全问题分析与探讨[J].草业科学,2007,24(3):1-7.
    [3]郑度,林振耀,张雪芹.青藏高原与全球环境变化研究进展[J].地学前缘,2002,9(1):95-102
    [4]谢高地,鲁春霞,肖玉,等.青藏高原高寒草地生态系统服务价值评估[J].山地学报,2003,21(1);50-55
    [5]马玉寿,郎百宁.建立草业系统恢复青藏高原“黑土型”退化草地[J].草业科学,1998,15(1);5-9
    [6]丁永建,杨建平,刘时银,等.长江黄河源区生态环境范围的探讨[J].地理学报,2003,58(4):519-526
    [7]冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998,43(6):633-636
    [8]包文忠,山薇,杨晓东,等.我国北方草地资源面临的生态危机及对策[J].中国草地,1998,(2):68-71
    [9]汪诗平.青海省“三江源”地区植被退化原因及其保护策略[J].草业学报,2003,12(6):1-9
    [10]王根绪,沈永平,程国栋.黄河源区生态环境变化与成因分析[J].冰川冻土,2001,22(3):200-205
    [11]周华坤,赵新全,周立,等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3)::31-40
    [12]兰玉蓉.青藏高原高寒草甸草地退化现状及治理措施[J].青海草业,2004,13(1):27-30
    [13]赵新全,周华坤.三江源区生态环境退化、恢复治理及其可持续发展[J].中国科学院院刊,2005,20(6):471-476
    [14]谢敖云等.高山草甸草地牧草产量及其营养变化规律[J].青海畜牧兽医杂志1996.26(2):8-10
    [15]曹广民,吴琴,李东,等.土壤-牧草氮素供需状况变化对高寒草甸植被演替与草地退化的影响[J].生态学杂志,2004,23(6):25-28
    [16]曹广民,杜岩功,梁东营等,高寒嵩草草甸的被动与主动退化分异特征及其发生机理。山地学报,2007,25(6):641-648
    [17]李希来.高寒草甸草地与其退化产物“黑土滩”生物多样性和群落特征的初步研究。草业科学,1996,13(2):21-23
    [18]王启基,来德珍,景增春,李世雄,史惠兰,2005,三江源区资源与生态环境现状及可持续发展。兰州大学学报自然科学版,41(4):50-55
    [19]龙瑞军.青藏高原草地生态系统之服务[J].科技导报,2007,25(9):26-28
    [20]杨汝荣.西藏自治区草地生态安全与可持续发展问题研究[J].草业学报,2003,12(6):24-29
    [21]马玉寿,董全民,施建军,等.三江源区“黑土滩”退化草地的分类分级及治理模式[J].青海畜牧兽医杂志,2008,38(3);1-3.
    [22]李家峰.玉树“三江源”区的水土流失及防治对策[J].中国水土保持,2003,3:28-29
    [23]摆万奇,张镱锂.黄河源区玛多县草地退化成因分析[J].应用生态学报,2002,13(7):
    [24]汪诗平.青海省“三江源”地区植被退化原因及其保护策略[J].草业学报,2003,12(6):1-9
    [25]任继周,林慧龙.江河源区草地生态系统建设构想[J].草业学报,2005,14(2):1-8
    [26]吕昌河,于伯华.青藏高原土地退化整治技术与模式[M].2011,北京:科学出版社
    [27]张登山.长江源区土地沙漠化防治对策与措施[J].青海草业,2000,4:15-17
    [28]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87
    [29]李明峰,董云社,齐玉春,等.温带草原土地利用变化对土壤碳氮含量的影响[J].中国草地,2005,27(1):1-2
    [30]刘全友,童依平.北方农牧交错带土地利用类型对土壤养分分布的影响[J].应用生态学报,2005,(10):1849-1852
    [31]高雪松,邓良基,张世熔.不同利用方式与坡位土壤物理性质及养分特征分析[J].水土保持学报,2009,19(2):54-79
    [32]张丽娟,毕淑芹,袁丽金,薛宝民,张金柱.不同土地利用方式土壤侵蚀与养分流失的模拟试验[J].林业科学,2007,43(1):17-21
    [33] Hudgens D E,Yavitt J B.Land-use effects on soil methane and carbon dioxide emission inforests near Ithaca, NewYork.Ecoscience.1997,4(2):214~222
    [34] Turner B L, Skole D, Sanderson S, et a.l land use and land cover change[J]. Earth ScienceFrontiers,1997,4:26-33
