用户名: 密码: 验证码:
城市环境中交通对象检测与识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人驾驶智能车辆在城市环境中行驶时需要对图像数据中的道路、前方车辆、前方车辆的刹车灯和转向灯以及交通信号灯进行检测与识别。一方面无人驾驶智能车辆自身空间的限制导致其计算能力有限,另一方面图像数据由于摄像头的发展导致其数据量日益增大,且由于图像处理算法的复杂度逐渐提高其需求更多的计算资源,两者之间难以取舍;解决此矛盾的最好方法即建立混合异构并行计算模型来充分利用其计算资源。
     总而言之,本文做了如下工作:
     1.针对图像分割中的阈值难以确定,本文设计了多类类间最大方差法中的分类数确定算法,以此来获取多个阈值及分割图像;设计了包含道路区域的二值图像选择算法和基于二次多项式的分段函数拟合方法,基于该两个方法来估计道路区域的边界;为了定位前方车辆在图像中的位置,可以通过分析车底阴影的形状设计约束条件来选择车底阴影区域。通过实验表明该方法有较好的效果。
     2.利用车辆尾灯的镜像特征设计车尾灯对匹配算法,并通过其与车底阴影之间的位置关系来检测车尾灯对以及辅助定位车辆位置。为了提高检测率,设计了基于对象相对位置关系的多目标Kalman滤波跟踪算法。为了获得前方车辆的减速信息,设计了高位刹车灯检测,并通过刹车灯在“亮”状态下的颜色分布设计了刹车灯点亮状态识别算法,结合该两个算法的结果来识别前方刹车灯的状态。转向灯有左右之分并且以断续闪烁过程来提供给后方驾驶员转向信息。本文设计了当车尾灯对检测失效时的左右转向灯的判别方法,并设计了转向灯断续闪烁状态累计识别算法来识别转向灯是否处于“灭”—“亮”—“灭”这种状态转换的过程中。实验结果表明了这些方法的有效性。
     3.根据交通信号灯的光源部分具备“亮”特点,而其背板部分具备“暗”特点,设计了基于Top-hat算子的“亮”区域提取算法和基于多阈值分割的“暗”区域提取算法,通过两个区域的位置匹配来定位交通信号灯。对圆形光源区域设计了结合圆形度检测和改进Hough椭圆检测的方法来判断其是否为圆形;对箭头形光源区域,建立了标准箭头形状的面积投影函数,并对区域样本做投影转换及归一化,通过样本面积投影函数与标准面积函数的方差来确定方向。通过实验分析验证了这些算法的有效性。
     4.介绍了混合异构车载并行计算模型,对多台车载联网计算机设计了其拓扑结构以及基于在线动态分析的任务分配与作业调度算法,提出了GPU+CPU负载均衡优化策略减少了TBB与CUDA之间的数据交换。针对整体检测与识别系统进行总体任务划分以实现层级化管理,并对每一个任务进行了算法级的并行设计,以此实现了粗粒度以及细粒度上的混合异构并行设计。通过实验表明,一方面解决了图像处理的实时性问题,另一方面解决了资源有效利用的问题。
Driving in city enviroments, the unmanned intelligent vechile needs to detect and recognize the objects in the image data, such as road, front vehicle, brake light and turn light of front vehicle, traffic light and so on. On the one hand, because of space limit, the unmanned intelligent vehicle's computing combability is limited; on the other hand, owing to the development of camera device, image data is bigger than past, and with the increasingly complex, image processing algotithm needs more computing resource. It is hard to decide between them. But, the best way to resolve this problem is to construct the hybrid heterogeneous parallel computing model to utilize the computing resource sufficiently. All in all, in this paper, some works have been done as below.
     1. Due to the threshold of segmentation is hard to get, a number of classes selection algorithm in multi-class maximum variance menthod is designed to get multi-thresholds for segmentation. Binarization image including road region selection algorithm and on the basis of quadratic polynomial piecewise function fitness method are designed to estimate the edge of road. According to analysis of shape of the shadow underneath vehicles, some constraint conditions are designed for detecting the positions of front vehicles in image. Experiment results shows that these methods' availability.
