用户名: 密码: 验证码:
基于压力传感器与加速度传感器走跑运动能量消耗建模的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     通过提取加工由压力、加速度传感器获取的信息,找出这些信息中与运动速度、运动模式以及能量消耗之间相关程度较高的参量,并建立估算人体运动速度、能耗以及模式识别的回归模型,同时考虑身高,年龄、体重以及步态模式对建模影响,以提高建模精度。建立对人体日常活动无干扰、全面考量测评环境和对象个体因素,适用于包括中国青少年在内针对步行运动的大众体力活动能量消耗估测模型,模型对于中国青少年的健康指导具有较高现实意义和应用价值。
     研究方法
     实验的一部分是在中学进行:受试者是青少年,其中初中生总人数68人,年龄从11岁到14岁,其中男生33人,女生35人。高中生年龄从14到18岁,总数108人,其中男生53人,女生55人。实验前,首先采集个人信息,测量身高,体重,腿长,体脂率;安静心率和血压。佩戴仪器,受试者熟悉跑台6分钟(Matsas et al.2000),休息5分钟左右使受试者的心率恢复到安静心率的±5%。上跑台测试,跑台的速度设定为3、4、5、6、7和8km/h,其中3、4、5和6km/h为走的速度,7km/h和8km/h为跑的速度。每个速度下时间持续5min,实验过程中使用K4b2采集能量消耗数据。
     实验的另一部分是在实验室进行:受试者是选取20名普通大学生志愿者,受试者身体健康,下肢没有病史,年龄为19.54±5.36years,身高为161±45.28cm,体重是60.09±16.80kg,BMI是21.47±1.45kg/m2。实验过程中,跑台速度设定:走模式的速度是:0.6、0.8、1.0、1.2、1.4、1.6、1.8和2.0m/s;跑模式的速度是:1.4、1.6、1.8、2.0、2.2、2.4、2.6和2.8m/s。每个速度下至少持续5min,整个实验过程实时观察和监控受试者的心率、耗氧量、呼吸商。使用VO2000采集不同速度下与能量消耗有关的参数;两轴加速度放在腰部,采集加速度信号,采样频率为1000Hz。
     数理统计方法:数据使用Matlab7.0处理,Origin8.0绘图,采用逐步回归、逻辑回归、方差分析以及协方差分析。
     研究结果
     1)建立了步频与步速之间的线性回归模型以及步频与能量消耗之间的线性回归模型,回归方程的复相关系数较高,均大于0.75,并进一步提出了提高回归模型精度的措施。
     2)走模式下净能耗与垂直方向的加速度均方根(R~2=0.92)、前后方向的加速度均方根(R~2=0.81)、垂直方向的加速度积分值(R~2=0.91)、前后方向的积分值(R~2=0.81)以及总加速度积分值(R~2=0.92)都有较高的线性关系。如果使用单轴加速度计的情况下,使用垂直轴计算精度较高。走模式下的速度与垂直方向的均方根以及积分值(R~2=0.94)都有较高的线性相关。速度与前后方向的加速度均方根以及积分值线性相关的复相关系数分别为(R~2=0.82, R~2=0.81);在跑模式下,运动的净能耗与垂直方向的加速度均方根(R~2=0.61)以及积分值(R~2=0.61)有相对较高的线性相关,净能耗与前后方向的加速度均方根(R~2=0.33)以及积分值(R~2=0.33)线性相关关系较低。跑速与垂直方向的均方根(R~2=0.58)、积分值(R~2=0.55)以及前后方向的均方根(R~2=0.35)、积分值(R~2=0.39)线性相关的复相关系数差别较大。3)垂直反作用力峰值与行走速度之间呈较高2次曲线关系(R~2=0.86),与能耗呈较高线性关系(R~2=0.83);峰值斜率与行走速度呈较高2次曲线关系(R~2=0.85),与能耗呈较高线性关系(R~2=0.80)。在走模式下运动速度与标准化后的整个足底受到力的峰值(R~2=0.79)、整个足受到的力的峰值斜率(R~2=0.87)以及第三分区的力的峰值斜率(R~2=0.75)具有较高的线性相关关系。跑模式不如走模式下速度与力峰值斜率拟合曲线的复相关系数那么高。跑速与力的峰值斜率之间的线性关系的复相关系数R~2=0.69;走模式下能耗与整个足的峰值斜率具有较高的线性相关关系。其次运动的净能耗与标准化后的力的峰值、第三分区的力的峰值斜率也具有较高的线性相关关系。跑模式下,与能量消耗线性相关的复相关系数最高的是峰值斜率(R~2=0.73),其次是足的支撑时间(R~2=0.64)。4)单位时间单位体重的能耗与走速的2次曲线拟合方程的复相关系数R~2=0.88;单位时间单位体重的能耗与跑速的线性拟合方程的复相关系数R~2=0.72;走模式下速度-能耗拟合曲线与跑模式下速度-能耗拟合曲线的交点坐标为(2.35m/s,141.7cal/kg/min);在测试速度范围之内,在相同的运动速度,走与跑单位时间的能耗具有显著性差异(P<0.01),跑的能耗显著大于走的能耗。单位距离单位体重的每一速度的平均能耗与走速的2次拟合曲线的复相关系数R~2=0.98,曲线最低点的坐标为(1.14m/s,0.553cal/kg/m),跑模式下单位距离单位体重的平均能耗与跑速拟合曲线的复相关系数R~2=0.68。
     结论
     1)步速与步频有较高的线性关系,身高影响到步频,同等速度下身高增加步频减小。在建立步速与步频回归方程时需要考虑身高对步频的影响,根据身高分组建立步频与步速的回归方程的精确度提高;建立步频与能耗的回归模型时要考虑的年龄因素;在误差允许的范围内,自然走跑模式下使用步频推估行走距离以及能量消耗作为健身活动评价是可靠的。
     2)使用腰部加速度计能较好的估算人体走跑过程中能量消耗以及运动的速度;加速度信号需要去趋势处理以后的均方根值、积分值与能量消耗、运动速度具有较高的线性相关关系;在走跑两种模式下,即使加速度积分的和相等的情况下,能量消耗不相等;使用水平方向的加速度均方根以及垂直方向的积分值可以有效的区分走与跑的模式。
     3)垂直反作用力峰值与走速呈较高2次曲线关系;垂直反作用力峰值与能量消耗之间呈较高线性关系;峰值斜率与运动速度呈较高2次曲线关系;峰值斜率与能耗呈较高线性关系。足底压力峰值斜率与运动速度以及运动时的能耗具有较高的线性关系。
     4)单位时间单位体重的能耗与走速呈2次曲线关系,单位时间单位体重的能耗与跑速呈线性递增关系;在一定速度范围内,相同速度下跑模式高于走模式下单位时间单位体重的能耗;单位距离单位体重的能耗与走速呈“U”型曲线趋势;单位距离单位体重的能耗与跑速呈线性递减趋势,在测量范围之内跑速越高单位距离单位体重的能耗越低。
Objective:
     Building recognition regression models of walking and running energy expenditure based onpressure sensors and accelerometer. Finding the higher correlation parameters between the energyexpenditure and parameters obtained from the pressure and acceleration sensors. Taking intoaccount the height, age, weight and gait patterns of human affect the accuracy to improving themodeling accuracy. Model of physical activity energy expenditure to estimate the daily activitiesof the human body on the public for pedestrian movement, interference-free, comprehensiveconsideration of the evaluation environment and the object of individual factors applies, includingthe China Youth. The model has high practical significance and value of health guidance forChinese youth
     Research Methods:
