用户名: 密码: 验证码:
容积卡尔曼滤波算法研究及其在导航中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的发展,人们对导航精度的要求越来越高,而非线性滤波算法能为提高导航精度提供有力的基础,因此得到了广泛的关注和研究。容积卡尔曼滤波(CubatureKalman Filter,CKF)是近年来新兴起来的一种具有优越性能的非线性滤波算法,该算法结构简单,估计精度高,数值稳定性好,克服了其它非线性滤波算法存在的一些问题,因此正成为非线性滤波算法中的研究热点,本文对CKF算法进行了相应研究,所做的主要工作有:
     (1)针对多源信息融合等技术中经常出现的噪声相关非线性系统,基于最小方差估计准则提出了两种噪声相关非线性高斯滤波公式:基于模型变换的噪声相关非线性高斯滤波公式和基于一步预测递推的噪声相关非线性高斯滤波公式,并通过更新新息定理证明了二者的等价性,再利用三阶球面-相径容积规则近似其中高斯积分,进而提出两种等价的噪声相关CKF算法。
     (2)常规确定采样型滤波算法随着处理非线性系统维数增高,采样点个数增多,滤波计算量也相应增大,因此针对一类非线性高斯系统,证明了其状态的后验均值和协方差为导致该系统非线性的部分向量的高斯积分,并求得了积分表达式,再用三阶球面-相径容积规则近似其中高斯积分,提出降维CKF算法,从而在不损失滤波精度的情况下,减少滤波过程中采样点个数,降低计算量,并对降维滤波算法做了进一步探讨,指出将该思想拓展到GHF算法更加具有现实意义。
     (3)分析了强跟踪滤波算法(STF)的运行机理,指出由于对量测一步预测协方差阵近似不够准确,使得STF算法以较大概率产生渐消因子,导致对滤波增益过调节,最终产生对状态估计不够平滑,需要凭经验加入弱化因子来解决这一问题,为此提出了改进的强跟踪滤波算法,避免了靠经验选取弱化因子的麻烦。同时推导并推导了统一的非线性系统强跟踪滤波算法递推公式,只需要用不同的策略近似其中的高斯积分,便可得到不同的非线性强跟踪滤波算法。再利用三阶球面-相径容积规则近似高斯积分,进而提出了强跟踪CKF算法,并针对一类特殊非线性系统,提出了估计效果更佳的多渐消因子CKF算法,该算法能产生多个渐消因子,以不同的速率对各数据通道渐消,从而达到更好的估计效果。
     (4)提出将降维CKF算法应用于SINS大方位失准角初始对准,以降低滤波过程中计算量;提出将多渐消因子CKF算法应用于噪声统计不准确的SINS大方位失准角初始对准,以提高滤波估计精度;提出将多渐消因子CKF算法应用于具有惯性器件突变的SINS/GPS组合导航,以提高导航精度。
With the development of modern science and technology, the requirement of navigationaccuracy is forward to higher, and nonlinear filtering algorithm can provide a strongfoundation to improve the navigation accuracy, which gets a lot of attention and research.Cubature Kalman Filter(CKF) is a kind of superior nonlinear filtering algorithm rising inrecent years, which has simple structure, high estimation accuracy, good numerical stability,and overcomes some problems existed in other nonlinear filtering algorithms, thus it isbecoming popular research in nonlinear filtering algorithm. In this paper, CKF algorithm isstudied, the main work is as follows.
     1) According to the nonlinear system with correlative noises appeared in multiple sourceinformation confusion technology, two nonlinear Gaussian filterings with correlative noisesare proposed: nonlinear Gaussian filtering with correlative noises based on modeltransformation and nonlinear Gaussian filtering with correlative noises based on one-stepprediction recursion, then the equivalence between them is proved by updating innovationtheorem. At last the third Spherical-Radial Cubature rule is used to approximate Gaussianintegral, and two equivalent CKF algorithm with correlative noises is obtained.
     2) When conventional deterministic sampling filtering algorithms process highdimension nonlinear system, the sampling points increase, and the calculation amoutincreases correspondingly. According to this problem, it is proved that the posterior mean andvariance of the state is multiple Gaussian integral of its component vector, and the integralformula is obtained. Then the third Spherical-Radial Cubature rule is used to approximatemultiple Gaussian integral, the reduced dimension CKF algorithm is proposed, which reducesthe samping points, so as to the calculation amount. At last, further discussion is carried out,and it is pointed that it will be more meaningful if this idea is extended to GHF.
