用户名: 密码: 验证码:
黄芪多糖诱导树突状细胞成熟并促进特异性抗肿瘤免疫的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究主要分两部分。第一部分是黄芪多糖诱导的DC肿瘤疫苗体外抗肿瘤作用的实验研究,主要观察黄芪多糖诱导DC成熟及对DC免疫功能的影响;第二部分是黄芪多糖诱导的DC肿瘤疫苗对荷瘤小鼠免疫治疗效应的研究,主要观察黄芪多糖诱导的DC肿瘤疫苗对荷瘤小鼠的抗肿瘤效果,并探讨黄芪多糖诱导的DC肿瘤疫苗体内抗瘤的机制,为进一步开拓中药治疗肿瘤的途径提供实验和理论依据。
     方法:
     1.人外周血单个核细胞用IL-4、GM-CSF诱导分化为未成熟DC,加入黄芪多糖促进成熟,并设细胞因子组、黄芪多糖+细胞因子组,显微镜下连续观察形态变化,用FACS检测各组DC表型。
     2.成熟DC以肿瘤抗原致敏,与同种异体T细胞共培养,用MTT法检测T淋巴细胞增殖功能,用ELISA法检测共培养上清IL-12、IFN-γ水平。
     3.经DC激活的CTL细胞与肿瘤细胞共培养,用LDH释放法检测CTL对靶细胞特异性杀伤能力。
     4.小鼠骨髓来源的DC以黄芪多糖诱导成熟,负载S180肿瘤抗原,制备肿瘤疫苗。建立S180荷瘤小鼠模型,随机分成模型对照组、阳性对照组、黄芪多糖组和细胞因子组。给S180荷瘤小鼠进行免疫治疗,观察抑瘤率和小鼠生存时间。
     5.小鼠经眼眶采血,分离血清。ELISA法检测小鼠血清IL-12、TNF-α的水平。
     6.取小鼠脾脏,分离淋巴细胞,用MTT法检测小鼠脾脏淋巴细胞转化率,FACS检测小鼠Th1/Th2亚群。
     结果:
     1.黄芪多糖诱导的DC经形态学观察和表型鉴定,符合成熟DC的特征,黄芪多糖可以诱导DC成熟。
     2.黄芪多糖诱导的DC激活的CTL体外特异性杀伤肿瘤细胞的能力与TNF-α诱导的DC无显著性差异,提示黄芪多糖诱导的DC可以有效的激活CTL细胞,发挥特异性抗肿瘤作用。
     3.黄芪多糖诱导的DC能刺激同种异体T淋巴细胞增殖,并提高DC与T细胞共培养上清IL-12、IFN-γ的水平,提示黄芪多糖诱导的DC可以有效的给T细胞提呈抗原,提供活化信号,促进T细胞增殖,并分泌IFN-γ;同时,有效的抗原提呈也促使DC活化,分泌抗肿瘤细胞因子IL-12。
     4.黄芪多糖诱导的DC疫苗可减缓肿瘤生长速度,显著发挥体内抑瘤作用,延长荷瘤小鼠的生存时间。
     5.黄芪多糖诱导的DC疫苗能促进S180荷瘤小鼠分泌TNF-α、IL-12,通过抗肿瘤细胞因子途径发挥抗肿瘤作用。
     6.黄芪多糖诱导的DC疫苗可以显著提高小鼠脾脏淋巴细胞转化率,促使Th1/Th2向Th1转化,提示黄芪多糖诱导的DC疫苗可以增强机体免疫功能,通过调节Th1/Th2失衡状态向Th1方向转化,增强机体的细胞免疫功能。
     结论:黄芪多糖可以体外诱导DC成熟。经黄芪多糖诱导成熟的DC疫苗可有效的向T细胞提呈抗原,促进T细胞的增殖和活化,增加抗肿瘤细胞因子的分泌,激活CTL特异性抗肿瘤的能力,显示了良好的体外抗肿瘤效果。黄芪多糖诱导的DC疫苗可以通过增加荷瘤小鼠T细胞增殖能力、促进细胞因子TNF-α、IL-12的产生、诱导Th1/Th2向Th1转化等机制增强机体抗肿瘤免疫功能,减缓荷瘤小鼠瘤体生长速度,发挥延长生命作用。
Objection: The present work comprises two parts. In the first part,theantitumoractivity induced by dendritic cells is studied in vitro to observe the influence ofastragalus polysaccharides on maturation and immunologic function of dendritic cells. Inthe second part, the antitumoractivity induced by dendritic cells is studied in tumor-bearingmice, to investigate the anti-tumor effect of dendritic cells and explore the mechanism.
     Methods:
     1. The dendritic cells from human peripheral blood are cultured and induced with IL-4,GM-CSF into immature dendritic cells, which are randomly divided in to3groups. GroupA is treated with astragalus polysaccharides, Group B with TNF-αand Group C withastragalus polysaccharides and TNF-α. The morphotype of dendritic cells is identified byinverted optical microscope and the phenotype of cultured dendritic cells (CD80, CD86) isidentified by flow cytometry.