     Part of an experiment carried out in high school. Adolescents as subjects, including juniorhigh school the total number of68, Age from11years to14years (33boys,35girls). High schoolstudents aged from14to18years, Before the experiment,Collecting personal information,Measuring height, weight, leg length, percentage of body fat of subjects, resting heart rate andblood pressure, Wear apparatus, the subjects familiar with the treadmill for six minutes(Matsas etal.2000), Treadmill speed is3,4,5,6,7and8km/h, the speed of3,4,5and6km/h was walkingspeed;7km/h and8km/h were running speed. Each speed lasted5minutes; K4b2was used tocollect energy consumption data in experiment.
     Another part of an experiment carried out in Shanghai Sports Performance Laboratory.Subjects were20University student volunteers. Subjects were physical health, whose Lowerlimbs had not medical history. The subjects aged19.54±5.36. The walking protocol consisted oftreadmill walking for five min at each of the following speeds:0.6,0.8,1.0,1.2,1.4,1.6,1.8,and2.0m/s. The running protocol consisted of treadmill running for five min at each of thefollowing speeds:1.4,1.6,1.8,2.0,2.2,2.4,2.6, and2.8m/s. The subjects should rest to quiet statefrom walking to running mode conversion. VO2000was used to test quiet and exercise metabolicgas values. POLAR heart rate watch was used in experiment. Two-axis accelerometer was placedon the first sacral vertebra and sampling frequency was1000Hz.
     Mathematical statistics method: The data was processed using Matlab7.0, graphics using theOrigin8.0, stepwise regression, logistic regression, ANOVA, covariance analysis.
     Research Results:
     1) Established linear regression model between walking speed and step frequency, the linear regression model between step frequency and energy expenditure. The multiple correlationcoefficient of the regression equations were higher than0.75. Improve the accuracy of themeasures regression model.
     2) There was significant linear relationship between net energy expenditure and the verticalityacceleration RMS (R~2=0.92), AP acceleration RMS (R~2=0.81), Integral value of the verticalityacceleration (R~2=0.94) in walking pattern. If uniaxial accelerometer was used, the estimateaccuracy of energy expenditure would improve using the vertical axis of accelerometer. Multiplecorrelation coefficients of the velocity and RMS of AP acceleration, integral value of APacceleration were respectively R~2=0.82and R~2=0.81. The net energy expenditure and RMS ofverticality acceleration (R~2=0.61), integral value of verticality acceleration (R~2=0.61) had a linearrelationship, but multiple correlation coefficients was lower for RMS of AP acceleration (R~2=0.33),integral value of AP acceleration (R~2=0.33) in running pattern. Multiple correlation coefficient oflinear correlation larger difference about between running velocity and RMS of verticalityacceleration (R~2=0.58), integral value of verticality acceleration (R~2=0.55), between runningvelocity and RMS of AP acceleration (R~2=0.35), integral value of AP acceleration (R~2=0.39).
     3) There was a quadratic curve relationship between walking velocity and vertical reaction forcepeak (R~2=0.86), a linear relationship between vertical reaction force peak and energy expenditure(R~2=0.85); There was a quadratic curve relationship between walking velocity and WeightAcceptance Rate (R~2=0.85), a linear relationship between Weight Acceptance Rate and energyexpenditure (R~2=0.80); Peak plantar pressure slope and velocity, and the net energy expenditurehave a high linear relationship. There was a linear relationship between the walking velocity andvertical reaction force peak (R~2=0.79), Weight Acceptance Rate (R~2=0.87), the third mask WeightAcceptance Rate (R~2=0.75). Multiple correlation coefficient of linear correlation was lowerbetween running velocity and Weight Acceptance Rate (R~2=0.69). The walking energyexpenditure and Weight Acceptance Rate had a high linear relationship. Multiple correlationcoefficient of linear correlation between running energy expenditure and Weight Acceptance Ratewas R~2=0.73, but for stance time was R~2=0.64.
