用户名: 密码: 验证码:
基于DNA适体的生物传感信号增强方法的设计与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感系统中最重要的两个部分是识别单元和信号转换单元。在过去的几十年中,各种各样的分子识别单元被开发了出来,例如酶,凝集素,分子印迹技术,抗体以及适体(适配体)。适配体是单链的核酸分子,对特定的目标物具有高度的亲和力。其作为一种多功能的分子感受器已经被广泛的研究和应用。随着对传感系统灵敏度要求的增加,多种通过信号增强或扩增的手段来提高化学/生物传感的灵敏度的方法已经被设计出来。本研究致力于在DNA适配体为基的生物传感中信号增强方法的设计与应用。本论文的主要内容包括以下五个方面:
     1.因其独特的光学性能,尤其是其高摩尔吸光系数(是普通的有机发光团的3-5个数量级),纳米金在本工作中作为信号增强单元,同时又是信号转换单元,来构建铅离子(Pb2+)检测的生物传感系统。本论文的第一项工作是用两条富含G碱基的序列(TBA (5'-GGT TGG TGT GGT TGG-3')和PW17(5'-GGG TAG GGC GGG TTG GG-3'))作为Pb2+的识别原件来做传感系统。其原理是无修饰的纳米金能够识别非折叠结构的DNA和折叠结构的DNA,比如G四联体。圆二色光谱表征了这些TBA-Pb2+和PW17-Pb2+所形成的G四联体。紫外吸收差谱证明了在Pb2+响应上序列的特异性。透射电子显微镜和紫外光谱表征了柠檬酸钠还原法合成的纳米金。本研究优化了实验条件,包括盐浓度,单链DNA浓度和加盐之后聚集时间。本工作构建的对Pb2+检测的传感系统能达到30nM的检测下限。结果表明,PW17的体系在铅检测中展现出了更加优异的性能。在相同的DNA浓度下,PW17体系对Pb2+浓度的变化有更大的响应和较小的误差线。
     2.为了探明TBA体系和PW17体系在铅检测性能上的不同,我们研究了G四联体与无修饰纳米金之间的相互作用。研究发现G四联体溶液具有保护纳米金的作用,表明仍有DNA吸附在了纳米金表面。这一现象不同于以往的结论,即G四联体不能吸附在纳米金表面并保护纳米金。我们通过跟踪纳米金的表面等离子体共振吸收(A650/A520)对时间的变化曲线研究了纳米金对G四联体溶液中DNA的吸附行为。这项研究包含了三个体系:TBA,PW17和PSO。结果表面,在Pb2+稳定的G四联体溶液中通过5小时的作用大约有93%的DNA被吸附在了纳米金上。这一结果可能是两种原因导致的:(1)G四联体能吸附在纳米金表面;(2)G四联体解缠了进而吸附在了纳米金表面。为了探明原因,我们采用了电感耦合等离子体发射光谱分析了溶液中Pb2+浓度。结果发现G四联体与纳米金作用后吸附在纳米金表面,但Pb2+存留在了水中。这表明G四联体可能被解缠了从而释放出了Pb2+。PW17-Pb2+在纳米金上的吸附速度比TBA-Pb2+更慢,说明PW17-Pb2+形成的G四联体更稳定。这也就解释了两者在铅检测中的差异。在对PSO-K+的体系中,我们观察到了相似的吸附现象,说明G四联体在纳米金存在下的解缠可能是一个普遍的现象。这种相互作用表明长时间的相互作用使得纳米金无法区分非折叠的和折叠的DNA。
     3.将巯基修饰的DNA化学键合在纳米金的表面可以避免2中所叙述的问题。在这一部分中,我们用巯基修饰的裂开型适配体设计了一种新型的DNA-纳米金传感系统。在这里ATP被选用为模型分子。ATP的适配体被切为两段,每段在5’端或3’端修饰了巯基。这样,每种纳米金上修饰了同一序列但适配体片段的方向不同,即有的是5’端键接在纳米金表面,有的是3’端键接在纳米金表面。所以这样得到的每种纳米金都是双修饰的。由于在目标分子的存在下,裂开的适配体片段能和目标分子重新组合成完整的适配体二级结构,因此其与纳米金的复合物能产生目标分子诱导的组装,进而由于纳米金颜色的距离依赖性使其颜色发生由红到紫的变化。在新设计的双修饰DNA-纳米金体系中,我们发现此体系对ATP产生的表面等离子体共振吸收变化是传统的单修饰体系的两倍。本工作通过跟踪纳米金的表面等离子体共振吸收研究了不同修饰方式,镁离子浓度和适配体链段在纳米金表面的密度对该体系在目标分子存在下的组装动力学。在最优实验条件下,对ATP的检测可达到24μtM的检测下限,这个结果优于传统组装方法对ATP的检测。
     4.然而,双修饰的纳米金-DNA体系对目标分子的响应只是产生两倍于常规的修饰方法的信号增强。因此,我们设计了基于链替换反应的催化循环来放大信号。该体系包括了一个由两步链替换反应组成的熵驱动的催化循环。一共有五条链参与了这个循环,分别表示为"Substrate-1","Fuel-1","Catalyst-1","C1" and "C2"。"Catalyst-1"是ATP的适配体,其在这个催化循环中起催化剂的作用促成"Substrate-Fuel-1"双链的形成。催化循环过程中的各组分通过聚丙烯酰胺凝胶电泳得以证明。由于ATP的引入导致“Catalyst-1"这条链与其相互作用形成了G四联体的结构,从而使其失去了催化活性并抑制‘"Substrate-Fuel-1"双链的形成。很显然这种目标分子抑制的催化循环可用来进行ATP的检测。当核酸链"Substrate-1"和‘"Fuel-1"标记了FAM荧光基团和DABCYL淬灭集团后,催化反应的进程因"Substrate-Fuel-1"双链形成导致的荧光共振能量转移而反映出来。该荧光基团标记的催化体系对ATP的检测显示出"switch on"的响应。在优化了实验条件后,包括催化剂浓度,镁离子浓度,孵化温度等,该体系可以对ATP达到50nM的检测下限和上至1400nM的线性范围。这种目标分子抑制的催化循环提供了一利无酶的传感手段并有前景应用于其他基于适配体的信号放大的传感系统。
     5.上述目标分子抑制的催化循环反应体系中存在这么几个问题:检测过程是多步操作并且十分费时(总过程8小时)。因此我们在这部分工作中设计了目标分子触发的催化循环体系。相比于上述的目标分子抑制的催化体系,该触发型体系除了包含基于链替换反应的催化循环,还包含一步用于释放催化剂链的目标分子诱导的链替换反应。对ATP的检测是通过在"Substrate-2"和“C4”链上分别标记FAM和DABCYL来实现的。ATP的加入引发了核酸链"Catalyst-2"从双链"Catalyst-2-ATP aptamer"上的释放,进而催化了下面的催化循环。这样原本以双链状态结合的"Substrate-2"和“C4”就因"Substrate-2-Fuel-2"的形成而分开,并伴随着荧光的出现。用聚丙烯酰胺凝胶电泳表征反应过程的各组分证明了该催化特性。催化过程通过跟踪催化体系的荧光变化得以表征。优化了实验条件后,该目标分子触发的催化体系提供了更为灵敏的检测性能(对ATP的检测下限为20nM)。最重要的是,该反应速度很快,整个检测操作过程小于一个小时。
With the increasing requirements on the sensitivity of biosensing system, various strategies have been devised to boost detection sensitivity of chemosensing and biosensing processes via the enhancement/amplification of sensing responses. The recognition element and the signal transducer are two core sections in a biosensing system. Various recognition elements have been developed in the past several decades, such as enzymes, lectins, antibodies, molecular imprinting and aptamers. Aptamer, which is single-stranded oligonucleotides with high affinity to a special target, is one of the emerging classes of versatile receptors. This study aims to the design and application of signal enhancement strategies in DNA aptamer-based biosensing. The main content is as follows:
     1. Because of its unique optical properties especially high extinction coefficient (3-5orders of magnitude higher than that of organic chromophores), gold nanoparticle (AuNP) was employed as the signal enhancement element and transducer to construct biosensing system for lead (II) detection. The sensing systems with two guanine-rich sequences (TBA (5'-GGT TGG TGT GGT TGG-3') and PW17(5'-GGG TAG GGC GGG TTG GG-3')) respectively as recognition elements were developed base on the principle that ummodified AuNP can distinguish unfolded ssDNA from folded ssDNA, such as G-quadruplex. The formation of G-quadruplexes by TBA-Pb2+and PW17-Pb2+were characterized by circular dichroism. The specificity of the sequence to Pb2+was analyzed by difference absorption spectrum. The AuNP of13nm synthesized using citrate reduction method was characterized by TEM and UV-vis spectroscopy. Experimental conditions, such as NaCl concentrations, ssDNA concentrations, aggregation time after the addition of salt were optimized. Results showed that a limit of detection of30nM can be easily obtained for Pb+detection. The PW17system was found to possess a much better performance for Pb2+detection than TBA system. In the same [Pb2+] range and ssDNA concentration, PW17system shows a larger LSPR response than TBA system with a relative smaller standard deviation.