     2. By the mirror feature of real lamps, pairing real lamps detection algorithm is designed, and the shadow of front vehicles are cooperated with it for locating the vehicles. According to the relative relation among positions of regions, a multi-objects Kalman filter tracking algorithm is designed for increasing the detection rate of pairing rear lamps. In order to get the deceleration message of front vehicle, two algoritm are combined to detect and recognize. One is the high location brake light detection algorithm; the other is brightness state of brake light recognition algorithm according to the distribution of the color when the lamp is lit. When the left or right turn lamps are flashing, them send different messages to the rear drivers, respectively. If the pairing rear lamps detection is invalid, an algorithm named turn lamps left-right diviced method is designed. To recognize if the turn lamps being in the process of "extinguished"-"lit"-"extinguished" states conversion, a turn lamp flashing state accumulated recognition algorithm is designed. Experiments results show that these algorithms are effective.
     3. According to the light source of traffic light which has the feature of "bright", and back board of it which has the feature of "dark", two algorithms are designed to abstract the regions which are matched each others for locating the traffic lights. The one is "bright" regions abstraction algorithm based on Top-hat operator, and the other is "dark" regions abstraction algorithm based on multi-thresholds segmentation.To recognize if the regions are circular light source of circle traffic light, circurity method and improved Hough circle detection are designed. The standard arrow shape area projected functions are established. Then, the sample of region is projected and normalized. The variance between the reality value and estimated value is the key criterion to recognize if the regions are arrow light source. Experiments results show that these algorithms are effective.
     4. A hybrid heterogeneous on-board parallel computing model is introduced. The topological structure of on-board networked computers is constructed, and the task distribution and Job scheduling algorithm on the basis of on-line dynamic analysis is designed. The GPU+CPU load balancing optimization strategy is presented to reduce the data exchange. The whole detection and recognition system is divided by tasks for stratification management, and every tasks is parallel designed at algorithm level. The processes above accomplish hybrid heterogeneous parallel design at both coarse-grained and fine-grained.
引文
[1]Urmson, Chris, Anhalt, Joshua, Clark, Michae, et al. High Speed Navigation of Unrehearsed Terrain:Red Team Technology for Grand Challenge 2004[C]. The 2004 DARPA Grand Challenge.2004
    [2]占强.从科幻到现实_无人驾驶城市挑战赛[J].世界汽车.2007.90-93
    [3]Fenghui. Wang, Ming. Yang, Ruqing. Yang. Dynamic Fleet Management for Cybercars[C].2006 IEEE Intelligent Transportation Systems Conference.2006: 1246-1250
    [4]科技日报.欧洲启动无人驾驶汽车研制计划.http://express.cetin.net.cn/cetin2/servlet/ cetin/action/HtmlDocumentAction;jsessionid=866FA0D0400EBD49627D04D61DD0 B01C?baseid=108&docno=7076.2000
    [5]科技日报.日本开发出车队一体无人驾驶行车系统.http://www.autotimes.com.cn/news/20130306/42381.html.2013
    [6]北京晨报.无人驾驶汽车将掀起车轮革命 前景乐观.http://news.cheshi.com/20121026/731024.shtml.2012
    [7]自然科学基金会网站.自然科学基金会举办2012年中国智能车未来挑战赛.http://www.gov.en/gzdt/2012-10/31/content_2255142.htm.2012
    [8]McCall, J.C., Trivedi, M.M. Video-based lane estimation and tracking for driver assistance:survey, system, and evaluation [J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(1):20-37.
    [9]Broggi, A. Robust real-time lane and road detection in critical shadow conditions [C]. Proceedings, International Symposium on Computer Vision 1995,1995:353-358.
    [10]Paetzold, F., Franke, U., Von Seelen, Lane recognition in urban environment using optimal control theory [C]. Proceedings of the IEEE Intelligent Vehicles Symposium IV, 2000:221-226.
    [11]Kluge, K. Extracting road curvature and orientation from image edge points without perceptual grouping into features [C]. Proceedings of the Intelligent Vehicles 1994 Symposium,1994:109-114.