     4) We established fitting equations between energy expenditure (energy consumed per kilogram ofbody weight for a given walking time) and velocity of walking and running. This analysis revealedthat a quadratic curve relationship between walking velocity and energy expenditure (R~2=0.88), alinear relationship between running velocity and energy expenditure (R~2=0.72). Coordinates of theintersection of two fitted curves is (2.35m/s,141.7cal/kg/min). In the test velocity range, at thesame velocity, the energy expenditure of walking and running is significant difference (P<0.01),running burns more calories per kilogram bodyweight per unit minute than walking; We alsoestablished fitting equations between energy cost (energy consumed per kilogram of body weight per unit distance) and velocity of walking. This analysis revealed that a quadratic curverelationship between walking velocity and energy cost(R~2=0.98), The fitted curve lowest pointcoordinates is (1.14m/s,0.553cal/kg/m), a linear relationship between running velocity and energycost(R~2=0.68).
     Conclusions:
     1) Movement velocity and step frequency has a high linear correlation. Height affects the stepfrequency; height increase has led to decreases in step frequency at the same speed. Height shouldtake into account affect the correlation between step velocity and step frequency. Accuracy of theregression equation in step frequency and step velocity will increase when grouped according toheight. Age factor should be considered in the establishment the regression model of stepfrequency and energy expenditure. Within the error tolerance, the model as a fitness activityevaluation is reliable.
     2) Using the waist accelerometer can better estimate the energy expenditure and velocity of humanwalking running; RMS value, integral value and energy expenditure as well as the velocity has ahigh linear relationship after the acceleration signals detrended. Even if the acceleration integral isequal, the energy expenditure is not equal in walking and running pattern; Acceleration RMS ofthe horizontal direction and vertical direction of the integral value can effectively distinguishbetween walking and running pattern.
     3) The peak vertical reaction force and travel speed was high quadratic relationship; there is higherlinear relationship between peak vertical reaction force and energy expenditure; WeightAcceptance Rate and velocity have a high quadratic relationship; Weight Acceptance Rate andenergy expenditure is high linear relationship.
     4) Quadratic curve relationship between walking velocity and energy expenditure,a linearrelationship between running velocity and energy expenditure; In a certain range of velocity,running burns more calories per kilogram bodyweight per unit minute than walking; Therelationship of the energy cost and the velocity is U-shaped curve for walking; the relationship ofthe energy cost and the velocity is sloping line for running. The higher running velocity the lowerthe energy cost in the measuring range.
引文
[1] Akay, M., M. Sekine, T. Tamura, et al. Fractal dynamics of body motion in post-stroke hemiplegicpatients during walking[J]. Journal Of Neural Engineering,2004,1(2):111-116.
    [2] Alméras, N., N. Mimeault, O. Serresse, et al. Non-exercise daily energy expenditure and physicalactivity pattern in male endurance athletes[J]. European Journal of Applied Physiology andOccupational Physiology,1991,63(3):184-187.
    [3] Alton, F., L. Baldey, S. Caplan, et al. A kinematic comparison of overground and treadmillwalking[J]. Clinical Biomechanics,1998,13(6):434-440.
    [4] Baur, H., A. Hirschmüller, S. Müller, et al. Muscular activity in treadmill and overground running[J].Isokinetics&Exercise Science,2007,15(3):165-171.
    [5] Begg, R., W. Sparrow.N. Lythgo. Time-domain analysis of foot–ground reaction forces innegotiating obstacles[J]. Gait and Posture,1998,7(2):99-109.
    [6] Bisseling, R. W..A. L. Hof. Handling of impact forces in inverse dynamics[J]. Journal ofBiomechanics,2006,39(13):2438-2444.
    [7] Blair, S. N., H. W. Kohl, N. F. Gordon, et al. How much physical activity is good for health?[J].Annual Review of Public Health,1992,13(1):99-126.
    [8] Bourke, A. K., J. V. O'Brien.G. M. Lyons. Evaluation of a threshold-based tri-axial accelerometerfall detection algorithm[J]. Gait and Posture,2007,26(2):194-199.
    [9] Bouten, C. V., K. R. Westerterp, M. Verduin, et al. Assessment of energy expenditure for physicalactivity using a triaxial accelerometer[J]. Medicine&Science in Sports&Exercise,1994,26(12):1516.
    [10] Bouten, C. V. C., K. T. M. Koekkoek, M. Verduin, et al. A triaxial accelerometer and portable dataprocessing unit for the assessment of daily physical activity[J]. Biomedical Engineering, IEEETransactions on,1997,44(3):136-147.
    [11] Bratteby, L., B. Sandhagen, M. L tborn, et al. Daily energy expenditure and physical activityassessed by an activity diary in374randomly selected15-year-old adolescents[J]. EuropeanJournal of Clinical Nutrition,1997,51(9):592-600.
    [12] Brouha, L. Effects of muscular work and heat on the cardiovascular system[J]. Industrial Medicineand Surgery,1960,29(114-120.
    [13] Brouwer, B., K. Parvataneni.S. J. Olney. A comparison of gait biomechanics and metabolicrequirements of overground and treadmill walking in people with stroke[J]. Clinical Biomechanics,2009,24(9):729-734.