     2. Mature dendritic cells loaded with tumor antigens are co-cultured with alloreactiveT cells. MTT is used to detect the effect of astragalus polysaccharides on the function ofdendritic cells in stimulating the proliferation of T cells. ELISA is used to detect the levelof IL-12, IFN-γ in cells culture supernatant.
     3. Dendritic cells are loaded with tumor antigen and co-cultured with alloreactive Tcells to induce generation of tumor specific cytotoxic T cells(CTL). Then CTL areco-cultured with SGC-7901tumor cells. The killing activity of CTL to SGC-7901cells wastested by LDH release assay.
     4. Dendritic cells derived from mouse bone marrow are induced maturation andloaded with S180tumor antigen to prepare tumor vaccine. Tumor-bearing mice are divided in to4groups, Group A is injected with NS, Group B with CTX, Group C with dendriticcells induced by astragalus polysaccharides and Group D with dendritic cells induced byTNF-α. The tumor size and survival of the mice are observed.
     5. ELISA assay is usded to detect the number of IL-12, TNF-α in serum of tumorbearing mice.
     6. The proliferation of splenocytes is determined by using MTT assay and Th1/Th2was detected by flow cytometry.
     Results:
     1. According to the morphology and phenotype, dendritic cells induced by Astragaluspolysaccharides are in accordance with the characteristics of mature dendritic cells.Astragalus polysaccharide can induce dendritic cells maturation.
     2. CTL activated by dendritic cells can specifically kill tumor cells and the killactivity has no significant difference between the Astragalus polysaccharides group andTNF-α group, suggesting that dendritic cells induced by Astragalus polysaccharides caneffectively activate CTL cells to exert the function of specific anti-tumor.
     3. Dendritic cells induced by Astragalus polysaccharides can reinforce proliferation ofalloreactive T cells and increase the number of IL-12, IFN-γ in supernatant, suggesting thatDC induced by Astragalus polysaccharides can effectively present antigen to T cell,provide the activation signal, promote the proliferation of T cells and secretion of IFN-γ; atthe same time, dendritic cells are activated to secret IL-12.
     4. DC vaccine induced by Astragalus polysaccharide can significantly exert antitumoreffect in vivo and prolong the survival time of mice bearing tumor.
     5. DC vaccine induced by Astragalus polysaccharides can promote the secretion ofTNF-α and IL-12in S180tumor-bearing mice, suggesting that DC vaccine exertsanti-tumor effect through anti-tumor cytokine pathway.
     6. DC vaccine induced by Astragalus polysaccharide can significantly improve themouse spleen lymphocyte transformation rate, adjust Th1/Th2to drift to Th1, suggestingthat DC vaccine induced by Astragalus polysaccharide can enhance immune function andcell immunity by making the Th1/Th2imbalance transformation to Th1direction.
     Conclusion: DC vaccine induced by Astragalus polysaccharides can effectivlypresent tumor antigen to T cell, and stimulate T cell to proliferate and activate, increase thesecretion of cytokines, activate CTL to exert specific anti-tumor ability, showing goodantitumor effect in vitro. DC vaccine induced by Astragalus polysaccharides can enhance the antitumor immunity of tumor-bearing mice by promoting T cell proliferation,increasing the secretion of TNF-α, IL-12, inducing Th1/Th2balance to Th1conversion.Finally, DC vaccine can slow down tumor growth speed and prolong the life oftumor-bearing mice.
引文
[1]邓旻,窦晓兵,史亦谦,等.黄芪多糖定向诱生脐血来源树突状细胞及其对T细胞增殖作用的研究[J].中国免疫学杂志,2007;6(23):539-544.
    [2]张晓娟,董坚,吴振林,等. HSP70多肽复合物修饰DCs疫苗抗胰腺癌荷瘤小鼠的实验研究[J].中国免疫学杂志,2009;9(25):792-796.
    [3]王曙东,费建红.雷公藤抗肿瘤作用的研究概况[J].中国药业,2005;14(6):91-92.
    [4]王裕生,邓文龙,薛春生.中药药理与应用[M].2版.人民卫生出版社,1995,1011.
    [5] Kang MR, Chung IK. Down-regulation of DNA topoisomerse lialpha in humancolorectal carcinoma cells resistant to a protoberberin alkaloid, berberrubine[J]. Molpharmacol,2002;61(4):879-884.
    [6]胥彬,仲维学.高三尖杉酯碱的抗癌疗效及药代动力学研究[J].肿瘤,2001;21(6):412.
    [7] Savouret J F, Quesne M. Resveratrol and cancer: a review [J]. Biomedpharmacother,2002;56(2):84-87.
    [8] Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, anatural product derived from grapes[J]. Science,1997;275(5297):218-220.
    [9] Stewart J R, Artime M C, O’Brian C A. Resveratrol: a candidate nutritionalsubstance for prostate cancer prevention[J]. J Nutr,2003;133(7):2440s-2443s
    [10] Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive andchemotherapeutic properties of resveratrol [J]. Carcinogenesis,2001;22(8):1111-1117.