    [35]杨学明.利用农业土壤固定有机碳-缓解全球变暖、提高土壤生产力[J].土壤与环境,2000,9(3):311-315
    [36]戎郁萍,赵萌莉,韩国栋,等.草地资源可持续利用原理与技术[M].北京:化学工业出版社,2004,17-40
    [37]尚占环,丁玲玲,龙瑞军,等.江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J].草业学报,2007(2);34-40
    [38]王彦龙,马玉寿,孙小弟,等.大武地区“黑土型”退化草地人工植被群落稳定性研究[J].青海畜牧兽医杂志,2007,37(2):29-31
    [39]王彦龙,马玉寿,孙小弟,等.格姆滩“黑土型”退化草地生物量及营养季节动态研究[J].青海畜牧兽医杂志,2008,38(2):1-3
    [40]尚占环,龙瑞军.青藏高原“黑土型”退化草地成因与恢复[J].生态学杂志,2005,24(6):652-656.
    [41]王长庭,龙瑞军,王启兰,等.三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J].应用与环境生物学报,2008,14(2):225-230
    [42]王长庭,曹广民,王启兰,等.青藏高原高寒草甸植物群落物种组成和生物量沿环境梯度的变化[J].中国科学,2007,37(5):585-592.
    [43]曹广民,李英年,张金霞.高寒草甸不同土地利用格局土壤CO2的释放量[J].环境科学,2001,22(6):14-19
    [44]张法伟,李英年,汪诗平.青藏高原高寒草甸土壤有机质、全氮和全磷含量对不同土地利用格局的响应[J].中国农业气象,2009,30(3):323-326
    [45]温军.青藏高原农牧结合的功能、模式与对策[J].自然资源学报,2000,15(1):56-60
    [46]闵庆文,成升魁,钟志明.青藏高原农牧业发展方向思考[J].农业现代化研究,2003,24(5):335-338
    [47]温军.青藏高原农牧结合的功能、模式与对策[J].自然资源学报,2000,15(1)::56-60
    [48]贾恒义.黄土丘陵草地土壤营养元素含量迁移及分布[J].水土保持研究,1998,(3):119-125
    [49]张成峨,陈小利.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报,1997,(5):195-200
    [50]董莉丽,郑粉莉.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征[J].生态环境2008,17(5):2050-2058
    [51]李以康,韩发,冉飞,等.三江源区高寒草甸退化对土壤养分和土壤酶活性影响的研究[J].中国草地学报,2008,30(4):51-58
    [52]高旭升,田种存,郝学宁,等.三江源区高寒草原草地不同退化程度土壤养分变化[J].青海大学学报(自然科学版),2006,24(9):37-40
    [53]赵云,陈伟,李春鸣.东祁连山不同退化程度高寒草甸土壤有机质含量及其与主要养分的关系[J].草业科学,2009,26(5):20-25
    [54]曾永年,冯兆东,曹广超,等.黄河源区高寒草地土壤有机碳储量及分布特征[J].地理学报,2004,(4):19-26
    [55] Jones M B, Donnelly A. Carbon sequestration in temperate grassland ecosystems and theinfluence of management, climate and elevated CO2[J].New Phytologist,2004,164(3):423-439.
    [56] Liao J D, Boutton T W, Jastrow J D. Storage and dynamics of carbon and nitrogen in soilphysical fractions following woody plant invasion of grassland [J].Soil Biology&Biochemistry,2006,38(11):3184-3196
    [57]董全民,恰加,赵新全,等.高寒草甸放牧生态系统研究现状[J].草业科学,2007,24(11):60-65
    [58] Derner J D, Boutton T W, Briske D D. Grazing and ecosystem carbon storage in the NorthAmerican Great Plains[J].Plant and Soil,2006,280(2):77-90
    [59] ZhaoY, Peth S, Krummelbein J,etal. Spatialvariability of soil properties affected by grazingintensity in InnerMongolia grassland[J]. Ecological Modelling,2007,205(1):241-254.
