用户名: 密码: 验证码:
Gibberella intermedia腈水解酶的克隆、鉴定及分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腈水解酶是腈水解酶超级家族中的一种重要催化剂,它能将腈类化合物中的腈基直接转化为羧基。在有机酸的生物合成、聚合物的表面修饰、腈污染物的生物除污中具有重要应用。然而,腈水解酶的应用开发仍受到诸多因素限制,如酶品种较少、催化活力不够高、稳定性较差等问题,此外,目前多数研究主要围绕细菌腈水解酶展开,真菌腈水解酶的潜力远未得到开发。这些因素阻碍了腈水解酶在工业生物催化领域的发展。为此,本文以真菌腈水解酶为研究对象,开展了从理论到应用研究的一系列工作。
     本研究首先分别以3-氰基吡啶和甘氨腈为唯一氮源从环境样品中进行产腈水解酶真菌的筛选,通过施加选择性压力的两轮富集培养以及简单快速的苯酚-次氯酸钠法初筛及精确的HPLC方法最终筛选,最后从初筛得到的81株腈转化酶产生菌中获得一株具有最高3-氰基吡啶转化活力以及较高热稳定性的真菌CA3-1用于后续研究。采用分子生物学手段对该真菌菌株进行鉴定和系统进化分析,确认该菌株为Gibberellaintermedia CA3-1。该菌株现保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.4903。对G. intermedia CA3-1的腈化合物催化特征进行了初步考察。结果证明该真菌拥有较广泛的底物谱和良好的热稳定性,能转化利用各类腈化合物尤其3-氰基吡啶和脂肪族腈化合物表现出极高的特异性;在30°C,40°C和50°C下的半衰期分别为231.1h,72.9h和6.4h;在5%(v/v)的丙醇中仍能保留较高酶活;50mmol·L-13-氰基吡啶能在30min内被转化完全,同时产生约<5%的烟酰胺。
     鉴于筛选获得的G. intermedia CA3-1对腈类化合物的生物转化表现出较大潜力,利用基因重组技术对该菌株中所包含的真菌腈水解酶基因进行克隆和异源表达。采用反转录PCR的方法,从G. intermedia CA3-1野生菌的RNA通过反转录PCR扩增cDNA序列,并进一步PCR获得真菌腈水解酶的编码基因。开放读码框由963bp碱基所组成,共编码320个氨基酸,理论分子量为35.94kDa。该真菌腈水解酶基因与G. moniliformis(ABF83489)的假定腈水解酶基因具有97%的同源性,与其他各类已报道的细菌及真菌腈水解酶同源性均低于40%。将目的基因转入表达宿主Escherichia coli Rosetta-gami(DE3),成功构建产真菌腈水解酶的重组菌株E. coli Rosetta-gami (DE3)/pET28a(+)-Nit,重组菌表现出较好的腈化合物水解活力,以3-氰基吡啶为底物时游离菌体的比酶活能达到0.5U·mg-1,游离细胞在30°C、40°C和50°C下的半衰期t1/2分别为24.75h,2.55h和1.34h。
     对重组酶进行分离纯化和酶学表征。通过Ni-NTA琼脂糖凝胶柱对重组酶进行分离纯化,得到了电泳纯的腈水解酶蛋白,实际分子量约为37.0kDa;并对纯化酶的酶学性质进行了研究。其最适反应条件为温度45°C和pH7.8;重组真菌腈水解酶能水解脂肪族和芳香族腈化合物,尤其对3-氰基吡啶和4-氰基吡啶特异性较高;以3-氰基吡啶为底物的动力学参数Vmax和Km分别为0.81μmol·min-1·mg-1和12.11mmol·L-1。采用重叠延伸PCR技术确立Glu-45,Lys-127和Cys-162为G. intermedia CA3-1腈水解酶的催化活性中心。
     为提高G. intermedia腈水解酶的应用性能,通过基因工程手段对该酶进行分子改造。采用点饱和突变的方式对G. intermedia CA3-1腈水解酶活性中心附近的128位异亮氨酸及161位天冬酰胺残基进行饱和突变改造,构建了这两个位点的饱和突变库,筛选获得多株比酶活提高、酰胺生成量降低的突变株;选取其中酶活提高和酰胺降低幅度较为显著的2株突变株I128V和N161Q,进行进一步的组合突变,成功构建了组合突变株I128L-N161Q,组合突变株的酶活进一步提高、酰胺生成相应减少;研究了3株突变株游离细胞的热稳定性,结果表明,单点突变株的稳定性均有明显提高,尤其是在30°C和40°C情况下,然而,组合突变并未导致稳定性的进一步提高,突变导致酶在酸性pH条件下的酶活降低,碱性pH条件下的酶活则有一定提升,突变酶I128L和N161Q依然拥有广泛的作用pH范围,而I128L-N161Q作用范围相比野生型则相对变窄;I128L和N161Q的最适反应温度有所提高均为50°C,突变酶I128L-N161Q的最适反应温度仍不变;突变酶的底物谱发生了一定改变,尤其是对4-氰基吡啶的活性大幅提高,达到40%以上;突变导致酶的催化效率也有不同程度提高。
     为充分挖掘其应用潜能,进行了G. intermedia腈水解酶突变体的应用研究。采用复合固定化的方式对腈水解酶游离细胞进行固定化以考察其应用潜力。选取了壳聚糖和聚乙烯醇这两种材料进行包埋固定能获得较佳的酶活回收和机械强度,固定条件为在8%的PVA浓度、4%的壳聚糖浓度下进行固定,固化操作在6%的三聚磷酸钠的饱和硼酸溶液中进行。复合固定化细胞在30°C和40°C下的热稳定性相比游离细胞提高了2倍以上;固定化还导致催化剂在4°C和-20°C的贮藏稳定性显著提高。转化不同浓度3-氰基吡啶的结果表明,以100mmol·L-13-氰基吡啶为底物时表现出最高酶活力。采用底物流加模式,通过固定化细胞进行生物转化,经18批次的100mmol·L-1底物流加,最终在525min-1转化时间内累积产物浓度达到208g·L。通过分批转化模式能进一步促进烟酸产量,利用批次提升至22次。
Nitrilases are an important biocatalyst in the nitrilase superfamily, which can directlyconvert a wide range of nitrile compounds into corresponding carboxylic acids. Thus theenzyme is well applied in organic acid biosynthesis, surface modification of polyacrylonitrileand bioremediation of high toxic nitrile wastes. However, its application might be hindered byseveral limitations, including less variety, low catalytic activity, poor operational stability, andso on. On the other hand, conventional studies mainly focused on the bacterial nitrilase andthe potential of fungal nitrilase has been far from being fully explored. These factors becamethe barrier to the utilization of nitrilase in industrial biocatalysis. In this study, fungal nitrilaseis selected as the research object and a series of relevant works are carried out as follows.