    [11]李继成,张启堂,杨丽嘉.内折香茶菜素D抗肿瘤作用的研究[J].河南医学研究,2005;14(3):211-214.
    [12]魏春雁.瑞香狼毒化学成分与生物活性研究的回顾与展望[J].中国药学杂志,2001;36(9):577-580.
    [13]裴月湖,冯宝民,华会明,等.瑞香狼毒化学及药理研究进展[J].中草药,2001;32(8):764-766.
    [14] So FV, Guthrie N, Chambers AF, et al. Inhibition of proliferation of estrogenreceptor-positive MCF-7human breast cancer cells by flavonoids in the presenceand absence of excess estrogen[J]. Cancer Lett,1997;112(2):127-133.
    [15] Hwang JT, Park OJ, Lee YK, et al. Anti-tumor effect of luteolin is accompanied byAMP-activated protein kinase and nuclear factor–κB modulation in HepG2hepatocarcinoma cells[J]. Int J Mol Med,2011;28(1):25-31.
    [16] Haddad AQ, Fleshner N, Nelson C, et al. Antiproliferative mechanisms of theflavonoids2,2-dihydroxychalcone and fisetin in human prostate cancer cells[J]. NutrCancer,2010;62(5):668-681.
    [17] Kuo SM. Antiproliferative potency of structurally distinct dietary flavonoids onhuman colon cancer cells[J]. Cancer Lett,1996;110(1-2):41-48.
    [18]陈坚,林庚金.丹参酮抗肿瘤的研究进展[J].复旦学报:医学版,2003;30(6):626-628.
    [19]况炜,陈慧玲.羊栖菜多糖对人肺癌细胞及肿瘤血管内皮细胞模型增殖活性的影响[J].现代实用医学,2011;23(3):256-267.
    [20]张芙蓉,谢志春.枸杞多糖对肝癌细胞中VEGF表达的影响[J].现代医药卫生,2010;26(22):3401-3403.
    [21]谢少茹,沈洪,赵崧,等.黄芪多糖对胃癌细胞的生长抑制和促凋亡作用[J].河北中医,2009;31(9):1373-1378.
    [22]李朝明,穆青,胥彬,等.景洪哥纳中一个新的抗癌活性成分[J].云南植物研究,1998;12(4):403.
    [23]娄红祥,李铣,朱廷儒.华北白前中的C21甾体类化合物[J].药学学报,1992;27(8):595-602.
    [24]姚仁南,陈复兴,刘军权.大蒜蛋白F4抗肿瘤作用的实验研究[J].山东医药,2005;45(17):7.
    [25]牟新利,王武宝,巴杭,等.中药苦豆子化学成分及生理活性的研究进展[J].新疆师范大学学报:自然科学版,2005;24(1):45-50.
    [26] Deok-Seon Ryu, Geum-Ok Baek, Eun-Young Kim et al. Effects of polysaccharidesderived from Orostachys japonicus on induction of cell cycle arrest and apoptoticcell death in human colon cancer cells[J]. BMB Rep,2010;43(11):750-755.
    [27] Li WJ, Chen Y, Nie SP, et al. Ganoderma atrum polysaccharide inducesanti-tumoractivity via the mitochondrial apoptotic pathway related to activation ofhost immune response[J]. Journal of Cellular Biochemistry,2011;112(3):860-871.
    [28] SHANG D, LI Y, WANG C et al. A novel polysaccharide from Se-enrichedGanoderma lucidum induces apoptosis of human breast cancer cells[J].ONCOLOGY,2011;25(1):267-272.
    [29] Cao W, Li XQ, Wang X. A novel polysaccharide, isolated from Angelica sinensis(Oliv) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsicapoptotic pathway[J]. Phytomedicine,2010;17(8-9):598-605.
    [30] Zhang CX, Huang KX. Mechanism of apoptosis induced by a polysaccharide,from the loach Misgurnus anguillicaudatus (MAP) in human hepatocellularcarcinoma cells[J]. Toxicol Appl Pharmacol,2006;210(3):236-45.
    [31]牛英才,赵学梅,张春,等.低分子姬松茸多糖对Bel-7402细胞端粒酶-RNAmRNA表达的影响[J].时珍国医国药,2008;19(11):2630-2632.
    [32] Tsuchida Y, Shitara T, Kuroiwa M, et al. Current treatment and future directions inneuroblastoma [J]. Indian J P ediatr,2003;70(10):809-812.
    [33] Kamiyama H, Takano S, T suboi K, et al. Anti-angiogenic effects of SN38(activemetabolite of irinotecan): inhibition of hypoxia-inducible factor1alpha(HIF-1alpha)/vascular endothelial growth factor (VEGF) expression of glioma andgrowth of endothelial cells[J]. J Cancer Res Clin Oncol,2005;131(4):205-213.
    [34]卢大用,曹静懿,胥彬.三尖杉酯碱和高三尖杉酯碱的生物活性及临床应用[J].天然产物研究与开发,1999;12(5):70-73.