    [12]Kreucher, C, Lakshmanan, S. LANA:a lane extraction algorithm that uses frequency domain features [J]. IEEE Transactions on Robotics and Automation,1999, 15(2):343-350.
    [13]Zhou, S., Jiang, Y., Xi, J., et al. A novel lane detection based on geometrical model and Gabor filter [J].2010 IEEE Intelligent Vehicles Symposium (IV),2010:59-64.
    [14]Wentao Yao, Zhidong Deng. Robust Real-Time Lane Marking Detection for Intelligent Vehicles in Urban Environment [J]. Advances in Automation and Robotics,2012, Vol. 1:421-428.
    [15]Alon Y, Ferencz A, Shashua A. Off-road path following using region classification and geometric projection constraints [C]. Computer Vision and Pattern Recognition,2006 IEEE Computer Society Conference on. IEEE,2006,1:689-696.
    [16]S. Thrun, M. Montemerlo, H. Dahlkamp, et al. Stanley:The robot that won the DARPA grand challenge [J], The 2005 DARPA Grand Challenge,2006,23(9):661-692.
    [17]Dickmanns, E.D., Mysliwetz, B.D. Recursive 3-D road and relative ego-state recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992, 14(2):199-213.
    [18]Wang, Y. Lane detection and tracking using B-Snake [J]. Image and Vision Computing, 2004,22(4):269-280.
    [19]Pomerleau, D. Ralph, rapidly adapting lateral position handler [C]. Proceedings of the Intelligent Vehicles 1995 Symposium, September 1995:506-511.
    [20]Bertozzi, M., Broggi, A. Gold:a parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Transactions on Image Processing,1998, 7(1):62-81.
    [21]Bertzzim, Broggla.Gold.A Parallel Real-Time Stereo Visio System for Generic obstacle and Lane Detection.IEEE Trans on Image Processing,1998,7(1):62-81.
    [22]YUE Wang, Dinggang Shen, Eam Khwang Teoh. Lane detection using spline model [J]. Pattern Recognition Letters,2000,21(8):677-689.
    [23]胡明昊,杨文杰,任明武,等.一种基于视觉的道路检测算法[J].计算机工程与设计.2005,26(7):1704-1706.
    [24]Qing Li, Nalining Zheng, Hong Cheng. Springrobot:A prototype autonomous vehicle and its algorithms for lane detection [J]. IEEE Transactions on Intelligent Transportation Systems.2004,5(4):300-308.
    [25]A. Takahashi, Y. Ninomiya, M. Ohta, et al. A robust lane detection using real-time voting processor [C]. Intelligent Transportation Systems,1999. Proceedings.1999 IEEE/IEEJ/JSAI International Conference on. IEEE,1999:577-580.
    [26]Beauvais M, Kreucher C, Lakshmanan S. Building world models for mobile platforms using heterogeneous sensors fusion and temporal analysis [C]. IEEE Conference on Intelligent Transportation System,1997. IEEE,1997:230-235.
    [27]A. Coda, P. C. Antonello, B. Peters. Technical and human factor aspects of automatic vehicle control in emergency situations[C]. Mobility for Everyone.4th World Congress on Intelligent Transport Systems,, BERLIN.(PAPER NO.2296).1997.
    [28]D. A. Pomerleau, T. Jochem. Rapidly adapting machine vision for automated vehicle steering [J]. IEEE expert.1996.11(2):19-27.
    [29]C. Rasmussen. Grouping dominant orientations for ill-structured road following[C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004(CVPR 2004). IEEE,2004,1:470-477.
    [30]C. Rasmussen. Road Compass:following rural roads with vision+ ladar using vanishing point tracking [J]. Autonomous Robots,2008,25(3):205-229.
    [31]H. Kong, J. Audibert, J. Ponce. General road detection from a single image [J]. IEEE Transactions on Image Processing,,2010,19(8):2211-2220.
    [32]M. Nieto and L. Salgado, Real-time vanishing point estimation in road sequences using adaptive steerable filter banks [C]. Advanced Concepts for Intelligent Vision Systems. Springer Berlin. Heidelberg,2007:840-848.