    [14] Cappozzo, A., F. Catani, A. Leardini, et al. Position and orientation in space of bones duringmovement: experimental artefacts[J]. Clinical Biomechanics,1996,11(2):90-100.
    [15] Carpinella, I., P. Crenna, M. Rabuffetti, et al. Coordination between upper-and lower-limbmovements is different during overground and treadmill walking[J]. European Journal of AppliedPhysiology,2010,108(1):71-82.
    [16] Carpinella, I., P. Mazzoleni, P. Crenna, et al. Arm and leg swing during overground and treadmillwalking[J]. Gait and Posture,2009,29(Supplement1): e29-e30.
    [17] Crouter, S. E., K. G. Clowers.D. R. Bassett, Jr. A novel method for using accelerometer data topredict energy expenditure[J]. J Appl Physiol,2006,100(4):1324-1331.
    [18] Dal, U., T. Erdogan, B. Resitoglu, et al. Determination of preferred walking speed on treadmillmay lead to high oxygen cost on treadmill walking[J]. Gait and Posture,2010,31(3):366-369.
    [19] Elble, R. J. Gravitational artifact in accelerometric measurements of tremor[J]. ClinicalNeurophysiology: Official Journal Of The International Federation Of Clinical Neurophysiology,2005,116(7):1638-1643.
    [20] EPSTEIN, L. H., K. J. COLEMAN.M. D. MYERS. Exercise in treating obesity in children andadolescents[J]. Medicine&Science in Sports&Exercise,1996,28(4):428.
    [21] Esparza, J., C. Fox, I. Harper, et al. Daily energy expenditure in Mexican and USA Pima indians:low physical activity as a possible cause of obesity[J]. International journal of obesity and relatedmetabolic disorders: journal of the International Association for the Study of Obesity,2000,24(1):55.
    [22] Eston, R. G., A. V. Rowlands.D. K. Ingledew. Validity of heart rate, pedometry, and accelerometryfor predicting the energy cost of children's activities[J]. Journal of Applied Physiology,1998,84(1):362-371.
    [23] Feltham, M. G., J. H. van Die n, M. W. Coppieters, et al. Changes in joint stability with musclecontraction measured from transmission of mechanical vibration[J]. Journal of Biomechanics,2006,39(15):2850-2856.
    [24] Flynn, J. M., J. D. Holmes.D. M. Andrews. The effect of localized leg muscle fatigue on tibialimpact acceleration[J]. Clinical Biomechanics,2004,19(7):726-732.
    [25] Foster, R. C., L. M. Lanningham-Foster, C. Manohar, et al. Precision and accuracy of anankle-worn accelerometer-based pedometer in step counting and energy expenditure[J]. PreventiveMedicine,2005,41(3-4):778-783.
    [26] Frankenfield, D. C., E. R. Muth.W. A. Rowe. The Harris-Benedict Studies of Human BasalMetabolism: History and Limitations[J]. Journal of the American Dietetic Association,1998,98(4):439-445.
    [27] Frigo, C., R. Carabalona, M. Dalla Mura, et al. The upper body segmental movements duringwalking by young females[J]. Clinical Biomechanics (Bristol, Avon),2003,18(5):419-425.
    [28] Frost, G., O. Bar-Or, J. Dowling, et al. Explaining differences in the metabolic cost and efficiencyof treadmill locomotion in children[J]. Journal of Sports Sciences,2002,20(6):451-461.
    [29] Giakas, G., V. Baltzopoulos, P. H. Dangerfield, et al. Comparison of gait patterns between healthyand scoliotic patients using time and frequency domain analysis of ground reaction forces[J].Spine,1996,21(19):2235.
    [30] Goldberg, E. J., S. A. Kautz.R. R. Neptune. Can treadmill walking be used to assess propulsiongeneration?[J]. Journal of Biomechanics,2008,41(8):1805-1808.
    [31] Greiwe, J..W. Kohrt. Energy expenditure during walking and jogging[J]. Journal of sportsmedicine and physical fitness,2000,40(4):297-302.
    [32] Grieve, D..R. J. Gear. The relationships between length of stride, step frequency, time of swingand speed of walking for children and adults[J]. Ergonomics,1966,
    [33] Hagan, R. D., T. Strathman, L. Strathman, et al. Oxygen uptake and energy expenditure duringhorizontal treadmill running[J]. Journal of Applied Physiology: Respiratory, Environmental andExercise Physiology,1980,49(4):571-575.
    [34] Hakim, A. A., H. Petrovitch, C. M. Burchfiel, et al. Effects of walking on mortality amongnonsmoking retired men[J]. New England Journal of Medicine,1998,338(2):94-99.
    [35] Hall, C., A. Figueroa, B. Fernhall, et al. Energy expenditure of walking and running: comparisonwith prediction equations[J]. Medicine and Science in Sports and Exercise,2004,36(12):2128-2134.
    [36] Hanlon, M..R. Anderson. Real-time gait event detection using wearable sensors[J]. Gait andPosture,2009,30(4):523-527.
    [37] Harris, G. F., K. R. Acharya.R. Bachschmidt. Investigation of spectral content from discreteplantar areas during adult gait: an expansion of rehabilitation technology[J]. RehabilitationEngineering, IEEE Transactions on,1996,4(4):360-374.
    [38] Hartmann, A., K. Murer, R. A. de Bie, et al. Reproducibility of spatio-temporal gait parametersunder different conditions in older adults using a trunk tri-axial accelerometer system[J]. Gait andPosture,2009,30(3):351-355.