     3) The running mechanism of Strong Tracking Filtering (STF) is discussed, it is pointedthat owing to inaccurate approximation of the covariance of measurement one-step prediction,STF produces fading factor with high probability, leads to excessive regulation for filteringgain, and eventually makes the state estimation lack smoothness, while sofenting factor isintroduced by experience to realease this problem. According to this disadvantage, animproved STF is proposed, which can advoid this problem. Then a unified nonlinear systemstrong tracking filtering recursive formula is proposed, and different nonlinear system STFalgorithem can be derived by different approximation strategy to the Gaussian integral, then the third Spherical-Radial Cubature rule is used to approximate the Gaussian integral, andStrong Tracking CKF algorithm is derived, meanwhile, according to a class of specialnonlinear system, multiple fading factors CKF algorithm with better performance is proposed,which can generate multiple fading factors, and fades the data channel with different rates, soas to achieve better estimation result.4) Reduced dimension CKF is ultilized to SINS alignment with large azimuth misalignmentangle to reduced the calculation amout, and multiple fading factors CKF is ultilized to SINSalignment with large azimuth misalignment angle with inaccuraten oise statistics to improveestimation accuracy, at last, multiple fading factors CKF is ultilized to SINS/GPS ingegratednavigation with inertial instrument sudden change to improve navigation accuracy.
引文
[1]楼森岳,唐晓艳.非线性数学物理方法[M].北京:科学出版社,2006.
    [2]余季方.非线性哲学漫谈[M].香港:香港新大陆出版社有限公司,2010.
    [3]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
    [4] Y. F. Wang, F. C. Sun, Y. A. Zhang, et al. Central Difference Particle Filter Applied toTransfer Alignment for SINS on Missiles[J]. IEEE Transactions on Aerospace andElectronic Systems,2012,48(1):375-387P.
    [5] D. J. Allerton, H. M. Jia. Redundant Multi-Mode Filter for a Navigation System[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):371-391P.
    [6] H. Liu, S. Nassar, E. S. Naser. Two-Filter Smoothing for Accurate INS/GPSLand-Vehicle Navigation in Urban Centers[J]. IEEE Transactions on VehicularTechnology,2010,59(9):4256-4267P.
    [7] J. Georgy, A. Noureldin, M. J. Korenberg, et al. Low-Cost Three-DimensionalNavigation Solution for RISS/GPS Integration Using Mixture Particle Filter[J]. IEEETransactions on Vehicular Technology,2010,59(2):599-615P.
    [8]陈永冰,钟斌.惯性导航原理[M].北京:国防工业出版社,2007.
    [9]秦永元.惯性导航[M].北京:科学出版社,2005.
    [10] V. J. Aidala, S. E. Hammel. Utilization of modified polar coordinates forbearings-only tracking[J]. IEEE Transaction on Automatic Control,1983,28(3):283-294P.
    [11] D. V. Stallard. Angle-only tracking filter in modified spherical coordinates[J]. Journalof Guidance, Control, and Dynamics,1991,14(3):694-696P.
    [12] M. B, X. G. Zhao, Z. G. Hou, et al. Application of an adaptive extended kalman filterin SINS/GPS integrated navigation system[C]//7th Intelligent Control andAutomation,2008,2707-2712P.
    [13] P. Gurfil, N. J. Kasdin. Optimal passive and Active target tracking using the two-stepestimator[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit,Monterey, California,2002,1-8P.
    [14] N. Gordon, D. Salmond, C. Ewing. Baysesian state estimation for tracking andguidance using the boot strap filter[J]. Journal of Guidance, Control, and Dynamics,1995,18(6):1434-1443P.
    [15] B. Friedland. Optimum steady-state position and velovity estimation using noisysampled position data[J]. IEEE Transaction on Aerospace and Electronic Systems,1973,9(6):906-111P.
    [16] R. A. Signger. Estimating optimal tracking filter performance for mannedmaneuvering targets[J]. IEEE Trans. on Aerospace and Electromic Systems,1970,6(7):473-483P.
    [17] R. L. Moose. An adaptive state estimation solution to the maneuvering target problem[J]. IEEE Transactions on Automatic Control,1975,20(6):359-362P.
    [18] H. Zhuo, K. S. P. A. Kumar.“current” statistical model and adaptive algorithm forestimating maneuvering targets [J]. AIAA Journal of Guidance,1984,7(5):596-602P.