     2. To investigate the difference of TBA system and PW17system in the performance of Pb2+sensing, the interaction between DNA G-quadruplexes and13nm gold nanoparticles (AuNPs) was studied. The adsorption of DNAs in G-quadruplex solutions onto AuNPs was observed in DNA-AuNP-based sensing system. The adsorption behavior was studied through monitoring of the localized surface plasmon resonance (LSPR) absorbance of13nm AuNPs at520and650nm (A650/A520) in the solutions of three widely studied guanine-rich sequences, TBA, PW17, and PSO (5'-GGG TTA GGG TTA GGG TTA GGG-3'). It was found that the degree of the adsorption of DNAs in Pb2+stabilized G-quadruplex solutions is up to93%after more than5h of incubation. Two interpretations, the adsorption of G-quadruplexes and the unfolding of G-quadruplexes in the presence of AuNPs, were proposed for these observations. To explore the possible explanation, the lead concentrations in the solutions containing G-quadruplex and AuNP were analyzed by inductively coupled plasma atomic emission spectrometer. The results showed that Pb2+had been released from the G-quadruplexes, which means the G-quadruplexes may be unfolded in the presence of AuNPs. The adsorption rate in PW17-Pb2+system was lower than that in TB A-Pb2+system, demonstrating that the G-quadruplex formed from PW17and Pb2+is more stable in the presence of AuNPs. This result can interpret the difference in their performance in Pb2+sensing. Similar results were also observed in PSO-K+system, which indicate that the potential unfolding of G-quadruplexes in the presence of AuNPs is a general phenomenon in DNA AuNP-based sensing system. This interaction between G-quadruplexes and AuNP demonstrated that long time incubation between DNAs and AuNPs would possibly make it unable to distinguish G-quadruplex from ssDNA.
     3. To avoid the adverse effect of unmodified AuNPs on the formation of folded structure of ssDNA, the thiolated-aptamer conjugated AuNPs sensing system was adopted for biosensors design. The newly designed AuNP functionalized with split aptamer was developed for the detection of adenosine triphosphate (ATP). The ATP aptamer was split into two parts with their5'prime or3'prime modified with thiol. Both the5'SH and3'SH modified strands for each split aptamer fragment were functionalized onto the same AuNP to construct double-functionalized AuNP-DNA conjugates. Thus, the split aptamer can be reassembled into intact folded structure in the presence of ATP molecule with two potential assembly types, which induces the assembly of AuNP-DNA conjugates. In this double-functionalized system, the traditional assembly type might facilitate another assembly type, which was found to give two-fold increase in LSPR response of AuNPs in the presence of ATP than the traditional assembly type, and improved the sensitivity for ATP detection. Time courses of the assemble processes with different assembly types, Mg2+concentrations, and aptamer fragments densities on AuNP were followed using the absorption ratio at650nm and520nm. A limit of detection of24μM with highly selectivity was determined which has greatly surpassed the traditional assembly type in ATP sensing.
     4. However, the double-functionalized AuNP-DNA system could only provide two-fold increase in LSPR response of AuNPs to target molecules than the traditional one. Therefore, a strand displacement reaction (SDR)-based catalytic cycle was employed to amplify signals. This system involves an entropy-driven catalytic cycle of two strand displacement reactions with five oligonucleotides, denoted as "Substrate-1","Fuel-1","Catalyst-1","Cl" and "C2", respectively. The "Catalyst-1" is an ATP aptamer catalyzing the SDRs to form the "Substrate-Fuel-1" duplexes. All the intermediates in the SDR processes have been identified by PAGE (polyacrylamide gel electrophoresis) analysis. Introduction of ATP into the SDR system will induce the "Catalyst-1" to form G-quadruplex conformation so as to inhibit the catalytic activity and cut down the formation of the "Substrate-Fuel-1" duplexes. Obviously, this target-inhibited catalytic cycle can be applied to an ATP sensing system. When the "Substrate-1" and "Fuel-1" oligonucleotides were labeled with a carboxyfluorescein (FAM) fluorophore and a4-([4-(dimethylamino)phenyl] azo)benzoic acid (DABCYL) quencher, this SDR catalytic system exhibits a "switch-on" response for ATP. Conditions for detecting ATP, such as the loading of the "catalyst", buffer concentration of Mg+and incubation temperature, have been optimized to afford a detection limit of50nM and a linear response up to1400nM of ATP. This target inhibited catalytic cycle provides an enzyme-free biosensing strategy with higher sensitivity than many aptamer-based biosensing systems and even some enzyme-based amplification systems.
     5. The problems, which exist in the above target inhibited catalytic cycle-based sensing system, are the multi-step operations and time-consuming detection process (8h). Therefore, a target triggered catalytic cycle was designed for biosensing. Besides the SDR-based catalytic cycle, this new system also contains a target-induced strand displacement process which releases the catalyst strand for the cycle from the ATP aptamer-"Catalyst-2" duplex. The sensing of ATP was achieved by labeling "Substrate-2" and "C4" strands with FAM and DABCYL respectively. The addition of ATP triggered the release of "Catalyst-2" so as to catalyze the SDR-based catalytic cycle. Then, the bounded "Substrate-2" and "C4" strands in "S-C-2" complex were separated in the presence of ATP and resuming the fluorescence. The intermediates in the system were analyzed by PAGE and the time course of the catalysis process was followed in the FAM and DABCYL labeled system. After optimizing the Mg2+concentration, this target triggered catalytic-based sensing system provided a more sensitive response (Limit of detection is20nM) to ATP than the target inhibited one. It also provides a faster detection process (less than1hour's detection process) which overcomes the disadvantage in the target inhibited catalytic cycle-based system.
引文
[1]Chambers J P, Arulanandam B P, Matta L L, Weis A, Valdes J J. Biosensor recognition elements [J]. Curr Issues Mol Biol,2008,10:1-12.
    [2]Lei J, Ju H. Signal amplification using functional nanomaterials for biosensing [J]. Chemical Society Reviews,2012,41(6):2122-2134.
    [3]Turner A P F. Biosensors-Sense and Sensitivity [J]. Science,2000,290(5495):1315-1317.
    [4]O'Connell P J, Guilbault G G. Future trends in biosensor research [J]. Anal Lett,2001,34(7): 1063-1078.
    [5]Ferrer-Miralles N, Feliu J X, Vandevuer S, Muller A, Cabrera-Crespo J, Ortmans I, Hoffmann F, Cazorla D, Rinas U, Prevost M, Villaverde A. Engineering regulable Escherichia coli beta-galactosidases as biosensors for anti-HIV antibody detection in human sera [J]. J Biol Chem, 2001,276(43):40087-40095.
    [6]Kim B, Cha G S, Meyerhoff M E. Homogeneous enzyme-linked binding assay for studying the interaction of lectins with carbohydrates and glycoproteins [J]. Analytical Chemistry,1990, 62(24):2663-2668.
    [7]Bertozzi C R, Kiessling, L. L. Chemical Glycobiology [J]. Science,2001,291(5512): 2357-2364.
    [8]Yoshikawa K, Omochi T. Chemical sensing by a novel electrical oscillator:Detection and quantitation of polysaccharides in concanavalin A solutions [J]. Biochemical and Biophysical Research Communications,1986,137(3):978-983.
    [9]Nagase T, Nakata E, Shinkai S, Hamachi I. Construction of Artificial Signal Transducers on a Lectin Surface by Post-Photoaffinity-Labeling Modification for Fluorescent Saccharide Biosensors [J]. Chemistry-A European Journal,2003,9(15):3660-3669.