    [35]季秀海,钱晓萍,刘宝瑞.中药有效成分抗肿瘤血管生成研究进展[J].现代肿瘤医学,2010;3(18):594-597.
    [36]邹夏慧.中药抗肿瘤作用分子机制研究进展[J].国外医学:肿瘤学分册,2005;32(1):17-19.
    [37]秦善文,郑玉玲.抗肿瘤中药实验研究进展[J].河南中医,2005;25(2):77-80
    [38]郑应馨,徐恒.具有抗肿瘤活性的多糖及其作用机理研究概况[J].中国药师,2003;6(6):368-369.
    [39]王心华,甄永苏.大黄素抑制人高转移巨细胞肺癌PG细胞的肿瘤转移相关性质[J].癌症,2001,20(8):789-793.
    [40]林洪生,李树奇,裴迎霞,等.川芎嗪、苦参碱对癌细胞与内皮细胞粘附及粘附因子表达的影响[J].中国新药杂志,1999;8(6):384-386.
    [41]陈少贤,王良兴,邢玲玲,等.川芍嗦对晚期肺癌患者血小板功能的影响[J].中国中西医结合杂志,1997;17(9):531-533.
    [42]韩建勋,吴军正,李峰,等.8-甲氧基补骨脂素对MEC-1细胞癌基因/抑癌基因表达的影响[J].实用口腔医学杂志,1999;15(6):457-458.
    [43] Mitani N, Murakami K, Yamaura T, et al. Inhibitory effect of berberine on themediastinal lymphnode metastasis produced by orthotopic implantation of Lewislung carcinoma[J]. Cancer Lett.2001;165(1):35-42.
    [44]何欣,朱婴,黄立中.温阳散寒补气养血法对非小细胞肺癌患者外周血树突状细胞影响的研究[J].中国中医急症,2006;16(11):1308-1310.
    [45]杨莉,李艳佳,刘京生.复方中药对外周血树突状细胞的干预作用[J].细胞与分子免疫学杂志,2007;23(7):606-608.
    [46]朱杰,赵鲁杭,陈智.枸杞多糖对小鼠骨髓树突状细胞成熟的影响[J].浙江大学学报(医学版),2006;35(6):648-652.
    [47]王斌,萱垣,李杰芬.灵芝多糖对小鼠脾脏树突状细胞的增殖作用[J].免疫学杂志,2006;22(3):283-285.
    [48]陈国安,肖希斌,袁利亚.当归多糖促进慢性粒细胞白血病细胞性树突状细胞的诱导生成[J].中草药,2004;35(5):531-535.
    [49]荣微,井欢,刘春英.香菇多糖对荷瘤小鼠树突细胞功能影响的实验研究[J].中医药学刊,2006;24(4):681-682.
    [50]唐永富,黄丹菲,殷军艺,等.车前子多糖对骨髓来源树突状细胞表型和吞噬功能的影响[J].食品科学,2007;28(10):517-520.
    [51]侯安继,杨占秋,黄菁,等.羧甲基茯苓多糖上调HBV转基因小鼠树突状细胞功能[J].武汉大学学报(理学版),2006;52(6):778-782.
    [52]陈月,岳化葵,邹红岩.猪苓多糖对慢性乙型肝炎患者单核细胞源树突状细胞的影响初探[J].齐齐哈尔医学院学报,2008;29(7):786-788.
    [53]王毅,郝钰,邱全瑛,等.人参皂甙Rg1、Rh1对树突状细胞刺激T细胞增殖及LPAK抗肿瘤活性的影响[J].中国免疫学杂志,2003;19(4):248-252.
    [54]林琳,沈洪,王立新,等.黄芪甲苷、β-榄香烯对小鼠树突状细胞免疫功能的影响[J].东南大学学报医学版,2011;3(2):294-297.
    [55]谭广,于志红,巩鹏,等.树突状细胞联合β-榄香烯治疗小鼠黑色素瘤[J].中国中西医结合外科杂志,2005;11(1):59-61.
    [56]余凌,李惊子,王海燕.黄芪当归在肾脏疾病中的应用及其机制研究进展[J].中国中西医结合杂志,2001;21(5):396-399.
    [57] Cho WC, Leng KN. In vitro and in vivo immunomodulating and immunorestorativeeffects of Astragalus membranaceus[J]. J Ethonpharmacol,2007;113(1):132-141.
    [58]赵晓宁,弥海宁,李兴文,等.黄芪多糖联合化疗对54例中晚期胃癌的临床疗效分析[J].中国中医基础医学杂志,2012;18(9):994-996.
    [59] Wang N, Zhang D, Mao X, et al. Astragalus polysaccharides decreased theexpression of PTP1B through relieving ER stress induced activation of ATF6in a ratmodel of type2diabetes[J]. Mol Cell Endocrinol,2009;307(1-2):89-98.
    [60]李树鹏,郝艳霜,陈福星,等.黄芪多糖和2株益生菌体外抑菌作用研究[J].河南农业科学,2007;4:86-88.