    [33]Peyman Moghadam, Janusz A. Starzyk. Fast vanishing-point detection in unstructured environments [J]. IEEE Transactions on Image Processing.2012,21(1):425-430.
    [34]Felisa M, Zani P. Robust monocular lane detection in urban environments[C]. Intelligent Vehicles Symposium (IV),2010 IEEE. IEEE,2010:591-596.
    [35]Danescu R, Nedevschi S. Probabilistic lane tracking in difficult road scenarios using stereovision [J]. Intelligent Transportation Systems, IEEE Transactions on,2009,10(2): 272-282.
    [36]Kim Z W. Robust lane detection and tracking in challenging scenarios [J]. Intelligent Transportation Systems, IEEE Transactions on,2008,9(1):16-26.
    [37]乔万波,曹银杰.一种改进的灰度图像二值化方法[J].电子科技.2008,21(11):63-64,71.
    [38]Xu G, Ma M, Gao F, et al. An Improved Image Segmentation Algorithm for Otsu Method Based on Lane Marking Identification[C]. CICTP 2012@ sMultimodal Transportation Systems-Convenient, Safe, Cost-Effective, Efficient. ASCE,2012: 1259-1265.
    [39]Feng M, Jia P, Wang X, et al. Structural Road Detection for Intelligent Vehicle Based on a 2d Laser Radar[C]. Intelligent Human-Machine Systems and Cybernetics (IHMSC),2012 4th International Conference on. IEEE,2012,1:293-296.
    [40]Mohammad Shorif Uddin, Tadayoshi Shioyama. Detection of pedestrian crossing using bipolarity feature-an image-based technique[J]. IEEE Transactions on Intelligent Transportation Systems,2005,6(4):439-445.
    [41]Ke Jian-guang, Zhao Qun-fei, Shi Peng-fei. Blind way recognition algorithm based on image processing[J]. Computer Engineering, China,2009,35(1):189-192.
    [42]Li Qun-hui, Zhang Hang. A modified PNN-based method for traffic signs classification[J]. Systems Engineering,2006,24(4):97-101.
    [43]Cao Yuzhen, Chen Lushi, Jia Shuo. An image based detection of pedestrian crossing[C], 2009 2nd International Congress on Image and Signal Processing (CISP), Tianjin, China,2009:1-5.
    [44]Sebastian Sichelschmidt, Anselm Haselhoff, Anton Kummert. Pedestrian crossing detecting as a part of an urban pedestrian safety system[C].2010 IEEE Intelligent Vehicles Symposium(IV), San Diego, CA, USA,2010:840-844.
    [45]Graefe V, Efenberger W. Novel approach for the detection of vehicles on freeways by real-time vision[C]. IEEE Intelligent Vehicles Symposium, Proceedings, Tokyo, Jpn, 1996:363-368.
    [46]Jochem T, Pomerleau D, Kumar B, et al. PANS:A Portable Navigation Platform[C]. Intelligent Vehicles Symposium, Proceedings, Detroit, MI, USA,1995:107-112.
    [47]Bertozzi M, Broggi A, Fascioli A. The ARGO autonomous vehicle's vision and control systems [J]. International Journal of Intelligent Control and System,1999, 3(4):409-441.
    [48]Luong Q T, Weber J, Koller D, et al. Integrated stereo-based approach to automatic vehicle guidance[C]. IEEE International Conference on Computer Vision, Cambridge, MA, USA,1995:52-57.
    [49]Charkari N M, Mori H. New approach for real time moving vehicle detection [C].1993 International Conference on Intelligent Robots and Systems, Yokohama, Jpn,1993: 273-278.
    [50]Hoffmann C, Dang T, Stiller C. Vehicle detection fusing 2D visual features [C]. IEEE Intelligent Vehicles Symposium, Proceedings, Parma, Italy,2004:280-285.
    [51]Handmann U, Kalinke T, Tzomakas C, et al. Image processing system for driver assistance[J]. Image and Vision Computing,2000,18(5):367-376.
    [52]Izumi T, Kikawa M, Hase S, et al. Forward vehicle tracking based on shadow detection [C]. Proceedings of the SICE Annual Conference, Takamatsu, Japan,2007:1449-1453.