    [10]Wong N K C, Kanu N, Thandrayen N, Rademaker G J, Baldwin C I, Renouf D V, Hounsell E F. Microarray analyses of protein glycosylation. In:Protein Protocols Handbook [M].2 ed.,2002.
    [11]Ersoz A, Denizli A, Ozcan A, Say R. Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance [J]. Biosensors and Bioelectronics,2005,20(11): 2197-2202.
    [12]Tai D F, Lin C Y, Wu T Z, Chen L K. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film [J]. Analytical Chemistry,2005,77(16):5140-5143.
    [13]Wu G, Ji H, Hansen K, Thundat T, Datar R, Cote R, Hagan M F, Chakraborty A K, Majumdar A. Origin of nanomechanical cantilever motion generated from biomolecular interactions [J]. Proceedings of the National Academy of Sciences,2001,98(4):1560-1564.
    [14]Hirsch L R, Jackson J B, Lee A, Halas N J, West J L. A Whole Blood Immunoassay Using Gold Nanoshells [J]. Analytical Chemistry,2003,75(10):2377-2381.
    [15]Emanuel P A, Dang J, Gebhardt J S, Aldrich J, Garber E A E, Kulaga H, Stopa P, Valdes J J, Dion-Schultz A. Recombinant antibodies:a new reagent for biological agent detection [J]. Biosensors and Bioelectronics,2000,14(10-11):751-759.
    [16]Sano T, Smith C, Cantor C. Immuno-PCR:very sensitive antigen detection by means of specific antibody-DNA conjugates [J]. Science,1992,258(5079):120-122.
    [17]Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. RNA Aptamers That Bind 1-Arginine with Sub-Micromolar Dissociation Constants and High Enantioselectivity [J]. Nucleic Acids Research,1996,24(6):1029-1036.
    [18]Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation [J]. J Am Chem Soc,2002,124(48): 14286-14287.
    [19]Torres-Chavolla E, Alocilja E C. Aptasensors for detection of microbial and viral pathogens [J]. Biosensors and Bioelectronics,2009,24(11):3175-3182.
    [20]Robertson D L, Joyce G F. Selection intitro of an RNA enzyme that specifically cleaves single-stranded-DNA [J]. Nature,1990,344(6265):467-468.
    [21]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature,1990,346:818-822.
    [22]Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment:RNA Ligands to Bacteriophage T4 DNA Polymerase [J]. Science,1990,249(4968):505-505.
    [23]O'Sullivan C. Aptasensors-the future of biosensing? [J]. Anal Bioanal Chem,2002,372(1): 44-48.
    [24]Jayasena S D. Aptamers:An emerging class of molecules that rival antibodies in diagnostics [J]. Clinical Chemistry,1999,45(9):1628-1650.
    [25]Sassolas A, Blum L J, Leca-Bouvier B D. Homogeneous assays using aptamers [J]. Analyst, 2011,136(2):257-274.
    [26]Wei H, Li B L, Li J, Dong S J, Wang E K. DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes [J]. Nanotechnology,2008,19(9):095501.
    [27]Pan T, Uhlenbeck O C.A small metalloribozyme with a 2-step mechanism [J]. Nature,1992, 358(6387):560-563.
    [28]Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA [J]. Chemistry & Biology,1994, 1(4):223-229.
    [29]Cuenoud B, Szostak J W. A DNA metalloenzyme with DNA-ligase activity [J]. Nature,1995, 375(6532):611-614.
    [30]Carmi N, Shultz L A, Breaker R R. In vitro selection of self-cleaving DNAs [J]. Chemistry& Biology,1996,3(12):1039-1046.
    [31]Li J, Zheng W, Kwon A H, Lu Y. In vitro selection and characterization of a highly efficient Zn(Ⅱ)-dependent RNA-cleaving deoxyribozyme [J]. Nucleic Acids Research,2000,28(2): 481-488.
    [32]Santoro S W, Joyce G F, Sakthivel K, Gramatikova S, Barbas C F. RNA Cleavage by a DNA Enzyme with Extended Chemical Functionality [J]. Journal of the American Chemical Society, 2000,122(11):2433-2439.
    [33]Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles [J]. J Am Chem Soc,2003,125(22):6642-6643.
    [34]Li T, Wang E K, Dong S J. Potassium-Lead-Switched G-Quadruplexes:A New Class of DNA Logic Gates [J]. J Am Chem Soc,2009,131(42):15082-15083.
    [35]Li C L, Liu K T, Lin Y W, Chang H T. Fluorescence Detection of Lead(II) Ions Through Their Induced Catalytic Activity of DNAzymes [J]. Anal Chem,2011,83(1):225-230.
    [36]Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science,1997,277(5329):1078-1081.
    [37]Liu J W, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection [J]. J Am Chem Soc,2004,126(39):12298-12305.
    [38]Lim J K, Joo S-W. Gold Nanoparticle-Based pH Sensor in Highly Alkaline Region at pH 11: Surface-Enhanced Raman Scattering Study [J]. Applied Spectroscopy,2006,60(8):847-852.
    [39]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles [J]. Angew Chem Int Edit,2007,46(22): 4093-4096.
    [40]Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes [J]. Nat Protocols,2006,1(1):246-252.
    [41]Liu J, Lu Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles [J]. Angewandte Chemie International Edition, 2006,45(1):90-94.
    [42]Famulok M, Mayer G. Chemical biology-Aptamers in nanoland [J]. Nature,2006, 439(7077):666-669.
    [43]Liu J, Lu Y. Smart Nanomaterials Responsive to Multiple Chemical Stimuli with Controllable Cooperativity [J]. Advanced Materials,2006,18(13):1667-1671.
    [44]Huang C C, Huang Y F, Cao Z H, Tan W H, Chang H T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors [J]. Analytical Chemistry,2005,77(17):5735-5741.
    [45]Liu J W, Lu Y. Optimization of a Pb2+-directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+[J]. Chem Mater,2004,16(17):3231-3238.
    [46]Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing [J]. J Am Chem Soc,2005,127(36):12677-12683.
    [47]Liu C W, Huang C C, Chang H T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(Ⅱ) [J]. Langmuir,2008,24(15):8346-8350.
    [48]Wang Y L, Li D, Ren W, Liu Z J, Dong S J, Wang E K. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay [J]. Chem Commun, 2008,22):2520-2522.
    [49]Xue X J, Wang F, Liu X G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates [J]. J Am Chem Soc,2008,130(11):3244-3245.
    [50]Wei H, Li B, Li J, Wang E, Dong S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes [J]. Chem Commun,2007,0(36): 3735-3737.
    [51]Wang J, Wang L H, Liu X F, Liang Z Q, Song S P, Li W X, Li G X, Fan C H. A gold nanoparticle-based aptamer target binding readout for ATP assay [J]. Adv Mater,2007,19(22): 3943-3946.
    [52]Wang L H, Liu X F, Hu X F, Song S P, Fan C H. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers [J]. Chem Commun,2006,36):3780-3782.
    [53]Lv Z Z, Wei H, Li B L, Wang E K. Colorimetric recognition of the coralyne-poly(dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system [J]. Analyst,2009,134(8):1647-1651.
    [54]Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz P G. Organization of'nanocrystal molecules' using DNA [J]. Nature,1996,382(6592):609-611.
    [55]Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature,1996,382(6592):607-609.
    [56]Nykypanchuk D, Maye M M, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles [J]. Nature,2008,451(7178):549-552.
    [57]Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A. Gold Nanoparticles for Biology and Medicine [J]. Angewandte Chemie International Edition,2010, 49(19):3280-3294.
    [58]Dreaden E C, Alkilany A M, Huang X, Murphy C J, El-Sayed M A. The golden age:gold nanoparticles for biomedicine [J]. Chemical Society Reviews,2012,41(7):2740-2779.
    [59]Zheng M, Jagota A, Strano M S, Santos A P, Barone P, Chou S G, Diner B A, Dresselhaus M S, Mclean R S, Onoa G B, Samsonidze G G, Semke E D, Usrey M, Walls D J. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly [J]. Science,2003,302(5650): 1545-1548.
    [60]Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes [J]. Nat Protoc,2006,1(1):246-252.
    [61]Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C. Adenosine detection by using gold nanoparticles and designed aptamer sequences [J]. Analyst,2009,134(7):1355-1360.