    [39] Helliwell, P. S., J. E. Smeathers.V. Wright. Shock absorption by the spinal column in normals andin ankylosing spondylitis[J]. Proceedings of the Institution of Mechanical Engineers. Part H,Journal of Engineering in Medicine,1989,203(4):187-190.
    [40] Hirotomi, T..Y. Katai (2010). Analysis of Involuntary Movements for Adapting Input Devices toPeople with Motor Impairments Based on3-Axis Accelerometers, IEEE.
    [41] Hoff, J. I., V. van der Meer.J. J. van Hilten. Accuracy of objective ambulatory accelerometry indetecting motor complications in patients with Parkinson disease[J]. Clinical Neuropharmacology,2004,27(2):53-57.
    [42] Hollman, J. H., R. H. Brey, T. J. Bang, et al. Does walking in a virtual environment induceunstable gait?: An examination of vertical ground reaction forces[J]. Gait and Posture,2007,26(2):289-294.
    [43] Howley, E. T..M. E. Glover. The caloric costs of running and walking one mile for men andwomen[J]. Medicine and Science in Sports,1974,6(4):235-237.
    [44] Hurkmans, H. L. P., J. B. J. Bussmann, E. Benda, et al. Techniques for measuring weight bearingduring standing and walking[J]. Clinical Biomechanics,2003,18(7):576-589.
    [45] Jasiewicz, J. M., J. H. J. Allum, J. W. Middleton, et al. Gait event detection using linearaccelerometers or angular velocity transducers in able-bodied and spinal-cord injuredindividuals[J]. Gait and Posture,2006,24(4):502-509.
    [46] Kane, N. A., M. C. Simmons, D. John, et al. Validity of the Nike+Device During Walking andRunning[J]. International Journal of Sports Medicine,2010,31(2):101-105.
    [47] Kavanagh, J. J., R. S. Barrett.S. Morrison. Upper body accelerations during walking in healthyyoung and elderly men[J]. Gait and Posture,2004,20(3):291-298.
    [48] Kavanagh, J. J., S. Morrison.R. S. Barrett. Lumbar and cervical erector spinae fatigue elicitcompensatory postural responses to assist in maintaining head stability during walking[J]. Journalof Applied Physiology,2006,101(4):1118-1126.
    [49] Keijsers, N. L., M. W. I. M. Horstink.S. C. A. M. Gielen. Movement parameters that distinguishbetween voluntary movements and levodopa-induced dyskinesia in Parkinson's disease[J]. HumanMovement Science,2003,22(1):67-89.
    [50] Keijsers, N. L. W., M. W. I. M. Horstink.S. C. A. M. Gielen. Ambulatory motor assessment inParkinson's disease[J]. Movement Disorders: Official Journal Of The Movement Disorder Society,2006,21(1):34-44.
    [51] Kong, P. W., N. G. Candelaria.J. Tomaka. Perception of self-selected running speed is influencedby the treadmill but not footwear[J]. Sports Biomechanics,2009,8(1):52-59.
    [52] Krahenbuhl, G. S..T. J. Williams. Running economy: changes with age during childhood andadolescence[J]. Medicine&Science in Sports&Exercise,1992,24(4):462-466.
    [53] Kram, R..C. R. Taylor. Energetics of Running: A New Perspective[J]. Nature,1990,346(6281):265.
    [54] Kumahara, H., Y. Schutz, M. Ayabe, et al. The use of uniaxial accelerometry for the assessment ofphysical-activity-related energy expenditure: a validation study against whole-body indirectcalorimetry[J]. British Journal of Nutrition,2004,91(2):235-244.
    [55] Lafortune, M. A. Three-dimensional acceleration of the tibia during walking and running [J].Journal of Biomechanics,1991,24(10):877-886.
    [56] Lavcanska, V., N. F. Taylor.A. G. Schache. Familiarization to treadmill running in youngunimpaired adults[J]. Human Movement Science,2005,24(4):544-557.
    [57] Levine, J. A., S. J. Schleusner.M. D. Jensen. Energy expenditure of nonexercise activity[J]. TheAmerican journal of clinical nutrition,2000,72(6):1451-1454.
    [58] Li, L., E. C. H. van den Bogert, G. E. Caldwell, et al. Coordination patterns of walking andrunning at similar speed and stride frequency[J]. Human Movement Science,1999,18(1):67-85.
    [59] Li, Q., M. Young, V. Naing, et al. Walking speed estimation using a shank-mounted inertialmeasurement unit[J]. Journal of Biomechanics,2010,43(8):1640-1643.
    [60] Loftin, M., D. E. Waddell, J. H. Robinson, et al. Comparison of energy expenditure to walk or runa mile in adult normal weight and overweight men and women[J]. Journal Of Strength AndConditioning Research/National Strength&Conditioning Association,2010,24(10):2794-2798.
    [61] Luinge, H. J..P. H. Veltink. Inclination measurement of human movement using a3-Daccelerometer with autocalibration[J]. IEEE Transactions On Neural Systems And RehabilitationEngineering: A Publication Of The IEEE Engineering In Medicine And Biology Society,2004,12(1):112-121.
    [62] Mansfield, A..G. M. Lyons. The use of accelerometry to detect heel contact events for use as asensor in FES assisted walking[J]. Medical Engineering&Physics,2003,25(10):879.
    [63] Mark J, O. M. Normalization of temporal-distance parameters in pediatric gait[J]. Journal ofBiomechanics,1996,29(5):619-625.
    [64] Matsas, A., N. Taylor.H. McBurney. Knee joint kinematics from familiarised treadmill walkingcan be generalised to overground walking in young unimpaired subjects[J]. Gait and Posture,2000,11(1):46-53.