    [60] Wang Y H, Zhou G S, Jia B R. Modeling SOC and NPP responses of meadow steppe todifferent grazing intensities in Northeast China[J]. Ecological Modelling,2008,217(1/2):72-78.
    [61] Adler P B, Raff D A, Lauenroth W. K.,2001, The effect of grazing on the spatialheterogeneity of vegetation[J]. Oecologia,128(4):465–479
    [62] RaiesiF, AsadiE. Soilmicrobialactivity and litter turnover in native grazed and ungrazedrangelands in a semiarid ecosystem[J].Biology and Fertility of Soils,2006,43(1):76-82.
    [63]王艳芬,陈佐忠, LarryT,等.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551
    [64] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities insemi-arid northeasternAustralia [J].Applied SoilEcology,1997,5(2):143-149.
    [65] Schuman G E, Reeder JD, Manley JT,etal. Impact of grazing management on the carbon andnitrogen balance of amixed-grass rangeland [J].EcologicalApplications,1999,9:65-71.
    [66]张旭辉,李典友,潘根兴,等.中国湿地土壤碳库保护与气候变化问题[J].气候变化研究进展,2008,4(4):202-208
    [67]傅华,陈亚明,王彦荣,等.阿拉善主要草地类型土壤有机碳特征及其影响因素[J].生态学报,2004,24(3):469-476
    [68] Wang Y, Amundson R, Trumbore S. The impact of land use change on C turnover insoils[J].Global Biogeochemical Cycles,1999,13(1):47-57
    [69] LalR J, Kimele, FollettR. Land use and soilC pool in terrestrial ecosystems [C]∥Stewart B A,ed. Management of Carbon Sequestration in Soil Boca Raton: CRC Press, FL, USA,1998:1-10.
    [70] QiY C, DongY S, Liu JY,et al. Effect of the conversion of grassland to spring wheat field ontheCO2emission characteristics in InnerMongolia, China[J].Soil&Tillage Research,2007,94(2):310-320.
    [71]李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报,1998,22(4):300-302
    [72]陈伏生,曾德慧,陈广生.开垦对草甸土有机碳的影响[J].土壤通报,2004,35(4):413-419
    [73] Soussana J F, Loiseau P, VuichardN,etal. Carbon cycling and sequestration opportunities intemperate grasslands[J].Soil Use and Management,2004,20:219-230.
    [74] Hagedorn F, SpinnlerD, SiegwolfR. IncreasedN deposition retards mineralization of old soilorganicmatter[J].Soil Biology&Biochemistry,2003,35(12):1683-1692.
    [75] Saiya-CorkK R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition onextracellular enzyme activity in an Acer saccharum forest soil[J].Soil Biology&Biochemistry,2002,34(9):1309-1315.
    [76] Emmett B A, Gordon C, W illiamsD L,et al. Grazing/nitrogen Deposition Interactions inUpland Acid Grassland[R]. Report to the UK Department of the Environment, Transport andthe Regions, Centre forEcology andHydrology, Bangor,2001.
    [77]李银科,李小刚,张平良,等.土地利用方式对荒漠土壤有机碳和养分含量的影响[J].甘肃农业大学学报,2007,44(4):103-107
    [78]王启基,来德珍,景增春,等.三江源区资源与生态环境现状及可持续发展[J].兰州大学学报自然科学版,2005,41(4):50-55。
    [79]尚占环,龙瑞军,马玉寿,等.青藏高原江河源区生态环境安全问题分析与探讨[J].草业科学,2007,24(3):1-7.
    [80]董全民,恰加,赵新全等.高寒草甸放牧生态系统研究现状[J].草业科学,2007,24(11):60-65
    [81]都耀庭,张东杰.禁牧封育措施改良高寒地区退化草地的效果[J].草业科学,2007,24(7):22-24.
    [82],周华坤,刘玄德,师燕,等.封育措施对不同类型草场影响的初步观察[J].青海草业,2001,(4):1-4.