    [62]Graham D, Mallinder B J, Smith W E. Surface-Enhanced Resonance Raman Scattering as a Novel Method of DNA Discrimination [J]. Angewandte Chemie International Edition,2000,39(6): 1061-1063.
    [63]Maxwell D J, Taylor J R, Nie S. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules [J]. Journal of the American Chemical Society,2002,124(32): 9606-9612.
    [64]Li H X, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles [J]. P Natl Acad Sci USA,2004,101(39): 14036-14039.
    [65]Li H X, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction [J]. J Am Chem Soc,2004,126(35): 10958-10961.
    [66]Nelson E M, Rothberg L J. Kinetics and Mechanism of Single-Stranded DNA Adsorption onto Citrate-Stabilized Gold Nanoparticles in Colloidal Solution [J]. Langmuir,2011,27(5): 1770-1777.
    [67]Liu J. Adsorption of DNA onto gold nanoparticles and graphene oxide:surface science and applications [J]. Phys Chem Chem Phys,2012,14(30):10485-10496.
    [68]Zhang X, Servos M R, Liu J. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles [J]. Langmuir,2012,28(8):3896-3902.
    [69]Huang C Z, Liao Q G, Gan L H, Guo F L, Li Y F. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique [J]. Anal Chim Acta,2007,604(2):165-169.
    [70]Yamane T, Davidson N. COMPLEXING OF DESOXYRIBONUCLEIC ACID (DNA) BY MERCURIC ION [J]. Journal of the American Chemical Society,1961,83(12):2599-2607
    [71]Mansy S, Tobias R S. Heavy metal-nucleotide reactions.4. nature of reaction between mercury(Ⅱ) and uridine of thymidine-vibrational sepctroscopic studies on binding to N(3), C(4)=O, and C(5) of uracil base [J]. Inorg Chem,1975,14(2):287-291.
    [72]Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A. Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes [J]. J Am Chem Soc,2006,128(7):2172-2173.
    [73]Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines [J]. Angew Chem Int Edit,2008,47(21): 3927-3931.
    [74]Li L, Li B X, Qi Y Y, Jin Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe [J]. Anal Bioanal Chem,2009,393(8):2051-2057.
    [75]Liu C W, Hsieh Y T, Huang C C, Lin Z H, Chang H T. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles [J]. Chem Commun,2008, 19):2242-2244.
    [76]Wang H, Wang Y X, Jin J Y, Yang R H. Gold Nanoparticle-Based Colorimetric and "Turn-On" Fluorescent Probe for Mercury(II) Ions in Aqueous Solution [J]. Anal Chem,2008, 80(23):9021-9028.
    [77]Xu X W, Wang J, Jiao K, Yang X R. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range [J]. Biosens Bioelectron,2009,24(10):3153-3158.
    [78]Chen Q, Tang W, Wang D Z, Wu X J, Li N, Liu F. Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles [J]. Biosens Bioelectron,2010,26(2): 575-579.
    [79]Zheng B, Cheng S, Liu W, Lam M H-W, Liang H. A simple colorimetric pH alarm constructed from DNA-gold nanoparticles [J]. Analytica Chimica Acta,2012,741 (0):106-113.
    [80]Chen C, Song G, Ren J, Qu X. A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation [J]. Chem Commun,2008,46: 6149-6151.
    [81]Zhang J, Wang L H, Pan D, Song S P, Boey F Y C, Zhang H, Fan C H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures [J]. Small,2008, 4(8):1196-1200.
    [82]Li B L, Du Y, Dong S J. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(Ⅰ) ions [J]. Anal Chim Acta,2009,644(1-2):78-82.
    [83]Yang C, Wang Y, Marty J L, Yang X R. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator [J]. Biosens Bioelectron,2011,26(5):2724-2727.
    [84]Cho K, Lee Y, Lee C-H, Lee K, Kim Y, Choi H, Ryu P-D, Lee S Y, Joo S-W. Selective Aggregation Mechanism of Unmodified Gold Nanoparticles in Detection of Single Nucleotide Polymorphism [J]. The Journal of Physical Chemistry C,2008,112(23):8629-8633.
    [85]Guieu V, Ravelet C, Perrier S, Zhu Z, Cayez S, Peyrin E. Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules [J]. Anal Chim Acta,2011,706(2):349-353.
    [86]Jin Y, Li H, Bai J. Homogeneous Selecting of a Quadruplex-Binding Ligand-Based Gold Nanoparticle Fluorescence Resonance Energy Transfer Assay [J]. Anal Chem,2009,81(14): 5709-5715.
    [87]Luo F, Zheng L, Chen S, Cai Q, Lin Z, Qiu B, Chen G. An aptamer-based fluorescence biosensor for multiplex detection using unmodified gold nanoparticles [J]. Chem Commun,2012, 48(51):6387-6389.
    [88]Travascio P, Witting P K, Mauk A G, Sen D. The Peroxidase Activity of a Hemin-DNA Oligonucleotide Complex:Free Radical Damage to Specific Guanine Bases of the DNA [J]. Journal of the American Chemical Society,2001,123(7):1337-1348.
    [89]Witting P K, Travascio P, Sen D, Mauk A G. A DNA Oligonucleotide-Hemin Complex Cleaves t-Butyl Hydroperoxide through a Homolytic Mechanism [J]. Inorg Chem,2001,40(19): 5017-5023.
    [90]Travascio P, Li Y F, Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex [J]. Chemistry & Biology,1998,5(9):505-517.
    [91]Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I. Lighting Up Biochemiluminescence by the Surface Self-Assembly of DNA-Hemin Complexes [J]. ChemBioChem,2004,5(3):374-379.
    [92]Ding C F, Li X L, Ge Y, Zhang S S. Fluorescence Detection of Telomerase Activity in Cancer Cells Based on Isothermal Circular Strand-Displacement Polymerization Reaction [J]. Analytical Chemistry,2010,82(7):2850-2855.
    [93]Li D, Shlyahovsky B, Elbaz J, Willner I. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates [J]. Journal of the American Chemical Society,2007,129(18):5804-5805.
    [94]Teller C, Shimron S, Willner 1. Aptamer-DNAzyme Hairpins for Amplified Biosensing [J]. Analytical Chemistry,2009,81 (21):9114-9119.
    [95]Elbaz J, Shlyahovsky B, Li D, Willner I. Parallel Analysis of Two Analytes in Solutions or on Surfaces by Using a Bifunctional Aptamer:Applications for Biosensing and Logic Gate Operations [J]. ChemBioChem,2008,9(2):232-239.
    [96]Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine [J]. Journal of the American Chemical Society,2002,124(33):9678-9679.
    [97]Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes [J]. Journal of the American Chemical Society,2004,126(5):1384-1387.
    [98]Altschuh D, Oncul S, Demchenko A P. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors [J]. Journal of Molecular Recognition,2006, 19(6):459-477.
    [99]Jhaveri S D, Kirby R, Conrad R, Maglott E J, Bowser M, Kennedy R T, Glick G, Ellington A D. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity [J]. Journal of the American Chemical Society,2000,122(11):2469-2473.
    [100]Lewis F D, Zhang Y F, Letsinger R L. Bispyrenyl excimer fluorescence:A sensitive oligonucleotide probe [J]. Journal of the American Chemical Society,1997,119(23):5451-5452.
    [101]Fang X H, Cao Z H, Beck T, Tan W H. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy [J]. Analytical Chemistry, 2001,73(23):5752-5757.
    [102]Liu Y, Lin C, Li H, Yan H. Aptamer-Directed Self-Assembly of Protein Arrays on a DNA Nanostructure [J]. Angewandte Chemie International Edition,2005,44(28):4333-4338.
    [103]Lin C, Katilius E, Liu Y, Zhang J, Yan H. Self-Assembled Signaling Aptamer DNA Arrays for Protein Detection [J]. Angewandte Chemie International Edition,2006,45(32):5296-5301.
    [104]Lin C X, Liu Y, Yan H. Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing [J]. Nano Lett,2007,7(2):507-512.
    [105]Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins [J]. Analytical Chemistry,2005,77(4):1147-1156.
    [106]Wang W, Chen C, Qian M X, Zhao X S. Aptamer biosensor for protein detection based on guanine-quenching [J]. Sensors and Actuators B:Chemical,2008,129(1):211-217.
    [107]Hamaguchi N, Ellington A, Stanton M. Aptamer Beacons for the Direct Detection of Proteins [J]. Analytical Biochemistry,2001,294(2):126-131.