    [65] Mayagoitia, R. E., A. V. Nene.P. H. Veltink. Accelerometer and rate gyroscope measurement ofkinematics: an inexpensive alternative to optical motion analysis systems[J]. Journal ofBiomechanics,2002,35(4):537-542.
    [66] McKenna, M..P. E. Riches. A comparison of sprinting kinematics on two types of treadmill andover-ground[J]. Scandinavian Journal of Medicine&Science in Sports,2007,17(6):649-655.
    [67] MEIJER, G. A., K. R. WESTERTERP, H. KOPER, et al. Assessment of energy expenditure byrecording heart rate and body acceleration[J]. Medicine&Science in Sports&Exercise,1989,21(3):343.
    [68] Meijer, G. A., K. R. Westerterp, H. Koper, et al. Assessment of energy expenditure by recordingheart rate and body acceleration[J]. Medicine&Science in Sports&Exercise,1989,21(3):343-347.
    [69] Menz, H. B., S. R. Lord.R. C. Fitzpatrick. Acceleration patterns of the head and pelvis whenwalking are associated with risk of falling in community-dwelling older people[J]. The JournalsOf Gerontology. Series A, Biological Sciences And Medical Sciences,2003,58(5): M446-M452.
    [70] Menz, H. B., S. R. Lord.R. C. Fitzpatrick. Acceleration patterns of the head and pelvis whenwalking on level and irregular surfaces[J]. Gait and Posture,2003,18(1):35-46.
    [71] Mercer, J. A., P. Devita, T. R. Derrick, et al. Individual effects of stride length and frequency onshock attenuation during running./Effets individuels de la longueur et de la frequence des fouleessur l ' amortissement des chocs lors de la course[J]. Medicine&Science in Sports&Exercise,2003,35(2):307-313.
    [72] Meyer, T., J. P. Welter, J. Scharhag, et al. Maximal oxygen uptake during field running does notexceed that measured during treadmill exercise[J]. European Journal of Applied Physiology,2003,88(4-5):387-389.
    [73] Mills, P. M..R. S. Barrett. Swing phase mechanics of healthy young and elderly men[J]. HumanMovement Science,2001,20(4/5):427-446.
    [74] Mizrahi, J., O. Verbitsky.E. Isakov. Shock accelerations and attenuation in downhill and levelrunning[J]. Clinical Biomechanics (Bristol, Avon),2000,15(1):15-20.
    [75] Mizrahi, J., O. Verbitsky, E. Isakov, et al. Effect of fatigue on leg kinematics and impactacceleration in long distance running./effets de la fatigue sur la cinematique de la jambe et sur l 'impact lors de l ' acceleration en course d ' endurance[J]. Human Movement Science,2000,19(2):139-151.
    [76] Mizuike, C., S. Ohgi.S. Morita. Analysis of stroke patient walking dynamics using a tri-axialaccelerometer[J]. Gait and Posture,2009,30(1):60-64.
    [77] Moe-Nilssen, R. A new method for evaluating motor control in gait under real-life environmentalconditions. Part1: The instrument[J]. Clinical Biomechanics,1998,13(4-5):320-327.
    [78] Moe-Nilssen, R. A new method for evaluating motor control in gait under real-life environmentalconditions. Part2: Gait analysis[J]. Clinical Biomechanics,1998,13(4-5):328-335.
    [79] Moe-Nilssen, R. Test-retest reliability of trunk accelerometry during standing and walking[J].Archives of Physical Medicine and Rehabilitation,1998,79(11):1377-1385.
    [80] Moe-Nilssen, R..J. L. Helbostad. Interstride trunk acceleration variability but not step widthvariability can differentiate between fit and frail older adults[J]. Gait and Posture,2005,21(2):164-170.
    [81] Motl, R. W., E. McAuley, E. M. Snook, et al. Validity of physical activity measures in ambulatoryindividuals with multiple sclerosis[J]. Disability and Rehabilitation,2006,28(18):1151-1156.
    [82] Nakazawa, K., N. Kawashima, H. Obata, et al. Facilitation of both stretch reflex and corticospinalpathways of the tibialis anterior muscle during standing in humans[J]. Neuroscience Letters,2003,338(1):53-56.
    [83] Nigg, B. M., R. W. De Boer.V. Fisher. A kinematic comparison of overground and treadmillrunning[J]. Medicine&Science in Sports&Exercise,1995,27(1):98-105.
    [84] Nilsson, J..A. Thorstensson. Ground reaction forces at different speeds of human walking andrunning[J]. Acta Physiologica Scandinavica,1989,136(2):217-227.
    [85] Nymark, J. R., S. J. Balmer, E. H. Melis, et al. Electromyographic and kinematic nondisabled gaitdifferences at extremely slow overground and treadmill walking speeds[J]. Journal ofRehabilitation Research and Development,2005,42(4):523-534.
    [86] Owings, T. M..M. D. Grabiner. Measuring step kinematic variability on an instrumented treadmill:how many steps are enough?[J]. Journal of Biomechanics,2003,36(8):1215-1218.
    [87] Paolini, G., U. Della Croce, P. O. Riley, et al. Testing of a tri-instrumented-treadmill unit forkinetic analysis of locomotion tasks in static and dynamic loading conditions[J]. MedicalEngineering&Physics,2007,29(3):404-411.
    [88] Parvataneni, K., L. Ploeg, S. J. Olney, et al. Kinematic, kinetic and metabolic parameters oftreadmill versus overground walking in healthy older adults[J]. Clinical Biomechanics,2009,24(1):95-100.