    [61]李丽娅,凌秋,崔洪波,等.黄芪多糖抗流感病毒的实验研究[J].中国中医药科技,2002;9(6):354-355.
    [62]刘兵荣,张勇,王京娥,等.实验性脑出血后血肿周围细胞凋亡及黄芪多糖的干预作用[J].南京医科大学学报(自然科学版),2007;27(2):153-157.
    [63]赵丹威,欧芹,魏晓东,等.黄芪多糖对衰老HDFβ-半乳糖苷酶活性影响的实验研究[J].中国老年学杂志,2006;26(10):1361-1362.
    [64]王岩岩,康白,李广宙,等.黄芪多糖对糖尿病大鼠肾小管的保护作用[J].中医药临床杂志,2009;21(5):445-447.
    [65]张毅,李金田,刘永琦,等.黄芪多糖对肺纤维化大鼠血清中Th1/Th2细胞因子平衡、NO水平的影响[J].中国老年学杂志,2009;29(10):1185-1187.
    [66]朱丹.黄芪多糖对人心脏微血管内皮细胞缺血再灌注损伤影响的研究[D].北京中医药大学硕士学位论文.2009.
    [67]刘桂莲,张承玉,刘晓霓.黄芪多糖对人胃癌SGC-7901细胞增殖抑制作用的体外研究[J].中国实用医药,2007;2(13):8-9.
    [68]许杜娟,陈敏珠.黄芪多糖的抑瘤作用及其机制[J].中国医院药学杂志,2005;25(10):923-925.
    [69]巢蕾,周杰,朱萱萱,等.黄芪多糖对人胃癌细胞系MKN45的生长抑制作用及细胞周期的影响[J].中华中医药学刊,2012;30(11):2474-2477.
    [70]姚金风,吴春丽,陈慧霞,等.黄芪多糖对HL-60细胞端粒酶活性的作用[J].河南肿瘤学杂志,2005;18(4):247-248.
    [71]林晓泉;廖海;梁蔚婷.注射用黄芪多糖联合化疗治疗恶性肿瘤的临床疗效观察[J].中药材,2009;32(6):1010-1011.
    [72]钦志泉,卢丽琴,袁国荣,等.注射用黄芪多糖联合GP方案治疗晚期非小细胞肺癌的临床观察[J].中华中医药学刊,2009;27(3):664-666.
    [73] Sender L Y, Gibbert K, Suezer Y, et al. CD40ligand-triggered human dendritic cellsmount interleukin-23responses that are further enhanced by danger signals[J]. MolImmunol,2010;47(6):1255-1261.
    [74] Villablanca E J, Raccosta L, Zhou D, et al. Tumor-mediated liver X receptor-alphaactivation inhibits CC chemokine receptor-7expression on dendritic cells anddampens antitumor responses[J]. Nat Med,2010;16(1):98-105.
    [75] Nouri-Shirazi M, Banchereau J, Fay J, et al. Dendritic cell based tumor vaccines[J]. Immunol Lett,2000;74(1):5-10.
    [76] Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells[J]. Cell,2001;106(3):263-266.
    [77] Mocellin S, Mandruzzato S, Bronte V. Part I: Vaccines for solid tumours[J].Lancet Oncol,2004;5(11):681-689.
    [78] Mocellin S, Semenzato G, Mandruzzato S. Part II: Vaccines for haematologicalmalignant disorders[J]. Lancet Oncol,2004;5(12):727-737.
    [79] Salskov-jversen M, Berqer CL, Edelson RL. Rapid construction of adendritic cellvaccine through physical perturbation and qpoptotic malignanT cell loading[J].Immune Based Ther Vaccines,2005;19:3-4.
    [80] Yilmaz T, Gedikoglu G, Celik A, et al. Prognostic significance of langerhans cellinfiltration in cancer of the laryax[J]. Otolaryngol Head Neck Surg,2005;132(2):309-312.
    [81] Eli Gilboa. DC-based cancer vaccines[J]. The Journal of Clinical Investigation,2007;117(5):1195-1203.
    [82] Ines Mende, Edgar G, Engleman. Breaking tolerance to tumors with dendriticcell-based immunotherapy[J]. Annals New York Academy of Sciences,2005;1058:96-104.
    [83] Yano Y, Ueda Y, Itoh T, et al. A new strategy using autologous dendritic cells andlymphokine-activated killer cells for cancer immunotherapy: efficient maturation ofDCs by co-culture with LAK cells in vitro[J]. Oncol Rep,2006;16(1):147-152.
    [84]王毅,郝钰,娄金丽,等.人参皂苷Rg1和Rh1对树突状细胞功能的影响[J].中国病理生理杂志,2004;20(10):1759-1764.
    [85]许文,李心群.猪苓多糖刺激/诱导小鼠树突状细胞成熟[J].现代免疫学,2008;28(4):318-321.
    [86]朱杰,赵鲁杭,陈智.枸杞多糖对小鼠骨髓树突状细胞成熟的影响[J].浙江大学学报,2006;35(6):648-652.