    [108]Cao Z, Tan W. Molecular Aptamers for Real-Time Protein-Protein Interaction Study [J]. Chemistry-A European Journal,2005,11(15):4502-4508.
    [109]Sassolas A, Leca-Bouvier B D, Blum L J. DNA biosensors and microarrays [J]. Chem Rev, 2008,108(1):109-139.
    [110]Tyagi S, Kramer F R. Molecular beacons:Probes that fluoresce upon hybridization [J]. Nat Biotechnol,1996,14(3):303-308.
    [111]Broude N E. Stem-loop oligonucleotides:a robust tool for molecular biology and biotechnology [J]. Trends Biotechnol,2002,20(6):249-256.
    [112]Marras S A E, Tyagi S, Kramer F R. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes [J]. Clin Chim Acta,2006,363(1-2):48-60.
    [113]Tan W H, Wang K M, Drake T J. Molecular beacons [J]. Current Opinion in Chemical Biology,2004,8(5):547-553.
    [114]Tan L, Li Y, Drake T J, Moroz L, Wang K M, Li J, Munteanu A, Yang C Y J, Martinez K, Tan W H. Molecular beacons for bioanalytical applications [J]. Analyst,2005,130(7):1002-1005.
    [115]Levy M, Cater S F, Ellington A D. Quantum-Dot Aptamer Beacons for the Detection of Proteins [J]. ChemBioChem,2005,6(12):2163-2166.
    [116]Tang Z W, Mallikaratchy P, Yang R H, Kim Y M, Zhu Z, Wang H, Tan W H. Aptamer switch probe based on intramolecular displacement [J]. Journal of the American Chemical Society,2008, 130(34):11268-11269.
    [117]Nutiu R, Li Y. Structure-Switching Signaling Aptamers [J]. Journal of the American Chemical Society,2003,125(16):4771-4778.
    [118]Nutiu R, Li Y. Structure-Switching Signaling Aptamers:Transducing Molecular Recognition into Fluorescence Signaling [J]. Chemistry-A European Journal,2004,10(8):1868-1876.
    [119]Nutiu R, Li Y. In Vitro Selection of Structure-Switching Signaling Aptamers [J]. Angewandte Chemie International Edition,2005,44(7):1061-1065.
    [120]Vicens M C, Sen A, Vanderlaan A, Drake T J, Tan W. Investigation of Molecular Beacon Aptamer-Based Bioassay for Platelet-Derived Growth Factor Detection [J]. ChemBioChem,2005, 6(5):900-907.
    [121]Fang X, Sen A, Vicens M, Tan W. Synthetic DNA Aptamers to Detect Protein Molecular Variants in a High-Throughput Fluorescence Quenching Assay [J]. ChemBioChem,2003,4(9): 829-834.
    [122]Li J J, Fang X, Tan W. Molecular Aptamer Beacons for Real-Time Protein Recognition [J]. Biochemical and Biophysical Research Communications,2002,292(1):31-40.
    [123]Stojanovic M N, de Prada P, Landry D W. Aptamer-Based Folding Fluorescent Sensor for Cocaine [J]. Journal of the American Chemical Society,2001,123(21):4928-4931.
    [124]Merino E J, Weeks K M. Fluorogenic Resolution of Ligand Binding by a Nucleic Acid Aptamer [J]. Journal of the American Chemical Society,2003,125(41):12370-12371.
    [125]Wilk S J, Petrossian L, Goryll M, Thornton T J, Goodnick S M, Tang J M, Eisenberg R S. Integrated electrodes on a silicon based ion channel measurement platform [J]. Biosensors and Bioelectronics,2007,23(2):183-190.
    [126]Jiang Y, Fang X, Bai C. Signaling Aptamer/Protein Binding by a Molecular Light Switch Complex [J]. Analytical Chemistry,2004,76(17):5230-5235.
    [127]Wang J, Jiang Y, Zhou C, Fang X. Aptamer-Based ATP Assay Using a Luminescent Light Switching Complex [J]. Analytical Chemistry,2005,77(11):3542-3546.
    [128]Guo Q, Lu M, Marky L A, Kallenbach N R. Interaction of the dye ethidium-bromide with DNA containing guanine repeats [J]. Biochemistry,1992,31(9):2451-2455.
    [129]Zhou C, Jiang Y, Hou S, Ma B, Fang X, Li M. Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO [J]. Anal Bioanal Chem,2006,384(5):1175-1180.
    [130]Li B, Wei H, Dong S. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch [J]. Chemical Communications,2007,0(1):73-75.
    [131]Guo J-H, Zhu L-N, Kong D-M, Shen H-X. Triphenylmethane dyes as fluorescent probes for G-quadruplex recognition [J]. Talanta,2009,80(2):607-613.
    [132]He H-Z, Pui-Yan Ma V, Leung K-H, Shiu-Hin Chan D, Yang H, Cheng Z, Leung C-H, Ma D-L. A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP [J]. Analyst,2012,137(7):1538-1540.
    [133]Huang C-C, Chang H-T. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine [J]. Chemical Communications,2008,0(12):1461-1463.
    [134]Ikebukuro K, Kiyohara C, Sode K. Electrochemical detection of protein using a double aptamer sandwich [J]. Anal Lett,2004,37(14):2901-2909.
    [135]Polsky R, Gill R, Kaganovsky L, Willner I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules [J]. Analytical Chemistry,2006,78(7):2268-2271.
    [136]Wu Z S, Guo M M, Zhang S B, Chen C R, Jiang J H, Shen G L, Yu R Q. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers [J]. Analytical Chemistry,2007,79(7):2933-2939.
    [137]Bang G S, Cho S, Kim B-G. A novel electrochemical detection method for aptamer biosensors [J]. Biosensors and Bioelectronics,2005,21(6):863-870.
    [138]Radi A E, Sanchez J L A, Baldrich E, O'Sullivan C K. Reusable impedimetric aptasensor [J]. Analytical Chemistry,2005,77(19):6320-6323.
    [139]de-los-Santos-Alvarez N, Lobo-Castanon M J, Miranda-Ordieres A J, Tunon-Blanco P. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B [J]. Journal of the American Chemical Society,2007,129(13):3808-3809.
    [140]Liao W, Cui X T. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF [J]. Biosensors and Bioelectronics,2007,23(2):218-224.
    [141]So H M, Won K, Kim Y H, Kim B K, Ryu B H, Na P S, Kim H, Lee J O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements [J]. Journal of the American Chemical Society,2005,127(34):11906-11907.
    [142]Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors [J]. Analytical Chemistry,2007,79(2):782-787.
    [143]Yoon H, Kim J H, Lee N, Kim B G, Jang J. A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection [J]. ChemBioChem,2008,9(4):634-641.
    [144]Evtugyn G, Porfireva A, Ryabova M, Hianik T. Aptasensor for Thrombin Based on Carbon Nanotubes-Methylene Blue Composites [J]. Electroanalysis,2008,20(21):2310-2316.
    [145]Hu J, Zheng P C, Jiang J H, Shen G L, Yu R Q, Liu G K. Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy [J]. Anal Chem, 2009,81(1):87-93.
    [146]Wang Y L, Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection [J]. Chem Commun,2011,47(15):4394-4396.
    [147]Wang D, Tang W, Wu X, Wang X, Chen G, Chen Q, Li N, Liu F. Highly Selective Detection of Single-Nucleotide Polymorphisms Using a Quartz Crystal Microbalance Biosensor Based on the Toehold-Mediated Strand Displacement Reaction [J]. Analytical Chemistry,2012,84(16): 7008-7014.
    [148]Jiang L, Yuan R, Chai Y, Yuan Y, Bai L, Wang Y. An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods [J]. Analyst,2013,138(5):1497-1503.
    [149]Kong D-M, Xu J, Shen H-X. Positive Effects of ATP on G-Quadruplex-Hemin DNAzyme-Mediated Reactions [J]. Analytical Chemistry,2010,82(14):6148-6153.
    [150]Li T, Wang E, Dong S. G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin [J]. Chemical Communications,2008,0(31):3654-3656.
    [151]Jie G, Yuan J, Zhang J. Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of ATP [J]. Biosensors and Bioelectronics,2012, 31(1):69-76.