    [53][16]Aarthi R, Padmavathi S, Amudha J. Vehicle detection in static images using color and corner map [C]. ITC 2010-2010 International Conference on Recent Trends in Information, Telecommunication, and Computing, Kochi, Kerala, India,2010: 244-246.
    [54]Broggi A, Cerri P, Antonello P C. Multi-resolution vehicle detection using artificial vision [C]. IEEE Intelligent Vehicles Symposium, Proceedings, Parma, Italy,2004: 310-314.
    [55]张玲增.基于多特征的前方车辆检测与跟踪方法研究[D].江苏大学,2010.
    [56]高磊,李超,朱成军,等.基于边缘对称性的视频车辆检测算法[J].北京航空航天大学学报,2008(9):1113-1116.
    [57]毛世榕,胡桂明,胡进.基于单目视觉的车辆检测算法研究[J].网络安全技术与应用,2010(12):34-37.
    [58]杨建荣,曲仕茹.基于单目视觉的障碍物检测方法研究[J].计算机仿真,2009(2):278-281.
    [59]张建明,张玲增,刘志强.一种结合多特征的前方车辆检测与跟踪方法[J].计算机工程与应用,2011(5):220-223.
    [60]鲁威威,肖志涛,雷美琳.基于单目视觉的前方车辆检测与测距方法研究[J].电视技术,2011(1):125-128.
    [61]付彦君,裘伟,戴斌,等.基于多特征融合的车辆实时检测[J].计算机仿真,2007(10):212-215.
    [62]雷美琳,肖志涛,崔琴.基于双特征的前方车辆实时检测[J].天津师范大学学报(自然科学版),2010(1):23-26.
    [63]朱勇,付彦君.基于多特征融合的车辆检测算法[J].传感器与微系统,2009(8):110-112.
    [64]李政,赵汉青,刘大学,等.基于主动视觉的车辆实时检测[J].计算机仿真,2009(5):286-290.
    [65]魏武,龚树锋,龚树超.一种改进的基于视频的车辆检测与识别方法[J].计算机测量与控制,2010(1):20-22.
    [66]慕永云,王荣本,赵一兵,等.基于多特征融合的前方车辆检测方法研究[J].计算机应用研究,2011,28(9):3572-3575.
    [67]高德芝,段建民,杨喜宁,等.智能车前方目标车辆检测方法研究[J].计算机工程与设计,2010,31(23):5100-5103.
    [68]Lan J, Zhang M. A new vehicle detection algorithm for real-time image processing system [C]. ICC ASM 2010-2010 International Conference on Computer Application and System Modeling, Proceedings, Shanxi, Taiyuan, China,2010:v101-v104.
    [69]胡铟,杨静宇.基于模型的车辆检测与跟踪[J].中国图象图形学报, 2008(3):450-455.
    [70]黄信想,刘秉瀚.基于HSV色彩空间的云模型车辆阴影检测[J].福州大学学报(自然科学版),2008(6):809-813.
    [71]曾智洪.高速公路中的行车道检测和车辆跟踪[J].自动化学报,2004,29(3):450-456.
    [72]Collado J M, Hilario C, De La Escalera A, et al. Model based vehicle detection for intelligent vehicles [C]. IEEE Intelligent Vehicles Symposium, Proceedings, Parma, Italy,2004:572-577.
    [73]顾柏园,王荣本,郭烈,等.基于机器视觉的道路上前方多车辆探测方法研究[J].汽车工程,2006(10):902-905.
    [74]Sun Z, Bebis G, Miller R. On-road vehicle detection using evolutionary gabor filter optimization[J]. IEEE Transactions on Intelligent Transportation Systems,2005, 6(2):125-137.
    [75]朱云芳,王贻术,杜歆.静态环境中基于光流的障碍物检测[J].浙江大学学报(工学版),2008,42(6):923-926.
    [76]Junxian Wang F B R M. Overtaking Vehicle Detection Using Dynamic and Quasi-Static Background Modeling [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, USA,2005,3:64-64.