    [87]邵鹏,赵鲁抗.黄芪多糖对树突状细胞表型及功能成熟的影响[J].中华微生物和免疫学杂志,2006;26(7):637-640.
    [88] Nencioni A, Brossart P. Cellular immunotherapy with dendritic cells in cancer: currentstatus[J]. Stem Cells,2004;22(4):501-513.
    [89] Paczesny S, Ueno H, Fay J, et al. Dendritic cells as vectors for imunotherapy ofcancer [J]. Semin Cancer Biol,2003;13(6):439-447.
    [90] Nagayama H, Sato K, Morishita M, et al. Results of a phase I clinical study usingautologous tumour lysate-pulsed monocyte-derived mature dendritic cellvaccinations for stage Ⅳ malignant melanoma patients combined with low doseinterleukin-2[J]. Melanoma Res,2003;13(5):521-530.
    [91] Hersey P, Menzies SW, Halliday GM, et al. Phase I/II study of treatment withdendritic cell vaccines in patients with disseminated melanoma[J]. Cancer ImmunolImmunother,2004;53(2):125-134.
    [92] Hersey P, Halliday GM, Farrelly ML, et al. PhaseⅠ/Ⅱstudy of treatment withmatured dendritic cells with or without low dose IL-2in patients with disseminatedmelanoma[J]. Cancer Immunol Immunother,2008;57(7):1039-1051.
    [93] Pandha HS, Kirby RS. PC-SPES: phytotherapy for prostate cancer[J]. Lancet,2002;359(9325):2213-2215.
    [94] Gitlitz BJ, Figlin RA, Kiertscher SM, et al. Phase I trial of granulocytemacrophage-colony stimulating factor and interleukin-4as a combinedimmunotherapy for patients with cancer[J]. J Immunother,2003;26(2):171-178.
    [95] Avigan DE, Vasir B, George DJ, et al. Phase Ⅰ/Ⅱ study of vaccination withelectrofused allogeneic dendritic cells/autologous tumor-derived cells in patientswith stage Ⅳ renal cell carcinoma [J]. J Immunother,2007;30(7):749-761.
    [96] Vermorken JB, Claessen AM, van Tinteren H, et al. Active specific immuno therapyfor stage II and stage III human colon cancer: a randomised trial[J]. Lancet,1999;353(9150):345–350.
    [97] Dillman RO, Selvan SR, Schiltz PM, et al. Phase II trial of dendritic cells loaded withantigens from self-renewing, proliferating autologous tumor cells as patient-specificantitumor vaccines in patients with metastatic melanoma: final report[J]. CancerBiother Radiopharm,2009;24(3):311-9.
    [98] Cho DY, Yang WK, Lee HC, et al. Adjuvant Immunotherapy with whole-cell lysatedendritic cells vaccine for glioblastoma multiforme: A Phase II clinical trial[J].World Neurosurg,2012;77(5-6):736-44.
    [99] M rten A, Renoth S, Heinicke T, et al. Allogeneic dendritic cells fused with tumorcells: preclinical results and outcome of a clinical phase I/II trial in patients withmetastatic renal cell carcinoma[J]. Hum Gene Ther,2003;14(5):483-94.
    [100] Rahma OE, Ashtar E, Czystowska M, et al. A gynecologic oncology group phase IItrial of two p53peptide vaccine approaches: subcutaneous injection and intravenouspulsed dendritic cells in high recurrence risk ovarian cancer patients[J]. CancerImmunol Immunother,2012;61(3):373-84.
    [101] Zhou J, Weng D, Zhou F, et al. Patient-derived renal cell carcinoma cells fused withallogeneic dendritic cells elicit anti-tumor activity: in vitro results and clinicalresponses[J]. Cancer Immunol Immunother,2009;58(10):1587-1597.
    [102] Avigan D E, Vasir B, George D J, et al. PhaseⅠ/Ⅱ study of vaccination withelectrofused allogeneic dendritic cells/autologous tumor-derived cells in patientswith stage Ⅳ renal cell carcinoma[J]. J Immunother,2007;30(7):749-761.
    [103] Barbuto J A, Ensina L F, Neves A R, et al. Dendritic cell-tumor cell hybridvaccination for metastatic cancer[J]. Cancer Immunol Immunother,2004;53(12):1111-1118.
    [104] Wei Y, Sticca R P, Holmes L M, et al. Dendritoma vaccination combined with lowdose interleukin-2in metastatic melanoma patients induced immunological andclinical responses[J]. Int J Oncol,2006;28(3):585-593.
    [105] Trefzer U, Herberth G, Wohlan K, et al. Tumour-dendritic hybrid cell vaccination forthe treatment of patients with malignant melanoma: immunological effects andclinical results[J]. Vaccine,2005;23(17-18):2367-2373.
    [106] Haenssle H A, Krause S W, Emmert S, et al. Hybrid cell vaccination in metastaticmelanoma: clinical and immunologic results of a phaseⅠ/Ⅱs tudy[J]. J Immunother,2004;27(2):147-155.