    [152]Li M, Zhang J, Suri S, Sooter L J, Ma D, Wu N. Detection of Adenosine Triphosphate with an Aptamer Biosensor Based on Surface-Enhanced Raman Scattering [J]. Analytical Chemistry, 2012,84(6):2837-2842.
    [153]Liu B, Cui Y, Tang D, Yang H, Chen G. Au(iii)-assisted core-shell iron oxide@poly(o-phenylenediamine) nanostructures for ultrasensitive electrochemical aptasensors based on DNase I-catalyzed target recycling [J]. Chemical Communications,2012,48(20):2624-2626.
    [154]Zhou X, Duan R, Xing D. Highly sensitive detection of protein and small molecules based on aptamer-modified electrochemiluminescence nanoprobe [J]. Analyst,2012,137(8):1963-1969.
    [155]Liu J H, Wang C Y, Jiang Y, Hu Y P, Li J S, Yang S, Li Y H, Yang R H, Tan W H, Huang C Z. Graphene Signal Amplification for Sensitive and Real-Time Fluorescence Anisotropy Detection of Small Molecules [J]. Analytical Chemistry,2013,85(3):1424-1430.
    [156]Zhao J, Lin F, Yi Y, Huang Y, Li H, Zhang Y, Yao S. Dual amplification strategy of highly sensitive thrombin amperometric aptasensor based on chitosan-Au nanocomposites [J]. Analyst, 2012,137(15):3488-3495.
    [157]Zhang H, Fang C, Zhang S. Ultrasensitive Electrochemical Analysis of Two Analytes by Using an Autonomous DNA Machine that Works in a Two-Cycle Mode [J]. Chemistry-A European Journal,2011,17(27):7531-7537.
    [158]Chen C, Zhao J, Jiang J, Yu R. A novel exonuclease Ⅲ-aided amplification assay for lysozyme based on graphene oxide platform [J]. Talanta,2012,101(0):357-361.
    [159]Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H-H. General Colorimetric Detection of Proteins and Small Molecules Based on Cyclic Enzymatic Signal Amplification and Hairpin Aptamer Probe [J]. Analytical Chemistry,2012,84(12):5309-5315.
    [160]Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I. Multiplexed Aptasensors and Amplified DNA Sensors Using Functionalized Graphene Oxide:Application for Logic Gate Operations [J]. Acs Nano,2012,6(4):3553-3563.
    [161]Liu X, Freeman R, Willner I. Amplified Fluorescence Aptamer-Based Sensors Using Exonuclease III for the Regeneration of the Analyte [J]. Chemistry-A European Journal,2012, 18(8):2207-2211.
    [162]Cai S, Sun Y, Lau C, Lu J. Sensitive chemiluminescence aptasensor based on exonuclease-assisted recycling amplification [J]. Analytica Chimica Acta,2013,761(0):137-142.
    [163]Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A [J]. Biosensors and Bioelectronics,2013,39(1):145-151.
    [164]Liu S, Wang C, Zhang C, Wang Y, Tang B. Label-Free and Ultrasensitive Electrochemical Detection of Nucleic Acids Based on Autocatalytic and Exonuclease Ⅲ-Assisted Target Recycling Strategy [J]. Analytical Chemistry,2013,85(4):2282-2288.
    [165]Liu S, Wang Y, Zhang C, Lin Y, Li F. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling [J], Chemical Communications,2013,49(23):2335-2337.
    [166]Zhang Y, Hu J, Zhang C-y. Sensitive Detection of Transcription Factors by Isothermal Exponential Amplification-Based Colorimetric Assay [J]. Analytical Chemistry,2012,84(21): 9544-9549.
    [167]Hu K, Liu J, Chen J, Huang Y, Zhao S, Tian J, Zhang G. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling forbioassays [J]. Biosensors and Bioelectronics,2013,42(0):598-602.
    [168]Jonstrup S P, Koch J, Kjems J. A microRNA detection system based on padlock probes and rolling circle amplification [J]. RNA,2006,12(9):1747-1752.
    [169]Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification [J]. Angewandte Chemie International Edition,2009,48(18):3268-3272.
    [170]Bi S, Zhang J, Hao S, Ding C, Zhang S. Exponential Amplification for Chemiluminescence Resonance Energy Transfer Detection of MicroRNA in Real Samples Based on a Cross-Catalyst Strand-Displacement Network [J]. Analytical Chemistry,2011,83(10):3696-3702.
    [171]Jiang Y, Li B, Chen X, Ellington A. Coupling Two Different Nucleic Acid Circuits in an Enzyme-Free Amplifier [J]. Molecules,2012,17(11):13211-13220.
    [172]Li Y, Zeng Y, Ji X, Li X, Ren R. Cascade signal amplification for sensitive detection of cancer cell based on self-assembly of DNA scaffold and rolling circle amplification [J]. Sensors and Actuators B:Chemical,2012,171-172(0):361-366.
    [173]Niu S, Qu L, Zhang Q, Lin J. Fluorescence detection of thrombin using autocatalytic strand displacement cycle reaction and a dual-aptamer DNA sandwich assay [J]. Analytical Biochemistry, 2012,421(2):362-367.
    [174]Yin B-C, Guan Y-M, Ye B-C. An ultrasensitive electrochemical DNA sensor based on the ssDNA-assisted cascade of hybridization reaction [J]. Chemical Communications,2012,48(35): 4208-4210.
    [175]Zheng A-X, Li J, Wang J-R, Song X-R, Chen G-N, Yang H-H. Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly [J]. Chemical Communications,2012,48(25):3112-3114.
    [176]Zheng A-X, Wang J-R, Li J, Song X-R, Chen G-N, Yang H-H. Enzyme-free fluorescence aptasensor for amplification detection of human thrombin via target-catalyzed hairpin assembly [J]. Biosensors and Bioelectronics,2012,36(1):217-221.
    [177]Wanunu M, Dadosh T, Ray V, Jin J M, McReynolds L, Drndic M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors [J]. Nat Nanotechnol,2010,5(11): 807-814.
    [178]Xiao Y, Dane K Y, Uzawa T, Csordas A, Qian J R, Soh H T, Daugherty P S, Lagally E T, Heeger A J, Plaxco K W. Detection of Telomerase Activity in High Concentration of Cell Lysates Using Primer-Modified Gold Nanoparticles [J]. Journal of the American Chemical Society,2010, 132(43):15299-15307.
    [179]Xu W, Xue X, Li T, Zeng H, Liu X. Ultrasensitive and Selective Colorimetric DNA Detection by Nicking Endonuclease Assisted Nanoparticle Amplification [J]. Angewandte Chemie International Edition,2009,48(37):6849-6852.
    [180]Climent E, Marcos M D, Martinez-Manez R, Sancen6n F, Soto J, Rurack K, Amor6s P. The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification [J]. Angewandte Chemie International Edition,2009,48(45):8519-8522.
    [181]Wu Z, Zhen Z, Jiang J H, Shen G L, Yu R Q. Terminal Protection of Small-Molecule-Linked DNA for Sensitive Electrochemical Detection of Protein Binding via Selective Carbon Nanotube Assembly [J]. Journal of the American Chemical Society,2009,131(34):12325-12332.
    [182]Zhu X L, Zhao J, Wu Y, Shen Z M, Li G X. Fabrication of a Highly Sensitive Aptasensor for Potassium with a Nicking Endonuclease-Assisted Signal Amplification Strategy [J]. Analytical Chemistry,2011,83(11):4085-4089.
    [183]Li J W J, Chu Y Z, Lee B Y H, Xie X L S. Enzymatic signal amplification of molecular beacons for sensitive DNA detection [J]. Nucleic Acids Research,2008,36(6):
    [184]Zhang D Y, Turberfield A J, Yurke B, Winfree E. Engineering entropy-driven reactions and networks catalyzed by DNA [J]. Science,2007,318(5853):1121-1125.
    [185]Yurke B, Turberfield A J, Mills J A P, Simmel F C, Neumann J L. A DNA-fuelled molecular machine made of DNA [J]. Nature,2000,406(6796):605-608.
    [186]Seelig G, Soloveichik D, Zhang D Y, Winfree E. Enzyme-Free Nucleic Acid Logic Circuits [J]. Science,2006,314(5805):1585-1588.
    [187]Zhang D Y, Winfree E. Control of DNA Strand Displacement Kinetics Using Toehold Exchange [J]. Journal of the American Chemical Society,2009,131(47):17303-17314.