    [77]许远昂.车牌定位算法与车尾灯定位研究[D].西安电子科技大学,2008.
    [78]Tong Jian-jun, Zou Fu-ming. Speed Measurement of Vehicle by Video Image[J]. Journal of Image and Graphics,2005,10(2):192-196.(in Chinese)
    [79]Wu Bing-fei, Chen Yen-lin. Real-time image segmentation and rule-based reasoning for vehicle head light detection on a moving vehicle[C].7th IASTED International Conference on Signal & Image Processing. Anaheim:ACTA,2005:388-393.
    [80]Eichner Marcin L, Breckon Toby P. Real-Time Video Analysis for Vehicle Lights Detection Using Temporal Information[C]. Institution of Engineering and Technology 4th European Conference on Visual Media Production (CVMP 2007).Londun:EIT,2007:1-1.
    [81]Tecnico Inst Super, Telecomun Inst de, Portugal Lisbon. Car recognition based on back lights and rear view features[C].2009 10th Workshop on Image Analysis for Multimedia Interactive Services. London:IEEE,2009:137-140.
    [82]Yu Yang-tao. Vehicle Turn light recognition based vision[D].Kunming:YunNan Normal University,2006.(in Chinese)
    [83]Bertozzi M, Broggi A, Cellario M. Artificial vision in road vehicles[J]. IEEE-Special issue on Technology and Touls for Visual Perception,2002,90(7):1258-1271.
    [84]Zhang Hong-liang, Zou Zhong, LI Jie, Chen Xiang-tao. Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods [J]. Journal of Central South University of Technology,2008,15(1):39-43.
    [85]Cai Zi-xin, He Han-gen, Chen Hong. Theories and methods for mobile robots navigation under unknown environments [M]. Beijing:Science Press.2009.(in Chinese)
    [86]Zhang Gang, MA Zong-min Deng Li-guo, Xu Chang-min. Novel histogram descriptor for global feature extraction and description[J]. Journal of Central South University of Technology,2010,17(3):580-586.
    [87]Y. Li, Z. Cai, and J. Tang, Recognition Algorithm for Turn Light of Front Vehicle[J]. Journal of Central South University of Technology.2012,19(2):522-526.
    [88]范红武,韩柯,孙亮等.基于视觉自主车的尾灯灯语识别方法研究[J].电脑知识与技术.2010.6(34):9790-9792
    [89]Park Jin-Hyung, Jeong Chang-Sung. Real-time signal light detection[C].2008 Second International Conference on Future Generation Communication and Networking Symposia (FGCNS).2008,3:139-142.
    [90]M. Omachi, S. Omachi. Detection of Traffic Light Using Structural Information[C]. The 10th International Conference on Signal Processing (ICSP 2010).2010:809-812.
    [91]H. Chinthaka, N. Premachandra, T. Yendo, et al. Detection of LED Traffic Light by Image Processing for Visible Light Communication System[C].2009 IEEE on Intelligent Vehicles Symposium, USA:IEEE,2009:179-184.
    [92]Lu Kuo-Hao, Wang Chao-Ming, Chen Shu-Yuan. Traffic light recognition[J]. Journal of the Chinese Institute of Engineers.2008,31(6):1069-1075.
    [93]Tac-Hyun Hwang, In-Hak Joo, Seong-Ik Cho. Detection of traffic lights for vision-based car navigation system[C]. First Pacific Rim Symposium Advances in Image and Video Technology.2006:682-691.
    [94]Gong Jianwei, Jiang Yanhua, Xiong Guangming, et al. The recognition and tracking of traffic lights based on color segmentation and CAMSHIFT for intelligent vehicles[C]. 2010 IEEE Intelligent Vehicles Symposium (IV).2010:431-435.
    [95]徐成,谭乃强,刘彦等.基于Lab色彩空间和模板匹配的实时交通灯识别算法[J].计算机应用.2010,30(5):1251-1254.
    [96]N. H. C. Yung, A. H. S. Lai. An effective video analysis method for detecting red light runners[J]. IEEE Transactions on Vehicular Technology,50(4):1074-1084,2001.