    [83]程杰,高亚军.云雾山封育草地土壤养分变化特征[J].草地学报,2007,(5):273-277
    [84]刘德梅,马玉寿,董全民,等.禁牧封育对“黑土滩”人工草地植被的影响[J].青海畜牧兽医杂志,2008a,38(2):8-9.
    [85]刘德梅,马玉寿,董全民,等.禁牧封育对黑土滩人工草地群落特征的影响[J].青海畜牧兽医杂志,2008b,4:10-12
    [86]邵景安.西南山地景观土地利用变化的特征及管理实践对土壤水、养分和有机碳动态的影响[C].西南大学博士学位论文,2006
    [87]许中旗,李文华,闵庆文,等.锡林河流域生态系统服务价值变化研究[J].自然资源学报,2005,20(1):99-104.
    [88]余万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,2007,26(12):2013-2016
    [89] ParfittR L, ScottN A, Ross D J, et a.l Land-use change effects on soil C and Ntransformations in soils of high N status: comparisons under indigenous forest, pasture andpineplantation [J]. Biogeochemistry,2003,66(3):203-221.
    [90] Wu R G, TiessenH. Effect of LandUse on Soil Degradation in Alpine Grassland Soil China[J].Soil Science Society of America Journal,2002,66:1648-1655
    [91],刘全友,童依平.北方农牧交错带土地利用类型对土壤养分分布的影响[J].应用生态学报,2005,(10):1849-1852
    [92]高雪松,邓良基,张世熔.不同利用方式与坡位土壤物理性质及养分特征分析[J].水土保持学报,2009,19(2):54-79
    [93]王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107
    [94]李娜,王根绪,高永恒,等.青藏高原生态系统土壤有机碳研究进展[J].土壤,2009,41(4):512-519
    [95]王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义[J].冰川冻土,2002,24(6):693-700.
    [96]吴钢,赵景柱,邵国凡,等.长白山高山冻原生态系统碳循环及与北极对比研究[J].中国科学(D辑),2001,31(12):1039-1045
    [97]胡启武,欧阳华,刘贤德.祁连山北坡垂直带土壤碳氮分布特征[J].山地学报,2006,24(6):654-661
    [98] Parton W J, Scurloek J M O, Ojima D S. Observation and modeling of biomass and soilorganic matterd dynamics for the grassland biome worldwide[J].Global Biogeoehem Cycles,1993,7:785-809
    [99] Sehlesinger W H. An overview of the global carbon cycle[C]//Lai R, et al.Soils and globalchange, Boca Raton:CRC Press,1995:9-25
    [100]张金霞,曹广民.高寒草甸生态系统氮素循环[J].生态学报,1999,7(4):509-512
    [101]曹广民,张金霞,鲍新奎,等.高寒草甸生态系统磷素循环[J].生态学报,1999,7(4):514-518.
    [102]杨成德,龙瑞军,陈秀荣,等.东祁连山不同草地类型土壤表层碳、氮、磷密度特征[J].中国草地学报,2008,(1):1-4
    [103]宋希娟,杨成德,陈秀蓉,等.东祁连山高寒草地生态系统N、P养分含量研究[J].草原与草坪,2008(6):46-49
    [104]干友民,李志丹,泽柏.川西北亚高山草地不同退化梯度草地土壤养分变化[J].草业学报,2005,14(4):38-42
    [105]王君,沙丽清.滇西北藏区不同土地利用方式对土壤养分的影响[J].东北林业大学学报,2007,35(10):45-47,66
    [106]张玉斌,吴发启,曹宁,等.泥河沟流域不同土地利用土壤养分分析[J].水土保持通报,2005(4):23-26
    [107]许中旗,闵庆文,王英舜,等.人为干扰对典型草原生态系统土壤养分状况的影响[J].水土保持学报,2006,20(5):38-42
    [108]贠静,于辉,安沙舟,等.昭苏马场不同草地类型土壤养分特征研究[J].新疆农业大学学报,2008,31(5):64-67
    [109]郭丁,裴世芳,俞斌华,等.阿拉善荒漠草地几种灌木对土壤有效态养分的影响[J].中国沙漠,2009(1):95-100
    [110]董晓玉,傅华,李旭东,等.放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响[J].草业学报,2010,19(2):172-182
    [111]颜淑云,周志宇,秦彧,等.玛曲高寒草地不同利用方式下土壤氮素含量特征[J]草业学报,2010,19(2):153-159
    [112]韩永伟,韩建国,张蕴薇.农牧交错带退耕还草对土壤物理性状的影响[J].草地学报,2002,10(2):100-105.