    [107] Homma S, Kikuchi T, Ishiji N, et al. Cancer immunotherapy by fusions of dendriticand tumour cells and rhIL-12[J]. Eur J Clin Invest,2005;35(4):279-286.
    [108] Kikuchi T, Akasaki Y, Abe T, et al. Vaccination of glioma patients with fusions ofdendritic and glioma cells and recombinant human interleukin-12[J]. J Immunother,2004;27(6):452-459.
    [109] Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastaticbreast and renal cancer induces immunological and clinical responses[J]. ClinCancer Res,2004;10(14):4699-4708.
    [110] Coventry BJ, Austyn JM, Chryssidis, et al. Identification and isolation of CD1apositive putative tumor infiltrating dendritic cells in human breast cancer[J]. AdvExp Med Biol,1997;417(1):571-577.
    [111] Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, amember of the immunoglobulin superfamily[J]. J Immunol,1995;154(8):3821-3835.
    [112] Aarvak T, Natvig JB. Cell-cell interactions in synovitis: antigen presenting cells andT cells interaction in rheumatoid arthritis[J]. Arthritis Res,2001;3(1):13-17.
    [113] Jiang H R, Muckersie E, Robertson M, et al. Antigen-specific inhibition ofexperimental autoimmune uveoretinitis by bone marrow-derived immature dendriticcells[J]. Invest Ophthalmol Vis Sci,2003;44(4):1598-1607.
    [114] Schreibelt G, Tel J, Sliepen K H, et al. Toll-like receptor expression and function inhuman dendritic cell subsets: implications for dendritic cell-based anti-cancerimmunotherapy[J]. Cancer Immunol Immunother,2010;59(10):1573-1582.
    [115] Kim J Y, Park M S, Ji G E. Probiotic modulation of dendritic cells co-cultured withintestinal epithelial cells[J]. World J Gastroenterol,2012;8(12):1308-1318
    [116] Dmitry I, Frank C, DavidP, etal. Denritic cells in antitumor immune responsesdefective antigen presentation in tumor bearing hosts[J]. Cell Immunol,1996;170(1):101-103.
    [117]朱学军,李晓惠,夏雯,等.人外周血树突状细胞体外稳定、高效培养的新方法[J].中国肿瘤生物治疗杂志,2007;14(6):575-577.
    [118] Chau XP, Monte Mt, Faivrej, etal. Inflammatory cells infiltrating human colorectalcarcinomas express HLA class II but not B7-1and B7-2costimulatory molecules ofthe T-cell activation[J]. Lab Invest,1996;74(5):975-978.
    [119] Dmitry I, Soren a N, Jadranko C, etal. Dendritic cells grown from bonemarrow precursors, but not mature DC from tumor bearing mice, are effective antigencarriers in the therapy of established tumor[J]. Cell Immunol,1996;170(1):111-114.
    [120] Hart DNJ. Dendritic cells: Unique leukocyte populations with control the primaryimmune response[J]. Blood,1997;90:3245-3287.
    [121]于哲,马保安,周勇,等.异体树突状细胞融合瘤苗抗骨肉瘤的免疫效应实验[J].肿瘤防治研究,2006;33(11):779-783.
    [122] Wolf SF, Temple PA, Kobayashi M, et al. Cloning of cDNA for natural killer cellstimulatory factor, a heterodimeric cytokine with multiple biologic effects on T andnatural killer cells[J]. J Immunol,1991;146(9):3074-3081.
    [123] Hamza T, Barnett JB, Li B. Interleukin12: a key immuno regulatory cytokine ininfection applications [J]. Int J Mol Sci,2010;11(3):789-806.
    [124] Engel MA, Neurath MF. Anticancer properties of the IL-12family--focus oncolorectal cancer[J]. Curr Med Chem,2010;17(29):3303-3308.
    [125] Vecchio MD, Bajetta E, Canova S, et al. Interleukin-12: Biological properties andclin ical app lication[J]. Clin Cancer Res,2007;13(16):4677-4985.
    [126] Marchi LH, Paschoalin T, Travassos LR, et al. Genetherapy with interleukin-10receptor and interleukin-12induces a protective interferon-dependent responseagainst B16F10-Nex2melanoma[J]. Cancer Gene Therapy,2011;18(2):110-122.
    [127] He XZ, Wang L, Zhang YY. An effective vaccine against colon cancer in mice: Useof recombinant adenovirus interleuk in-12transduced dendritic cells[J]. World JGastroentero,2008;14(4):532-540.
    [128] Guida M, Casamassima A, Monticelli G, et al. Basal cytokines profile in metastaticrenal cell carcinoma patients treated with subcutaneous IL-2-based therapycompared with that of healthy donors[J]. J Transl Med,2007;5:51.
    [129] Kayashima H, Toshima T, Okano S, et al. Intratumoral neoadjuvant immunotherapyusing IL-12and dendritic cells is an effective strategy to control recurrence ofmurine hepatocellular carcinoma in immunosuppressed mice [J]. J Immunol,2010;185(1):698-708.