    [19] H. H. Chen, S. Shahram, B. G. Alex. Filter-and-Forward Distributed Beamforming forTwo-Way Relay Networks with Frequency Selective Channels[J]. IEEE Transactionson Signal Processing,2012,60(4):1927-1941P.
    [20] W. Fong, S. J. Godsill, A. Doucet, et al. Monte Carlo smoothing with application toaudio signal enhancement[J]. IEEE Transaction on Signal Processing,2002,50(2):438-449P.
    [21] S. Albin and J. Andreas. Adaptive detection of a partly known signal corrupted bystrong interference[J]. IEEE Signal Processing Letters,2011,18(12):729-732P.
    [22] A. Davide, A. Yiannis. Throughput-distortion computation of generic matrixmultiplication: toward a computation channel for digital signal processing systems[J].IEEE Transaction on signal processing,2012,60(4):2024-2037P.
    [23] J. L. Crassidis, F. L. Markley. Unscented filtering for spacecraft attitude estimation[J].Journal of Guidance Control and Dynamics,2003,26(4):536-542P.
    [24] B. Jia, M. Xin, Y. Cheng. Sparse Gauss-Hermite Quadrature Filter with application toSpacecraft Attitude Estimation[J]. Journal of Guidance Control and Dynamics,2011,34(2):367-379P.
    [25] M. Abdelrahman, S. Y. Park. Sigma-Point Kalam Filtering for Spacecraft Attitude andRate Estimation using Magnetometer Measurements[J]. IEEE Transactions onAerospace and Electronic Systems,2011,47(2):1401-1415P.
    [26] A. Farina, B. Ristic, D. Benvenuti. Tracking a ballistic target: Comparison of severalnonlinear filters[J]. IEEE Transactions on Aerospace and Electronic Systms,2002,38(3):854-867P.
    [27] B. Ristic, A. Farina, D. Benvenuti, et al. Performance bounds and comparison ofnonlinear filters for tracking a ballistic object on reentry[J]. IEEE Proceedings RadarSonar and Navigation,2003,150(2):65-70P.
    [28] M. Lei, J. v. W. Barend, Y. Qi. Online Estimation of the Approximation PosteriorCramer-Rao Lower Bound for Discrete-Time Nonlinear Filtering[J]. IEEETransactions on Aerospace and Electronic Systems,2011,47(1):37-57P.
    [29] J. Kim, S. S. Vaddi, P. K. Menon, et al. Comparison Between Nonlinear FilteringTechniques for Spiraling Ballistic Missile State Estimation[J]. IEEE Transactions onAerospace and Electronic Systems,2012,48(1):313-328P.
    [30] R. E. Kalman. A new approach to linear filtering and prediction theory[J]. Journal ofBasic Engineering,1960,82(4):35-46P.
    [31] R. E. Kalman, R. S. Bucy. New results in linear filtering and prediction theory[J].Journal of Basic Engineering,1961,83(D):95-108P.
    [32] M. Athans, R. P. Wishner, A. Bertolini. Suboptimal state estimation for continuoustime nonlinear systems from discrete noisy measurements[J]. IEEE Transactions onAutomatic Control,1968,13:504-514P.
    [33] H. Tanizaki, R. S. Mariano. Nonlinear filters based on Taylor series expansion[J]Commu. Statist, Theory and Methods.1996,25(6):1261-1282P.
    [34] K. Ito, K. Q. Xiong. Gaussian filters for nonlinear filtering problems[J]. IEEETranscations on Automatic Control,2000,45(5):910-927P.
    [35] S. J. Julier, J. K. Uhlman. A new extension of the Kalman filter to nonlinear systems[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers,1997,3068:182-193P.
    [36] S. J. Julier. A skewed approach to filtering[C]//The12th International Symposium onAerospace Defense Sensing, Simulation and Controls: SPIE,1998,271-282P.
    [37] S. J. Julier, J. K. Uhlman, H. F. Durrant-Whyte. A new method for the nonlineartransformation of means and covariances in filters and estimators[J]. IEEETransactions on Automatic Control,2000,45(3):477-482P.
    [38] S. J. Julier, J. K. Uhlman. The scaled Unscented transformation[C]//Proceedings ofAmerican Control,2002,4555-4559P.
    [39] M. NΦ rgaard, N. Poulsen, O. Ravn. New developments in state estimation fornonlinear system[J]. Automatica,2000,36(11):1627-1638P.
    [40] A. F. M. Smith, A. E. Geland. Bayesian Statistics without tears: a sampling-resampling perspective[J]. The American Statistican,1992,46(2):84-88P.