    [89] Petersen, N. T., H. S. Pyndt.J. B. Nielsen. Investigating human motor control by transcranialmagnetic stimulation[J]. Experimental Brain Research,2003,152(1):1-16.
    [90] Pfau, T., T. Witte.A. Wilson. A method for deriving displacement data during cyclical movementusing an inertial sensor[J]. Journal of Experimental Biology,2005,208(13):2503.
    [91] Pols, M. A., P. H. M. Peeters, H. C. G. Kemper, et al. Methodological aspects of physical activityassessment in epidemiological studies[J]. European Journal of Epidemiology,1998,14(1):63-70.
    [92] Pozzo, T., A. Berthoz, L. Lefort, et al. Head stabilization during various locomotor tasks inhumans. II. Patients with bilateral peripheral vestibular deficits[J]. Experimental Brain Research.Experimentelle Hirnforschung. Expérimentation Cérébrale,1991,85(1):208-217.
    [93] Prill, T..J. Fahrenberg. Simultaneous assessment of posture and limb movements (e.g., periodic legmovements) with calibrated multiple accelerometry[J]. Physiological Measurement,2006,27(10):N47-N53.
    [94] Ranu, H. S. Miniature load cells for the measurement of foot-ground reaction forces and centre offoot pressure during gait[J]. Journal of Biomedical Engineering,1986,8(2):175-177.
    [95] Riley, P. O., G. Paolini, U. Della Croce, et al. A kinematic and kinetic comparison of overgroundand treadmill walking in healthy subjects[J]. Gait and Posture,2007,26(1):17-24.
    [96] Rosenblatt, N. J..M. D. Grabiner. Measures of frontal plane stability during treadmill andoverground walking[J]. Gait and Posture,2010,31(3):380-384.
    [97] Rostedt, M., H. Broman.T. Hansson. Resonant frequency of a pin-accelerometer system mountedin bone[J]. Journal of Biomechanics,1995,28(5):625-629.
    [98] Sasaki, K..R. R. Neptune. Differences in muscle function during walking and running at the samespeed[J]. Journal of Biomechanics,2006,39(11):2005-2013.
    [99] Schache, A. G., P. D. Blanch, D. A. Rath, et al. A comparison of overground and treadmill runningfor measuring the three-dimensional kinematics of the lumbo-pelvic-hip complex[J]. ClinicalBiomechanics,2001,16(8):667-680.
    [100] Schellenbach, M., M. L vdén, J. Verrel, et al. Adult age differences in familiarization to treadmillwalking within virtual environments[J]. Gait and Posture,2010,31(3):295-299.
    [101] Schutz, Y..P. Deurenberg. Energy metabolism: overview of recent methods used in humanstudies[J]. Annals of Nutrition and Metabolism,1996,40(4):183-193.
    [102] Schutz, Y., R. L. Weinsier.G. R. Hunter. Assessment of free-living physical activity in humans: anoverview of currently available and proposed new measures[J]. Obesity,2001,9(6):368-379.
    [103] Schutz, Y., S. Weinsier, P. Terrier, et al. A new accelerometric method to assess the daily walkingpractice[J]. International Journal of Obesity and Related Metabolic Disorders,2002,26(1):111.
    [104] Schwartz, M. H., S. E. Koop, J. L. Bourke, et al. A nondimensional normalization scheme foroxygen utilization data[J]. Gait and Posture,2006,24(1):14-22.
    [105] Sekine, M., M. Akay, T. Tamura, et al. Investigating body motion patterns in patients withParkinson's disease using matching pursuit algorithm[J]. Medical&Biological Engineering&Computing,2004,42(1):30-36.
    [106] Sekiya, N..H. Nagasaki. Reproducibility of the walking patterns of normal young adults:test-retest reliability of the walk ratio(step-length/step-rate)[J]. Gait and Posture,1998,7(3):225-227.
    [107] Selles, R. W., M. A. G. Formanoy, J. B. J. Bussmann, et al. Automated estimation of initial andterminal contact timing using accelerometers; development and validation in transtibial amputeesand controls[J]. IEEE Transactions On Neural Systems And Rehabilitation Engineering: APublication Of The IEEE Engineering In Medicine And Biology Society,2005,13(1):81-88.
    [108] Senden, R., B. Grimm, I. C. Heyligers, et al. Acceleration-based gait test for healthy subjects:Reliability and reference data[J]. Gait and Posture,2009,30(2):192-196.
    [109] Simcox, S., S. Parker, G. M. Davis, et al. Performance of orientation sensors for use with afunctional electrical stimulation mobility system[J]. Journal of Biomechanics,2005,38(5):1185-1190.
    [110] Sinha, J. K. On standardisation of calibration procedure for accelerometer[J]. Journal of Soundand Vibration,2005,286(1-2):417-427.
    [111] Stolze, H., J. P. Kuhtz-Buschbeck, C. Mondwurf, et al. Gait analysis during treadmill andoverground locomotion in children and adults[J]. Electroencephalography and ClinicalNeurophysiology,1997,105(6):490-497.
    [112] Stoquart, G., C. Detrembleur.T. Lejeune. Effect of speed on kinematic, kinetic, electromyographicand energetic reference values during treadmill walking[J]. Clinical Neurophysiology,2008,38(2):105-116.
    [113] Sutherland, D., R. Olshen, E. Biden, et al. The development of mature walking[M]. CambridgeUniversity Press,1988,
    [114] Terrier, P., K. Aminian.Y. Schutz. Can accelerometry accurately predict the energy cost ofuphill/downhill walking?[J]. Ergonomics,2001,44(1):48-62.