    [97]Y. Chung, L. Wang, S. Chen. A vision-based traffic light detection system at intersections[J]. Journal of National Taiwan Normal University:Mathematics, Science & Technology,47:67-86,2002.
    [98]T. Hwang, Joo, S. Cho. Detection of traffic lights for vision-based car navigation systems[C]. Pacific-Rim Symposium on Image and Video Technology, Germany: Springer Verlag.2006:682-691.
    [99]J. Levinson, J. Askeland, J. Dolson, et al. Traffic light mapping, localization, and state detection for autonomous vehicles[C].2011 IEEE International Conference on Robotics and Automation. USA:IEEE,2011:5784-5791.
    [100]谷明琴,蔡自兴,李仪.应用圆形度和颜色直方图的交通信号灯识别[J].计算机工程与设计.33(1):243-247.2012.
    [101]R. de Charette, F. Nashashibi. Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates[C].2009 IEEE Intelligent Vehicles Symposium (IV).2009:358-363.
    [102]Zixing Cai, Mingqin Gu, Yi Li. Real-time arrow traffic light recognition system for intelligent vehicle[C]. The 16th International Conference on Image Processing, Computer Vision,& Pattern Recognition.2012:848-854
    [103]谷明琴,蔡自兴,黄振威,何芬芬.城市环境中箭头型交通信号灯的实时识别算法[J].中南大学学报自然科学版.44(4):1-6.2013
    [104]陈国良.并行计算——结构.算法.编程[M].修订版.高等教育出版,2003.
    [105]白洪涛.基于GPU的高性能并行算法研究[D].吉林大学,2010.
    [106]张琦.多核系统中的程序性能优化研究[D].中国科学技术大学,2010.
    [107]李立芳.浅谈数字图像处理技术及应用[J].中国科技信息,2012(03):78-79.
    [108]盖素丽.基于GPU的数字图像并行处理方法[J].电子产品世界,2009.2(2):38-40.
    [109]刘伟峰,蒋楠,宋付英,等.图像处理的GPU加速技术研究与评价[C].第十四届全国图象图形学学术会议论文集,清华大学出版社,2008.
    [110]危疆树.图像处理算法分析及其并行模式研究[D].电子科技大学,2006.
    [111]魏敏,王彬,谷军霞.“天河一号”系列超级计算机系统[C].2011年中国气象学会气象通信与信息技术委员会暨国家气象信息中心科技年会论文摘要,中国气象学会气象通信与信息技术委员会,2011.
    [112]陈波.基于CPU_GPU异构平台的性能优化及多核并行编程模型的研究[D].中国科学技术大学,2011.
    [113]傅莹.基于MPI的并行函数库的设计与实现[D].曲阜师范大学,2011
    [114]陈北元.基于MPI环境的多层次并行算法的研究与应用[D].吉林大学,2011
    [115]Bagirov A M, Karasozen B, Sezer M. Discrete gradient method:derivative-free method for nonsmooth optimization[J]. Journal of Optimization Theory and Applications,2008,137(2):317-334.
    [116]GB5920-2008,汽车及挂车前位灯、后位灯、示廓灯和制动灯配光性能[S].北京:中国标准出版社,2008.
    [117]GB17509-2008,汽车及挂车转向信号灯配光性能[S].北京:中国标准出版社,2008.
    [118]GB4785-2007,汽车及挂车外部照明和光信号装置的安装规定[S].北京:中国标准出版社,2007.
    [119]Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering,1960,82(1):35-45.
    [120]新浪汽车.2012年度汽车销售统计.http://auto.sina.com.cn/.
    [121]GB14887-2011,道路交通信号灯[S].北京:中国标准出版社,2011.
    [122]GB14887-2003,道路交通信号灯[S].北京:中国标准出版社,2003.
    [123]胡燕.基于GPU并行计算的目标跟踪快速算法研究[D].华中师范大学,2012.
    [124]杨靖宇.摄影测量数据GPU并行处理若干关键技术研究[D].解放军信息工程大学,2011.
    [125]成思远.异构(CPU-GPU)计算机系统性能评测与优化技术研究[D].国防科学技术大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700