    [41] N. J. Gordon, D. J. Salmond, A. F. Smith. Novel approach to nonlinear/non-GaussianBayesian state estimation[C]//IEEE Proceeding-F,1993,140(2):107-113P.
    [42] I. Arasaratnam, S. Haykin. Cubature Kalman Filters[J]. IEEE Transactions onAutomatic Control,2009,54(6):1254-1269P.
    [43] I. Arasaratnam, S. Haykin, R. H. Thomas. Cubature Kalman Filtering forContinuous-Discrete Systms: Theory and Simulations[J]. IEEE Transactions on SignalProcessing,2010,58(10):4977-4993P.
    [44] K. Pakki, B. Chandra, D. W. Gu, et al. Cubature Information Filter and itsApplications[C]//2011American Control Conference,2011,3609-3614P.
    [45] A. Dhital, P. Closas, F. P. Carles. Bayesian filtering for indoor localization andtracking in wireless sensor networks[J]. EURASIP Journal on WirelessCommunications and Networking2012,1-13P.
    [46] J. Liu, T. Tang, B. G. Gai, et al. Integrity assurance of GNSS-based train integratedpositioning system[J]. Science China (Technological Sciences),2011,54(7):1779-1792P.
    [47]张爱军.水下潜器组合导航定位及数据融合技术研究[D].南京理工大学博士学位论文,2009.
    [48]马健,李建文,杨掌印.卡尔曼滤波噪声相关时的改进算法[J].弹箭与制导学报,2006,26(1):665-669P.
    [49] W. B. Li, Q. B. Ge. UKF-STF tracking with correlated noises for the nonlinearsystem[C]//Proceedings of the8th World Congress on Intelligent Control andAutomation, Jinan, China,2010:3466-3471P.
    [50] D. Crisan. Particle Filters-A Theoretical Perspective: In Sequential Monte CarloMethods in Practice[J]. Springer-Verlag,2001:17-42P.
    [51] D. Crisan, P. Del. Moral, T. Lyons. Discrete Filtering Using Braching and InteractingParticle Systems[J]. Markov Processes and Related Fields,1999,5(3):293-318P.
    [52] P. D. Moral, J. Jacod. Interacting Particle Filtering with Observations: In SequentialMonte Carlo Methods in Practice[J]. Springer-Verlag,2001:43-75P.
    [53]文成林,周东华.多尺度估计理论及应用[M].北京:清华大学出版社,2002.
    [54]王小旭.非线性SPKF滤波算法研究及其在组合导航中的应用[D].哈尔滨工程大学博士学位论文,2010.
    [55]张树侠,孙静.捷联式惯性导航系统[M].北京:国防工业出版社,1992.
    [56]陈哲.捷联惯导系统原理[M].北京:宇航出版社,1986.
    [57]党亚民,秘金钟,成英燕.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007.
    [58]赵琳,丁继成,马雪飞.卫星导航原理及应用[M].西安:西北工业大学出版社,2011.
    [59] T. Kailath. A review of three decades of linear filtering theory[J]. IEEE Transactionson Automatic Control,1974,20(2):146-181P.
    [60] Z. Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond[M].Hamilton: MeMaster University,2003.
    [61] F. Daum. Nonlinear Filters: Beyond the Kalman Filter[J]. IEEE Aerospace andElectronic Systems,2005,20(8):57-69P.
    [62] H. Leung, Z. W. Zhu. Performance evaluation of EKF-based chaoticsynchronization[J]. IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications,2001,48(9):1118-1125P.
    [63] A. H. Jazwinski. Stochastic Processing and Filtering Theory[M]. New York andLondon: Academic Press,1970.
    [64] B. M. Bell, F. W. Cathey, The iterated Kalman filter update as a Gauss-Newtonmethod[J]. IEEE Transactions on Automatic Control,1993,38(2):294-297P.
    [65] S. Sadhu, S. Mondal, M. Srinivasan, et al. Sigma point Kalman filter for bearing onlytracking[J]. Signal Processing,2006,86:3769-3777P.
    [66] R. Zhan, J. Wan. Iterated unscented Kalman filter for passive target tracking[J]. IEEETransactions on Aerospace and Electronic Systems,2007,43(3):1155-1163P.
    [67] Athans, M. Wishner, R. P. Bertolini, A Suboptimal State Estimation for Continuous-Time Nonlinear Systems for Discrete Noisy Measurements[J]. IEEE Transactions onAutomatic Control,1968,13(5):504-514P.