    [113]邰继承,杨恒山,范富,等.不同栽培年限紫花苜蓿地土壤养分分布特征研究[J].内蒙古民族大学学报(自然科学版),2008,23(1):41-44
    [114]陈功,张自和,胡自治.高寒地区一年生人工草地地上生物量动态及光能转化效率[J].草业学报,2003,12(2):69-73
    [115]张永亮,范富,高凯,等.苜蓿、无芒雀麦单播与混播对土壤有机质和速效养分的影响[J].草地学报,2009,17(1):22-26
    [116]周华坤,周立,赵新全.青藏高原高寒草甸生态系统稳定性研究[J].科学通报,2006,51(1):63-69
    [117]周青平,金继运,德科加,徐成体,不同施氮水平对高寒草地牧草增产效益的研究。土壤肥料,2005,3:29-31
    [118]曾希柏,黄雪夏,刘子刚,等.种植年限对三江平原农田土壤剖面性质及碳、氮含量的影响[J].中国农业科学,2006,39(6):1186-1195
    [119]万素梅,韩清芳,胡守林,等.黄土高原半湿润区苜蓿草地土壤氮素消耗特征研究[J].植物营养与肥料学报,2008,14(1):84-89
    [120]韩方虎,沈禹颖,王希,等.苜蓿草地土壤氮矿化的研究[J].草业学报,2009,18(2):11-17
    [121]董全民,赵新全,马玉寿,等.放牧强度对高寒混播草地土壤养分含量的影响[J].土壤通报,2008,39(6):553-557
    [122]董全民,赵新全,马玉寿,等.放牧强度对高寒人工草地土壤有机质和有机碳的影响[J].青海畜牧兽医杂志,2007,37(1):6-8
    [123]董全民,李青云,马玉寿,等.放牧强度对夏季高寒草甸生物量和植被结构的影响[J].青海草业,2002,11(2):8-11.
    [124]和丽萍,孟广涛,方向京.珠江源头站马地集水区不同土地利用类型的土壤水分养分特性[J].西部林业科学,2004,33(3):53-57
    [125] http://www.qh.xinhuanet.com/myx/zfwq.htm
    [126] http://www.qhgh.gov.cn/Default.html
    [127] http://www.qh.xinhuanet.com/mdx/mdjj.htm
    [128] http://www.qumalai.gov.cn/
    [129] http://www.chinatibetnews.com/xizang/2008-07/07/content_120081.htm
    [130]鲍士丹.土壤农化分析[D].北京:中国农业出版社,2000
    [131]李明峰,董云社,齐玉春,等.温带草原土地利用变化对土壤碳氮含量的影响[J].中国草地,2005,27(1):1-2
    [132]贾树海,王春枝,孙振涛.放牧强度和时期对内蒙古草原土壤压实效应的研究[J].草地学报,1999,7(3):217-222
    [133]赵帅,张静妮,赖欣,等.放牧与围封对呼伦贝尔针茅草原土壤酶活性及理化性质的影响[J].中国草地学报,2011,33(1):71-76
    [134]董杰.封育对退化典型草原土壤理化性质与土壤种子库的影响研究[D].内蒙古农业大学,2007:1-53
    [135]李香真,陈佐忠.不同放牧率对草原植物与土壤C-N-P的影响[J].草地学报,1998,6(2):90-98
    [136]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599
    [137]高旭升,田种存,郝学宁,等.三江源区高寒草原草地不同退化程度土壤养分变化[J].青海大学学报:自然科学版,2006,24(9):37-40
    [138]程杰,高亚军.云雾山封育草地土壤养分变化特征[J].草地学报,2007,15(3):273-277
    [139]齐雁冰.高寒地区荒漠化土壤发生特征及其形成演变研究——以沙珠玉和青海湖东岸为例[D].陕西:西北农林科技大学,2003
    [140]曹静娟,尚占环,郭瑞英,等.开垦和弃耕对黑河上游亚高山草甸土壤氮库的影响[J].干旱区资源与环境,2011,25(4):171-175