    [130] Yin X, Yan X, Yang Q, et al. Antitumor mechanism of recombinant murine interleukin-12vaccine[J]. Cancer Biother Radiopharm,2010;25(3):263-268.
    [131] Robinson RT, Khader SA, Locksley RM, et al. Yersinia pestis evadesTLR4-dependent induction of IL-12(p40)2by dendritic cells and subsequent cellmigration[J]. J Immunol,2008;181(8):5560-5567.
    [132] Mogensen KE, Lewerenz M, Reboul J et al. The type I interferon receptor: structure,function, and evolution of a family business[J]. J Interferon Cytokine Res,1999;19(10):1069-1098.
    [133]金伯泉.细胞和分子免疫学[M].北京科学出版社,2001:184.
    [134] Dobrzanski MJ, Reome JB, Dutton RW. Immunopotentiating role of IFN-gamma inearly and late stages of type1CD8effector cell-mediated tumor rejection[J].Clinical Immunology,2001;98(1):70-84.
    [135] Trubiani O, Bosco D, Di Primio R. Interferon-gamma (IFN-gamma) inducesprogrammed cell death in differentiated human leukemic B cell lines [J]. Exp CellRes,1994;215(1):23-27.
    [136] Ahn EY, Pan G, Vickers SM, et al. IFN-gammaupregulates apoptosis-relatedmolecules and enhances Fas-mediated apoptosis in human cholangiocarcinoma[J].Int J Cancer,2002;100(4):445-451.
    [137] Tomita Y, Bilim V, Hara N, et al. Role of IRF-1and caspase-7in IFN-gammaenhancement of Fas-mediated apoptosis in ACHN renal cell carcinoma cells[J]. Int JCancer,2003;104(4):400-408.
    [138] Friesel R, Komoriya A, Maciag T. Inhibition of endothelial cell proliferation bygamma-interferon[J]. J Cell Biol,1987;4(3):689-696.
    [139]曹琦珍,林志彬. IFN-γ在抗肿瘤新生血管形成中潜在的作用及机制研究[J].中国临床药理学与治疗学,2004,9(8):863-867.
    [140] Ferrantini M, Capone I, Belardelli F. Dendritic cells and cytokines in immunerejection of cancer[J]. Cytokine Growth Factor Rev,2008;19(1):93-107.
    [141] Tatsumi T, Takehara T, Yamaguchi S, et al. Injection of IL-12gene-transduceddendritic cells into mouse liver tumor lesions activatesboth innate and acquiredimmunity[J]. Gene Ther,2007;14(11):863-871.
    [142] Hishii M, Kurnick JT, Ramirez-Montagut T et al. Studies of the mechanism ofcytolysis by tumour-infiltrating lymphocytes[J]. Clin Exp Immunol,1999;116(3):388-394.
    [143] Khurana D, Leibson PJ. Regulation of Lymphocyte-mediated Killing byGTP-binding Proteins [J]. Journal of Leukocyte Biology,2003;73(3):333-338.
    [144]谢丛华,周云峰.肿瘤坏死因子的多重临床意义[J].国外医学内科学分册,2005;32(6):247-249.
    [145] Owen CA, Campbell MA, Boukedes SS, et al. Inducible binding of bioactivecathepsin G to the cell surface of neutrophils: A novel mechanism for mediatingextracellular catalytic activity of cathepsin G[J]. J Immunol,1995;155(12):5803-5810.
    [146] Chosa N, Kyakumoto S, Kito N, et al. Mechanism of Fas-mediated cell death and itsenhancement by TNF-alpha in human salivary gland adenocarcinoma cell lineHSG[J]. Eur J Oral Sci,2004;112(4):338-346.
    [147] Chang L, Kamata H, Solinas G, et al. The E3ubiquitin ligase itch couples JNKactivation to TNFalpha-induced cell death by inducing c-FLIP(L)turnover[J]. Cell,2006;124(3):601-613.
    [148] Devin A, Lin Y, Liu ZG. The role of the death-domain kinase RIP in tumour necrosisfactor induced activation of mitogen-activated protein kinases[J]. EMBO Rep,2003;4(6):623-627.
    [149]叶欣,李毅,刘丽霞,等.大肠癌患者血清Th1/Th2细胞因子水平变化及其临床意义[J].中国肿瘤,2005;14(12):834-836.
    [150]刘杰,魏明海,田志刚. Th1/Th2漂移与抗肿瘤免疫[J].国外医学肿瘤学分册,1997;24(3):168-170.
    [151]张圣林,邱法波,吴力群. Th1/Th2偏移与恶性肿瘤关系的研究进展[J].细胞与分子免疫学杂志,2005;21(1):113-117.
    [152] Burchell JT, Strickland DH, Stumbles PA. The role of dendritic cells and regulatoryT cells in the regulation of allergic asthma[J]. PharmacolTher,2010;125(1):1-10.
    [153] Deng J, Zhang Y, Feng J, et al. Dendritic cells loaded with ultrasound-ablated tumourinduce in vivo specific antitumour immune responses[J]. Ultrasound Med Biol,2010;36(3):441-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700