    [68] A. H. Jazwinski. Filtering for Nonlinaer Dynamical Systems[J]. IEEE Transactions onAutomatic Control,1966,11:765-766P.
    [69] R. Henrikson. The Truncated Second-order Nonlinear Filter Revisited[J]. IEEETransactions on Automatic Control,1982,27:217-251P.
    [70] R. P. Wishner, J. A. Tabaezynski. Comparison of three Nonlinear Filters[J].Automatica,1969:457-496P.
    [71] A. P. Sage, G. W. Husa. Adaptive filtering with unknown prior statistics[C]//Proceedings of Joint Automatic Control, Boulder: CO,1969:760-769P.
    [72] T. Yoshimura, T. A. Sueda. A technique for compensating the filter performance by afictitious noise[J]. IEEE Transactions on Dynamic Systems, Measurement and Control,1978,100(2):154-156P.
    [73]邓自立,王建国.非线性系统的自适应推广的Kalman滤波[J].自动化学报,1987,13(5):375-379P.
    [74] H. W. Sorenson. Comment on ‘A practical non-diverging filter’[J]. AIAA Journal,1971,9:767-768P.
    [75] B. E. Ydstid, T. Co. Recursive estimation with adaptive divergence control[J]. IEEEProceeding Control Theory and Applications,1985,132(3):124-130P.
    [76] H. W. Sorenson, J. E. Sacks. Recursive fading memory filtering[J] InformationSciences,1971,3(2):101-119P.
    [77]张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报,1994,16(3):68-79P.
    [78]周东华,席裕庚,张钟俊.非线性系统带次优渐消因子的扩展卡尔曼滤波[J].控制与决策,1990,5:1-6P.
    [79]周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报,1991,17(6):689-695P.
    [80] T. L. Xu, Q. B. GE, X. L. Feng, et al. Strong Tracking Filter with bandwidth constraintfor sensor networks[C]//IEEE International Conference on Control and Automation,Xiamen, China:2010,596-601P.
    [81] Z. B. Liu, Z. Y. Shi, W. L. Xu. Multi-component information-equalized extendedstrong tracking filter for global localization: A scheme robust to kidnapping andsymmetrical environments[J]. Robotics and Autonmous Systems,2010,58(5):465-487P.
    [82] D. J. Jwo, S. H. Wang. Adaptive Fuzzy Strong Tracking Extended Kalman Filteringfor GPS Navigation[J]. IEEE Sensors Journal,2007,7(5):778-789P.
    [83] S. E. Zhao, Y. L. Li. Multi-sensor information fusion and strong tracking filter forvehicle nonlinear state estimation[C]//IEEE Intelligent Vehicles Symposium, Xi’an,China,2009:747-751P.
    [84] E. A. Wan, R. v. d. Merwe. The unscented Kalman filter[M] In Kalman filtering andNeural Networks, Chapter7, Ed.: Wiley Publishing,2001:221-280P.
    [85] R. v. d. Merwe. Sigma-point Kalman filters for probabilistic inference in dynamicstate-space models[D]. PhD thesis. Oregon Health&Science University,2004.
    [86]武元新.对偶四元数导航算法与非线性高斯滤波研究[D].国防科学技术大学博士学位论文,2005.
    [87]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973P.
    [88]谢阳光,伊国兴,王常虹等.高斯-厄米特滤波器在捷联惯导系统初始对准中的应用[J].航空学报,2011,33(3):554-560P.
    [89] C. Goutam, B. Shovan. Bearing Only Tracking Using Gauss-Hermite Filter[C]//IEEE7th conference on Industrial Electronics and Applications, Singapore,2012:1549-1554P.
    [90]王小旭,潘泉,黄鹤等.非线性系统确定采样型滤波算法综述[J].控制与决策,2012,27(6):801-812P.
    [91]程水英,邹继伟,汤鹏.免微分非线性Bayseian滤波方法评述[J].宇航学报,2009,30(3):843-857P.
    [92] W. Li, H. Leung, Y. Zhou. Space-time registration of radar and ESM using unscentedKalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):824-836P.
    [93] S. J. Julier. Comprehensive process models for high-speed navigation[D]. PhD thesis,University of Oxford,1996.
    [94] S. Clark. Autonomous land vehicle navigation using millimeter wave radar[D]. PhDthesis, University of Sydney,1999.