    [188]Bowins R J, Mcnutt R H. Electrothermal Isotope-Dilution Inductively-Coupled Plasma-Mass Spectrometry Method for the Determination of Sub-Ng Ml(-1) Levels of Lead in Human Plasma [J]. J Anal Atom Spectrom,1994,9(11):1233-1236.
    [189]Wagner E P, Smith B W, Winefordner J D. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry [J], Anal Chem, 1996,68(18):3199-3203.
    [190]Baralkiewicz D, Kozka M, Gramowska H, Barbara T B, Wasinkiewicz K. Determination of lead in plants in controlling phytoremediation processes using slurry sampling electrothermal atomic absorption spectrometry [J]. International Journal of Environmental Analytical Chemistry, 2004,84(12):901-908.
    [191]Ganjali M R, Babaei L H, Badaei L H, Ziarani G M, Tarlani A. Novel method for the fast preconcentration and monitoring of a ppt level of lead and copper with a modified hexagonal mesoporous silica compound and inductively coupled plasma atomic emission spectrometry [J]. Anal Sci,2004,20(4):725-729.
    [192]Huang K W, Yu C J, Tseng W L. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles:Improving size distribution and minimizing interparticle repulsion [J]. Biosens Bioelectron,2010,25(5):984-989.
    [193]Wang Y, Wang J A, Yang F, Yang X R. Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme [J]. Microchim Acta,2010,171(1-2):195-201.
    [194]Wang Z D, Lee J H, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme [J]. Adv Mater,2008,20(17):3263-3267.
    [195]Kotch F W, Fettinger J C, Davis J T. A lead-filled G-quadruplex:Insight into the G-quartet's selectivity for Pb2+ over K+[J]. Org Lett,2000,2(21):3277-3280.
    [196]Smirnov I, Shafer R H. Lead is unusually effective in sequence-specific folding of DNA [J]. J Mol Biol,2000,296(1):1-5.
    [197]Jin R C, Wu G S, Li Z, Mirkin C A, Schatz G C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? [J]. J Am Chem Soc,2003,125(6):1643-1654.
    [198]Hardin C C, Perry A G, White K. Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids [J]. Biopolymers,2000,56(3):147-194.
    [199]Shim J W, Tan Q L, Gu L Q. Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity [J]. Nucleic Acids Res,2009,37(3):972-982.
    [200]Liu W, Zhu H, Zheng B, Cheng S, Fu Y, Li W, Lau T-C, Liang H. Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb2+[J]. Nucleic Acids Res,2012,40(9):4229-4236.
    [201]Gilbert D E, Feigon J. Multistranded DNA structures [J]. Current Opinion in Structural Biology,1999,9(3):305-314.
    [202]Majhi P R, Shafer R H. Characterization of an unusual folding pattern in a catalytically active guanine quadruplex structure [J]. Biopolymers,2006,82(6):558-569.
    [203]Mergny J L, Phan A T, Lacroix L. Following G-quartet formation by UV-spectroscopy [J]. Febs Lett,1998,435(1):74-78.
    [204]Yang J, Pong B K, Lee J Y, Too H P. Dissociation of double-stranded DNA by small metal nanoparticles [J]. J Inorg Biochem,2007,101(5):824-830.
    [205]Liu C W, Huang C C, Chang H T. Highly Selective DNA-Based Sensor for Lead(II) and Mercury(Ⅱ) Ions [J]. Anal Chem,2009,81(6):2383-2387.
    [206]Wang S, He F, Tang Y L, Li Y L, Zhu D B. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer:A platform for homogeneous potassium detection [J]. J Am Chem Soc,2005,127(35):12343-12346.
    [207]Zuker M. Mfold web server for nucleic acid folding and hybridization prediction [J]. Nucleic Acids Res,2003,31(13):3406-3415.
    [208]Kikin O, D'Antonio L, Bagga P S. QGRS Mapper:a web-based server for predicting G-quadruplexes in nucleotide sequences [J]. Nucleic Acids Res,2006,34(suppl 2):W676-W682.
    [209]Tang C F, Shafer R H. Engineering the quadruplex fold:Nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes [J]. J Am Chem Soc, 2006,128(17):5966-5973.
    [210]Zhou J, Wei C Y, Jia G Q, Wang X L, Feng Z C, Li C. Formation of i-motif structure at neutral and slightly alkaline pH [J]. Molecular Biosystems,2010,6(3):580-586.
    [211]Saha K, Agasti S S, Kim C, Li X, Rotello V M. Gold Nanoparticles in Chemical and Biological Sensing [J]. Chemical Reviews,2012,112(5):2739-2779.
    [212]Breaker R R. DNA aptamers and DNA enzymes [J]. Current Opinion in Chemical Biology, 1997,1(1):26-31.
    [213]Xiong C, Ling L. Label-free, sensitive detection of Hg(II) with gold nanoparticles by using dynamic light scattering technique [J]. Talanta,2012,89(0):317-321.
    [214]Wang P, Song Y, Zhao Y, Fan A. Hydroxylamine amplified gold nanoparticle-based aptameric system for the highly selective and sensitive detection of platelet-derived growth factor [J]. Talanta,2013,103(0):392-397.
    [215]Zuo X L, Xiao Y, Plaxco K W. High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices [J]. Journal of the American Chemical Society,2009,131(20): 6944-6945.
    [216]Lu N, Shao C, Deng Z. Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves [J]. Chemical Communications,2008,0(46): 6161-6163.
    [217]Zhang J, Wang L, Pan D, Song S, Boey F Y C, Zhang H, Fan C. Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures [J]. Small,2008,4(8): 1196-1200.
    [218]Kong D-M, Wang N, Guo X-X, Shen H-X.'Turn-on' detection of Hg2+ ion using a peroxidase-like split G-quadruplex-hemin DNAzyme [J]. Analyst,2010,135(3):545-549.
    [219]Xu X, Zhang J, Yang F, Yang X. Colorimetric logic gates for small molecules using split/integrated aptamers and unmodified gold nanoparticles [J]. Chemical Communications,2011, 47(33):9435-9437.
    [220]Wu C, Yan L, Wang C, Lin H, Wang C, Chen X, Yang C J. A general excimer signaling approach for aptamer sensors [J]. Biosensors and Bioelectronics,2010,25(10):2232-2237.
    [221]Dave N, Liu J. Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane [J]. Chemical Communications,2012,48(31): 3718-3720.
    [222]Chen J, Zhang J, Li J, Yang H-H, Fu F, Chen G. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments [J]. Biosensors and Bioelectronics,2010,25(5):996-1000.
    [223]Du Y, Guo S, Qin H, Dong S, Wang E. Target-induced conjunction of split aptamer as new chiral selector for oligopeptide on graphene-mesoporous silica-gold nanoparticle hybrids modified sensing platform [J]. Chemical Communications,2012,48(6):799-801.
    [224]Kashefi-Kheyrabadi L, Mehrgardi M A. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate [J]. Biosensors and Bioelectronics,2012, 37(1):94-98.
    [225]Chen J, Zeng L. Enzyme-amplified electronic logic gates based on split/intactaptamers [J]. Biosensors and Bioelectronics,2013,42(0):93-99.
    [226]Wang Q, Huang J, Yang X, Wang K, He L, Li X, Xue C. Surface plasmon resonance detection of small molecule using split aptamer fragments [J]. Sensors and Actuators B:Chemical, 2011,156(2):893-898.
    [227]Yang X, Huang J, Wang Q, Wang K, Yang L, Huo X. A one-step sensitive dynamic light scattering method for adenosine detection using split aptamer fragments [J]. Analytical Methods, 2011,3(1):59-61.
    [228]Shukoor M I, Altman M O, Han D, Bayrac A T, Ocsoy I, Zhu Z, Tan W. Aptamer-Nanoparticle Assembly for Logic-Based Detection [J]. ACS Applied Materials & Interfaces,2012,4(6):3007-3011.
    [229]Zhu J J, Zhou J J, Huang H P, Xuan J, Zhang J R. Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP [J]. Biosensors & Bioelectronics,2010,26(2):834-840.
    [230]Huizenga D E, Szostak J W. A DNA Aptamer That Binds Adenosine and ATP [J]. Biochemistry,1995,34(2):656-665.