    [141]常娟,王根绪,王一博.黑河流域土地利用变化的影响因素-以张掖地区为例[J].冰川冻土,2005,27(1):117-123
    [142]孙志高,刘景双,李新华.三江平原不同土地利用方式下土壤氮库的变化特征[J].农业系统科学与综合研究,2008,24(3):270-274
    [143]吴建国,张效全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004,28(4):530-538
    [144]刘守赞,郭胜利,白岩.黄土高原沟壑区梁坡地土壤有机碳质量分数与土地利用方式的响应[J].浙江林学院学报,2005,22(5):490-494
    [145]邱莉萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-97
    [146]李晓东,魏龙,张永超,等.土地利用方式对陇中黄土高原土壤理化性状的影响[J].草业学报,2009,18(4):103-110
    [147]赵训经,那文俊.青海省塔拉滩草原利用方向探讨[J].自然资源学报,1996,11(3):272-279
    [148]董全民,恰加,赵新全等.高寒草甸放牧生态系统研究现状[J].草业科学,2007,24(11):60-65.
    [149]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599
    [150]文金花,马玉寿,施建军,等.利用草地早熟禾改建江河源区“黑土型”退化草地的研究[J].草原与草坪,2006,23(5):41-45
    [151]孙永宁,王进昌,韩庆杰,等.青藏铁路格尔木至安多段沿线高寒植被、土壤特性与人工植被恢复研究[J].中国沙漠,2011,31(4):401-407
    [152]李以康,韩发,冉飞,等.三江源区高寒草甸退化对土壤养分和土壤酶活性影响的研究[J].中国草地学报,2008,30(4):51-58
    [153]杨成德,龙瑞军,陈秀蓉,等.东祁连山不同高寒草地类型土壤表层碳、氮、磷密度特征[J].中国草地学报,2008,30(1):1-5
    [154]王彦龙,马玉寿,孙小弟,等.格姆滩“黑土型”退化草地生物量及营养季节动态研究[J].青海畜牧兽医杂志,2008,38(2):1-3
    [155]王彦龙,马玉寿,孙小弟,等.格姆滩黑土滩人工草地植物量及营养季节动态研究[J].青海大学学报(自然科学版),2008,26(1):22-25
    [156]孔郑,龙瑞军,孙步功,等.黄河源区“黑土型”退化草地人工群落组分配置技术研究[J].西北农业学报,2007,16(5):1-6
    [157]孙步功,龙瑞军,王长庭.青藏高原冷龙岭南麓高寒小嵩草草甸植物种群物候学研究[J].草业科学,2007,24(8):16-20
    [158]孙步功,龙瑞军,孔郑等.青海果洛黄河源区高寒草甸CO2释放速率研究[J].草地学报,2007,15(5):449-452
    [159]李有福,李芙蓉,李芙琴.青海省果洛州草地资源与生态环境现状及可持续发展[J].草业与畜牧,2008,2:30-32
    [160]白红军,邓伟,朱颜明,等.霍林河流域湿地土壤碳氮空间分布特征及生态效应[J].应用生态学报,2003,14(9):1494-1498.
    [161]刘伟,周华坤,周立.不同程度退化草地生物量的分布模式[J].中国草地,2005,27(2):9-15
    [162]张静,张生荣.不同退化程度下紫花针茅草地群落结构特征与地下生物量的变化[J].黑龙江畜牧兽医,2009,9:60-62
    [163]李媛媛,董世魁,李小艳,等.围栏封育对黄河源区退化高寒草地植被组成及生物量的影响[J].草地学报,2012,20(2):275-286
    [164]李志昆.围栏封育对河卡牧场草地生物量的影响研究[J].现代畜牧兽医,2009,8:29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700