    [95] Y. Q. Chen, Y. Rui, T. S. Huang. Multicue HMM-UKF for Real-Time ContourTracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9):1525-1529P.
    [96] D. J. Lee. Nonlinear Estimation and Multiple Sensor Fusion Using UnscentedInformation Filtering[J]. IEEE Signal Processing Letters,2008,15:861-864P.
    [97] D. H. Dini, D. P. Mandic, S. J. Julier. A Widely Linear Complex Unscented KalmanFilter[J]. IEEE Signal Processing Letters,2011,18(11):623-626P.
    [98] W. L. Li, Y. M. Jia. Consensus-Based Distributed Multiple Model UKF for JumpMarkov Nonlinear Systems[J]. IEEE Transactions on Automatic Control,2012,57(1):230-236P.
    [99] R. v. d. Merwe, E. A. Wan, S. J. Julier. Sigma-point kalman filters for nonlinearestimation and sensor-fusion: Applications to integrated navigation[C]//AIAAGuidance, Navigation and Control Conference, Providence, RI,2004,1-30P.
    [100]王小旭,赵琳,夏全喜等.基于Unscented变换的强跟踪滤波器[J].控制与决策,2010,25(7):1063-1068P.
    [101]王小旭,赵琳,薛红香.强跟踪CDKF及其在组合导航中的应用[J].控制与决策,2010,25(10):1837-1842P.
    [102] X. D. Wang, B. Y. Xu, S. B. Zhong. Passive Location of Angle Sensors Using ExtendSquare-Root Cubature Kalman Filter[J]. Applied Mechanics and Materials (ElectricalInformation and Mechatronics and Applications),2011,143-144:577-581P.
    [103] C. Y. Sheng, J. Zhao, Y. Liu, et al. Prediction for noisy nonlinear time series by echostate network based on dual estimation[J]. Neurocomputing,2012,82:186–195P.
    [104] C. Li, Q. B. Ge. SCKF for Mav Attitude Estimation[C]//Proceedings of the2011International Conference on Machine Learning and Cybernetics,2011,1313-1318P.
    [105] W. L. Li, Y. M. Jia. Location of Mobile Station with Maneuvers Using an IMM-BasedCubature Kalman Filter[J]. IEEE Transactions on Industrial Electronics,2012,59(11):4338-4348P.
    [106] F. Sun, L. J. Tang. Augmented and Non-augmented Cubature Kalman Filter[J].Journal of Information and Computational Science,2012,9(2):437-450P.
    [107] K. Pakki, B. Chandra, D. W. Gu. Cubature Inforamtion Filter and its Applications[C]//Proceeding of the2011American Control Conference,2011:3609-3614P.
    [108]孙枫,唐李军. Cubature卡尔曼滤波与Unscented卡尔曼滤波估计精度比较[J].控制与决策,2013,28(2):303-308P.
    [109] H. Pesonen, R. Piche. Cubature-based Kalman Filter for positioning[C]//Proceedingof the7th Workshop on Positioning, Navigation and Communication,2010:45-49P.
    [110]穆静,蔡远利.迭代容积卡尔曼滤波算法及其应用[J].系统工程与电子技术,2011,33(7):1454-1457P.
    [111] J. M. Hammersley, K. W. Morton Poor Man’s Monte Carlo[J]. Royal StatisticalSociety B,1954,16:23-38P.
    [112] M. N. Rosenbluth, A. W. Rosenbluth. Monte Carlo calculation of the averageextension of molecular chains[J]. Chemical Physics,1955,23:356-359P.
    [113] H. Akashi, H. Kumamoto. Construction of discrete-time nonlinear filter by MonteCarlo methods with variance-reducing techniques[J]. Systems and Control,1975,19:211-221P.
    [114] V. S. Zaritskii, V. B. Svetnik, L. I. Shimelevich. Monte Carlo technique in problems ofoptimal data processing[J]. Automation and Remote Control,1975,12:95-103P.
    [115] J. E. Handschin. Monte Carlo techniques for prediction and filtering of non-linearstochastic processes[J]. Automatica,1970,6:555-563P.
    [116] J. E. Handschin, D. Q. Mayne. Monte Carlo techniques to estimate the conditionalexpectation in multi-stage non-linear filtering[J]. International Journal of Control,1969,9:547-559P.
    [117]王婷婷,郭圣权.粒子滤波算法综述[J].仪表技术,2009,6(3):64-66P.
    [118]莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272P.