    [115] Traballesi, M., P. Porcacchia, T. Averna, et al. Energy cost of walking measurements in subjectswith lower limb amputations: A comparison study between floor and treadmill test[J]. Gait andPosture,2008,27(1):70-75.
    [116] Tulchin, K., M. Orendurff, S. Adolfsen, et al. The Effects of Walking Speed on MultisegmentFoot Kinematics in Adults[J]. Journal of Applied Biomechanics,2009,25(4):377-386.
    [117] Tulchin, K., M. Orendurff.L. Karol. A comparison of multi-segment foot kinematics during leveloverground and treadmill walking[J]. Gait and Posture,2010,31(1):104-108.
    [118] Vallis, L. A., A. E. Patla.A. L. Adkin. Control of steering in the presence of unexpected head yawmovements. Influence on sequencing of subtasks[J]. Experimental Brain Research,2001,138(1):128.
    [119] van den Bogert, A. J., L. Read.B. M. Nigg. A method for inverse dynamic analysis usingaccelerometry[J]. Journal of Biomechanics,1996,29(7):949-954.
    [120] Veltink, P., H. Bussmann, W. De Vries, et al. Detection of static and dynamic activities usinguniaxial accelerometers[J]. Rehabilitation Engineering, IEEE Transactions on,1996,4(4):375-385.
    [121] Vogt, L., K. Pfeifer.W. Banzer. Comparison of angular lumbar spine and pelvis kinematics duringtreadmill and overground locomotion[J]. Clinical Biomechanics,2002,17(2):162-165.
    [122] Voloshin, A..J. Wosk. An in vivo study of low back pain and shock absorption in the humanlocomotor system[J]. Journal of Biomechanics,1982,15(1):21-27.
    [123] Walker, J. L., T. D. Murray, A. S. Jackson, et al. The energy cost of horizontal walking andrunning in adolescents[J]. Medicine&Science in Sports&Exercise,1999,31(2):311-322.
    [124] Warabi, T., M. Kato, K. Kiriyama, et al. Analysis of human locomotion by recording sole-floorreaction forces from anatomically discrete points[J]. Neuroscience Research,2004,50(4):419-426.
    [125] Warabi, T., M. Kato, K. Kiriyama, et al. Treadmill walking and overground walking of humansubjects compared by recording sole-floor reaction force[J]. Neuroscience Research,2005,53(3):343-348.
    [126] Wass, E., N. F. Taylor.A. Matsas. Familiarisation to treadmill walking in unimpaired olderpeople[J]. Gait and Posture,2005,21(1):72-79.
    [127] Waters, R. L., B. R. Lunsford, J. Perry, et al. Energy-speed relationship of walking: Standardtables[J]. Journal of Orthopaedic Research,1988,6(2):215-222.
    [128] Waters, R. L..S. Mulroy. The energy expenditure of normal and pathologic gait[J]. Gait andPosture,1999,9(3):207-231.
    [129] Watt, J. R., J. R. Franz, K. Jackson, et al. A three-dimensional kinematic and kinetic comparisonof overground and treadmill walking in healthy elderly subjects[J]. Clinical Biomechanics,2010,25(5):444-449.
    [130] Weyand, P. G., D. B. Sternlight, M. J. Bellizzi, et al. Faster top running speeds are achieved withgreater ground forces not more rapid leg movements[J]. Journal of Applied Physiology,2000,89(5):1991-1999.
    [131] Wheelwright, E., R. Minns, H. Law, et al. Temporal and spatial parameters of gait in children. I:Normal control data[J]. Developmental Medicine and Child Neurology,1993,35(2):102-113.
    [132] White, R., I. Agouris, R. Selbie, et al. The variability of force platform data in normal andcerebral palsy gait[J]. Clinical Biomechanics,1999,14(3):185-192.
    [133] Willemsen, A. T., J. A. van Alsté.H. B. Boom. Real-time gait assessment utilizing a new way ofaccelerometry[J]. Journal of Biomechanics,1990,23(8):859-863.
    [134] Winter, D. A..A. E. Patla. Signal processing and linear systems for the movement sciences[M].Waterloo Biomechanics,1997,
    [135] Zeni, J. A..J. S. Higginson. Gait parameters and stride-to-stride variability during familiarizationto walking on a split-belt treadmill[J]. Clinical Biomechanics,2010,25(4):383-386.
    [136] Zijlstra, W..A. L. Hof. Assessment of spatio-temporal gait parameters from trunk accelerationsduring human walking[J]. Gait and Posture,2003,18(2):1.
    [137]江崇民,邱淑敏,王欢,等.平板运动跑台和场地环境测试走、跑运动能量消耗的比较研究[J].体育科学,2011,(07):30-36.
    [138]傅维杰,刘宇,熊晓洁,等.外加弹性紧身装置对田径运动员下肢肌力、疲劳与肌肉活动的影响[J].中国运动医学杂志,2010,29(6):631-635.
    [139]戴剑松,孙飙.沈洪兵.加速度传感器测量体力活动的应用综述[J].中国运动医学杂志,2009,(06):720-727.
    [140]刘宇.傅维杰.冲击力与软组织振动-运动损伤机制的新认识[J].体育科学,2009,(03):95-96.
    [141]刘宇,彭千华.田石榴.老年人肌力流失与肌肉疲劳的肌动图研究[J].体育科学,2007,(05):
    [142]张强,施凤英.刘建新.随机参数结构频率响应函数的分析[J].振动与冲击,2006,25(2):64-66+184-185.
    [143]汤强,盛蕾.朱卫红.体力活动研究中加速度计的应用[J].体育科学,2009,(01):77-84+91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700