    [231]Zhao W, Chiuman W, Lam J C F, McManus S A, Chen W, Cui Y, Pelton R, Brook M A, Li Y. DNA Aptamer Folding on Gold Nanoparticles:From Colloid Chemistry to Biosensors [J]. Journal of the American Chemical Society,2008,130(11):3610-3618.
    [232]Wang L H, Wang J, Liu X F, Liang Z Q, Song S P, Li W X, Li G X, Fan C H. A gold nanoparticle-based aptamer target binding readout for ATP assay [J]. Advanced Materials,2007, 19(22):3943-3946.
    [233]Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W. Aptamer Switch Probe Based on Intramolecular Displacement [J]. Journal of the American Chemical Society,2008, 130(34):11268-11269.
    [234]Zhang L, Wei H, Li J, Li T, Li D, Li Y, Wang E. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay [J]. Biosensors and Bioelectronics,2010,25(8): 1897-1901.
    [235]Zheng J, Li J, Jiang Y, Jin J, Wang K, Yang R, Tan W. Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch [J]. Analytical Chemistry,2011,83(17): 6586-6592.
    [236]Wang Y, Liu B. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene [J]. Analyst,2008,133(11):1593-1598.
    [237]Huang H P, Tan Y L, Shi J J, Liang G X, Zhu J J. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence [J]. Nanoscale,2010,2(4):606-612.
    [238]Chen Y, Jiang B Y, Xiang Y, Chai Y Q, Yuan R. Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels [J]. Chemical Communications,2011,47(27):7758-7760.
    [239]Zhao W, Ali M M, Brook M A, Li Y. Rolling Circle Amplification:Applications in Nanotechnology and Biodetection with Functional Nucleic Acids [J]. Angewandte Chemie International Edition,2008,47(34):6330-6337.
    [240]Cheng W, Yan F, Ding L, Ju H, Yin Y. Cascade Signal Amplification Strategy for Subattomolar Protein Detection by Rolling Circle Amplification and Quantum Dots Tagging [J]. Analytical Chemistry,2010,82(8):3337-3342.
    [241]Shi C, Zhao C, Guo Q, Ma C. Entropy-driven molecular switch and signal amplification for homogeneous SNPs detection [J]. Chemical Communications,2011,47(10):2895-2897.
    [242]Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V. Photosensitized Breakage and Damage of DNA by CdSe-ZnS Quantum Dots [J]. The Journal of Physical Chemistry B,2008, 112(32):10005-10011.
    [243]Bhatt N, Huang P-J J, Dave N, Liu J. Dissociation and Degradation of Thiol-Modified DNA on Gold Nanoparticles in Aqueous and Organic Solvents [J]. Langmuir,2011,27(10):6132-6137.
    [244]Omabegho T, Sha R, Seeman N C. A Bipedal DNA Brownian Motor with Coordinated Legs [J]. Science,2009,324(5923):67-71.
    [245]Frezza B M, Cockroft S L, Ghadiri M R. Modular multi-level circuits from immobilized DNA-Based logic gates [J]. Journal of the American Chemical Society,2007,129(48): 14875-14879.
    [246]Soloveichik D, Seelig G, Winfree E. DNA as a universal substrate for chemical kinetics [J]. Proceedings of the National Academy of Sciences,2010,107(12):5393-5398.
    [247]Ren R, Yu Z, Zou Y, Zhang S. Enhancing the Sensitivity of Aptameric Detection of Lysozyme with a "Feed-Forward" Network of DNA-Related Reaction Cycles [J]. Chemistry-A European Journal,2012,18(44):14201-14209.
    [248]Zhang D. Towards Domain-Based Sequence Design for DNA Strand Displacement Reactions DNA Computing and Molecular Programming [M]//SAKAKIBARA Y, MI Y. Springer Berlin/Heidelberg.2011:162-175.
    [249]Krishnan Y, Simmel F C. Nucleic Acid Based Molecular Devices [J]. Angewandte Chemie International Edition,2011,50(14):3124-3156.
    [250]Zhang S, Yan Y, Bi S. Design of Molecular Beacons as Signaling Probes for Adenosine Triphosphate Detection in Cancer Cells Based on Chemiluminescence Resonance Energy Transfer [J]. Analytical Chemistry,2009,81(21):8695-8701.
    [251]Zhen S J, Chen L Q, Xiao S J, Li Y F, Hu P P, Zhan L, Peng L, Song E Q, Huang C Z. Carbon Nanotubes as a Low Background Signal Platform for a Molecular Aptamer Beacon on the Basis of Long-Range Resonance Energy Transfer [J]. Analytical Chemistry,2010,82(20): 8432-8437.
    [252]He Y, Wang Z-G, Tang H-W, Pang D-W. Low background signal platform for the detection of ATP:When a molecular aptamer beacon meets graphene oxide [J]. Biosensors and Bioelectronics,2011,29(1):76-81.
    [253]Zhang Z, Sharon E, Freeman R, Liu X, Willner I. Fluorescence Detection of DNA, Adenosine-5'-Triphosphate (ATP), and Telomerase Activity by Zinc(Ⅱ)-Protoporphyrin IX/G-Quadruplex Labels [J]. Analytical Chemistry,2012,84(11):4789-4797.
    [1]Sassolas A, Blum L J, Leca-Bouvier B D. Homogeneous assays using aptamers [J]. Analyst, 2011,136(2):257-274.
    [2]Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles [J]. J Am Chem Soc,2003,125(22):6642-6643.
    [3]Travascio P, Witting P K, Mauk A G, Sen D. The Peroxidase Activity of a Hemin-DNA Oligonucleotide Complex:Free Radical Damage to Specific Guanine Bases of the DNA [J]. Journal of the American Chemical Society,2001,123(7):1337-1348.
    [4]Altschuh D, Oncul S, Demchenko A P. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors [J]. Journal of Molecular Recognition,2006, 19(6):459-477.
    [5]Polsky R, Gill R, Kaganovsky L, Willner I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules [J]. Analytical Chemistry,2006,78(7):2268-2271.
    [6]Hu J, Zheng P C, Jiang J H, Shen G L, Yu R Q, Liu G K. Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy [J]. Anal Chem, 2009,81(1):87-93.
    [7]Liu B, Cui Y, Tang D, Yang H, Chen G. Au(iii)-assisted core-shell iron oxide@poly(o-phenylenediamine) nanostructures for ultrasensitive electrochemical aptasensors based on DNase I-catalyzed target recycling [J]. Chemical Communications,2012,48(20):2624-2626.
    [8]Zhang H, Fang C, Zhang S. Ultrasensitive Electrochemical Analysis of Two Analytes by Using an Autonomous DNA Machine that Works in a Two-Cycle Mode [J]. Chemistry-A European Journal,2011,17(27):7531-7537.
    [9]Chen C, Zhao J, Jiang J, Yu R. A novel exonuclease Ⅲ-aided amplification assay for lysozyme based on graphene oxide platform [J]. Talanta,2012,101(0):357-361.
    [10]Jiang Y, Li B, Chen X, Ellington A. Coupling Two Different Nucleic Acid Circuits in an Enzyme-Free Amplifier [J]. Molecules,2012,17(11):13211-13220.
    [11]Niu S, Qu L, Zhang Q, Lin J. Fluorescence detection of thrombin using autocatalytic strand displacement cycle reaction and a dual-aptamer DNA sandwich assay [J]. Analytical Biochemistry, 2012,421(2):362-367.
    [12]Bi S, Zhang J, Hao S, Ding C, Zhang S. Exponential Amplification for Chemiluminescence Resonance Energy Transfer Detection of MicroRNA in Real Samples Based on a Cross-Catalyst Strand-Displacement Network [J]. Analytical Chemistry,2011,83(10):3696-3702.
    [13]Yin B-C, Guan Y-M, Ye B-C. An ultrasensitive electrochemical DNA sensor based on the ssDNA-assisted cascade of hybridization reaction [J]. Chemical Communications,2012,48(35): 4208-4210.
    [14]Wang Y, Wang J A, Yang F, Yang X R. Spectrophotometric detection of lead(Ⅱ) ion using unimolecular peroxidase-like deoxyribozyme [J]. Microchim Acta,2010,171(1-2):195-201.
    [15]Li H X, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction [J]. J Am Chem Soc,2004,126(35): 10958-10961.
    [16]Zhang D Y, Turberfield A J, Yurke B, Winfree E. Engineering entropy-driven reactions and networks catalyzed by DNA [J]. Science,2007,318(5853):1121-1125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700