    [119]杜正聪,唐斌,李可.混合退火粒子滤波器[J].物理学报,2006,55(3):999-1003P.
    [120]方正,徐国峰,徐心和.基于粒子群优化的粒子滤波定位方法[J].控制理论与应用,2008,23(3):533-537P.
    [121]邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):12-16P.
    [122] R. v. d. Merwe, A. Doucet, N. d. Freitas, et al. The Unscented Particle Filter[C]//Technical Report, CUED/F-INFENG/TR380, Oregon Graduate Institute, USA,2000,1-46P.
    [123]孙枫,唐李军. Cubature粒子滤波[J].系统工程与电子技术,2011,33(11):2554-2557P.
    [124] G. Casella, C. P. Robert. Rao-Blackwellisation of sampling schemes[J]. Biometrika,1996,83(1):81-94P.
    [125] C. Andrieu, A. Doucet. Particle filtering for partially observed Gaussian state spacemodels[J]. Journal of the Royal Statistical Society B,2002,64(4):827-836P.
    [126] Z. Khan, T. Balch, F. Dellaert. A Rao-Blackwellized particle filter for EigenTracking[C]//Proceedings of the2004IEEE Computer Society Conference onComputer Vision and Pattern Recognition,2004,2:980-986P.
    [127] D. Fox. Adapting the sample size in particle filters through KLD-sampling[J]. TheInternational Journal of Robotics Research.2003,22:985-1003P.
    [128] J. H. Kotecha, P. A. Djuric. Gaussian particle filtering[J]. IEEE Transactions on SignalProcessing,2003,51(10):2592-2601P.
    [129]赵琳,王小旭,丁继成等.组合导航系统非线性滤波算法综述[J].中国惯性技术学报,2009,17(1):46-58P.
    [130]陈兵舫,张育林,杨乐平.惯性导航系统初始对准研究综述[J].导航,2000,2:49-57P.
    [131]杨亚非,谭久彬,邓正隆.惯导系统初始对准技术综述[J].中国惯性技术学报,2002,10(2):13-17P.
    [132]洪慧慧,李杰,马幸等.捷联惯导系统初始对准技术综述[J].测试技术学报,2007,21(Supp):149-153P.
    [133] P. Dmitriyev, O. A. Stepanov, S. V. Shepel. Nonlinear Filtering Methods Applicationin INS Alignment[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):260-271P.
    [134] M. J. Yu, J. G. Lee, H. W. Park. Comparison of SDINS in flight Alignment usingEquivalent Error Models[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):1046-1054P.
    [135]陈兵舫,张育林,杨乐平. H∞鲁棒滤波在惯导初始对准中的应用[J].中国惯性技术学报,2000,8(4):58-62P.
    [136]王丹力,张洪钺.惯导系统初始对准的非线性滤波算法[J].中国惯性技术学报,1999,73(3):17-21P.
    [137]李涛.非线性滤波方法在导航中的应用研究[D].国防科学技术大学博士学位论文,2003.
    [138]龙瑞,秦永元,夏家和. CDKF在捷联惯导系统大失准角初始对准中的应用[J].西北工业大学学报,2010,28(3):364-368P.
    [139]孙枫,唐李军.基于CKF的SINS大方位失准角初始对准[J].仪器仪表学报,2012,33(2):327-333P.
    [140]熊凯,张洪钺.粒子滤波在惯导系统非线性对准中的应用[J].中国惯性技术学报,2003,11(6):20-26P.
    [141]王志刚,陈良友,边少锋. EPF算法在惯导非线性初始对准中的应用[J].中国惯性技术学报,2007,15(2):164-167P.
    [142]丁杨斌,申功勋. Unscented粒子滤波在静基座捷联惯导系统大方位失准角初始对准中的应用研究[J].宇航学报,2007,28(2):397-401P.
    [143]张召友,郝燕玲,张鑫. Sigma点Kalman滤波在惯性导航初始对准中的性能评估[J].中国惯性技术学报,2010,18(6):639-644P.
    [144]郝燕玲,杨峻巍,陈亮等.基于平方根中心差分卡尔曼滤波的大方位失准角初始对准[J].中国惯性技术学报,2011,19(2):180-189P.
    [145]丁杨斌,王新龙,申功勋等. Unscented卡尔曼滤波在SINS静基座大方位失准角初始对准中的应用研究[J].宇航学报,2006,27(6):1201-1204P.
    [146]周卫东,乔相伟,任蕾等. QUKF算法及其在SINS初始对准中的应用[J].仪器仪表学报,2010,31(2):264-269P.
    [147]周战鑫,高亚楠,陈家斌.基于无轨迹卡尔曼滤波的大失准角INS初始对准[J].系统仿真学报,2006,18(1):173-175P.
    [148] S. J. Julier, J. K. Uhlmann. Reduced sigma point filters for the propagation of meansand covariances through nonlinear transformations[C]//Proceedings of AmericanControl Conference,2002:887-892P.
    [149] R. v. d. Merwe, E. A. Wan. Sigma-Point Kalman Filters for Integrated navigation[C]//Proceedings of the60th Annual Meeting of the Institute of Navigation (ION),2004,641-654P.
    [150]沈忠,俞文伯,房建成.基于UKF的低成本SINS/GPS组合导航系统滤波算法[J].系统工程与电子技术,2007,29(3):408-411P.
    [151] G. Farid, J. C. Anwar. GPS/SINS navigation data fusion using quaternion model andunscented Kalman filter[C]//Proceedings of the Conference on Mechatronics andAutomation,2006,1854-1859P.
    [152] J. L. Crassidis. Sigma-Point Kalman Filtering for Integrated GPS and InertialNavigation[J]. IEEE Transactions on Aerospace and Electronic Systems.2006,42(2):750-756P.
    [153]孙枫,唐李军.基于cubature Kalman filter的INS/GPS组合导航滤波算法[J].控制与决策,2012,27(7):1033-1036P.
    [154]徐小良,张浩,汤显峰.噪声相关多传感器系统的微观EKF融合算法[J].清华大学学报(自然科学版),2012,52(9):1199-1204P.
    [155] E. B. Song, Y. M. Zhu, J. Zhou, et al. Optimal Kalman filtering fusion withcross-correlated sensor noises[J]. Automatica,2007,8(43):1450-1456P.
    [156]冯肖亮.噪声相关和无序量测系统的网络融合估计[D].杭州电子科技大学硕士学位论文,2009.
    [157] S. L. Sun. Distributed optimal component fusion weighted by scalars for fixed-lagKalman smoother[J]. Automatica,2005,41(12):2153-2159P.
    [158]邓自立,顾磊,冉陈键.带相关噪声的观测融合稳态Kalman滤波算法及其全局最优性[J].电子与信息学报,2009,31(3):556-560P.
    [159]段战胜,韩崇昭,党宏社.测量噪声相关情况下的多传感器数据融合[J].计量学报,2005,26(4):360-367P.
    [160]王小旭,赵琳,夏全喜等.噪声相关条件下Unscented卡尔曼滤波器设计[J].控制理论与应用,2010,27(10):1362-1368P.
    [161]王小旭,赵琳,潘泉等.基于最小均方误差估计的噪声相关UKF设计[J].控制与决策,2010,25(9):1393-1398P.
    [162] X. X. Wang, Y. Liang, Q. Pan, et al. A Gaussian approximation recursive filter fornonlinear systems with correlated noises[J]. Automatica,2012,48:2290-2297P.
    [163] A. Kong, J. S. Liu, W. H.Wong. Sequential imputations and Bayesian missing dataproblems[J]. Journal of the American Statiatical Association,1994,89(426):278-288P.
    [164]周东华,王庆林.有色噪声干扰的非线性系统强跟踪滤波[J].北京理工大学学报,1997,17(3):321-326P.
    [165]周聪,肖建.改进强跟踪滤波算法及其在汽车状态估计中的应用[J].自动化学报,2012,38(9):1520-1527P.
    [166]莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272P.
    [167]严恭敏,严卫生,徐德民.简化UKF滤波在SINS大失准角初始对住中的应用[J].中国惯性技术学报,2008,16(3):253-264P.
    [168]严恭敏,严卫生,徐德民.基于欧拉平台误差角的SINS非线性误差模型研究[J].西北工业大学学报,2009,27(4):511-516P.
    [169]李涛,武元新,薛祖瑞等.捷联惯性导航系统误差模型综述[J].中国惯性技术学报,2003,11(4):66-72P.
    [170]向礼.非线性滤波方法及其在导航中的应用研究[D].哈尔滨工业大学博士学位论文,2009.
    [171]尹建君.线性/非线性系统的混合动态滤波理论及应用[D].复旦大学博士学位论文,2008.
    [172]郝钢,叶秀芬,陈亭.加权观测融合非线性无迹卡尔曼滤波算法[J].控制理论与应用,2011,28(6):753-758P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700