     Isolation of nitrilase-producing fungus from environmental samples was firstly performedwith3-cyanopyridine and glycinonitrile as the sole nitrogen source in the present study. Afungus CA3-1displaying high3-cyanopyridine hydrolyzing activity and good thermostabilitywas isolated from81strains through two rounds of enrichment culture, subsequent primaryscreening with phenol-hypochlorite method and final screening with HPLC method. Thisfungal strain was designated as Gibberella intermedia CA3-1using molecular identification,and phylogenetic analysis of this strain was also performed. The strain was deposited in theChina General Microbiological Culture Collection Center and the accession number isCGMCC4903. The catalytic properties of G. intermedia resting cells were determined.Results showed that this fungus showed a wide substrate spectrum with high specificity forheterocyclic and aliphatic nitriles. It also displayed good thermostability and the half-lives at30°C,40°C, and50°C were231.1h,72.9h, and6.4h, respectively. It remained extremelyactive in5%(v/v) propanol.3-Cyanopyridine (50mmol·L-1) was hydrolyzed into nicotinicacid within30min, whereas only less than5%of nicotinamide was detected.
     Therefore, cloning and heterologous expression of fungal nitrilase gene was carried outusing recombinant DNA technology due to the catalytic potential of this strain for nitrilecompounds. Partial cDNA sequence was amplified from the total RNA of wild Gibberellaintermedia through reverse transcription-PCR. A coding gene of fungal nitrilase wassubsequently cloned through further PCR from cDNA. The open reading frame consisted of963bp and potentially encoded a protein of320amino acid residues with a theoreticalmolecular mass of35.94kDa. The fungal nitrilase from G. intermedia CA3-1showed97%identity with the putative nitrilase from G. moniliformis (ABF83489). The identities of G.intermedia CA3-1nitrilase gene to the other reported nitrilases were lower than40%. Theencoding gene was transformed into E. coli Rosetta-gami (DE3) and recombinant strain E.coli Rosetta-gami (DE3)/pET28a(+)-Nit was successfully constructed. The recombinant straindisplayed good nitrile converting activity and specific activity of resting cells could reach upto0.5U·mg-1with3-cyanopyridine as the substrate. The half-lives of resting cells at30°C,40°C, and50°C were24.75h,2.55h, and1.34h, respectively.
     Purification and characterization of recombinant nitrilase was studied. The recombinantprotein was purified to electrophoretic homogeneity and the actual molecular mass was about 37.0kDa. The purified enzyme exhibited optimal activity at45°C and pH7.8. This nitrilasewas specific towards aliphatic and aromatic nitriles, especially3-and4-cyanopyridine. Thekinetic parameters Vmaxand Kmfor3-cyanopyridine were determined to be0.81μmol·min-1·mg-1and12.11mmol·L-1through Hanes-Woolf plot, respectively. On the otherhand, the catalytic triad (Glu-45, Lys-127, and Cys-162) was proposed and confirmed byoverlap extension PCR.
     G. intermedia nitrilase was modified at the gene level through gene engineering approachesin order to improve its enzymatic properties in catalytic application. Site saturationmutagenesis of128-Ile and161-Asn near the active site was conducted to improve thespecific activity and reducing the amide formation of G. intermedia CA3-1nitrilase. The twomutant libraries were constructed and several positive mutants were obtained. Two mostsignificant mutants I128V and N161Q were selected for further study. And double mutationswere subsequently introduced to construct mutant I128L-N161Q, which supported higherspecific activity and lower amide formation. The theremostability of all three mutants wasobviously improved compared with wild-type nitrilase, especially at30°C and40°C. However,double mutation did not further improve thermostability on the basis of single mutation.I128V and N161Q still exhibited wide reaction pH range, while I128L-N161Q becamerelatively narrow. The reaction temperature of I128V and N161Q was increased to50°Csimultaneously and I128L-N161Q remained the same. Mutations led to obvious changes ofsubstrate spectrum, especially for4-cyanopyridine, which resulted in an increase of relativeactivity by more that40%. Also, the catalytic efficiency of mutants was improved.
     The application studies of G. intermedia nitrilase mutant were performed to fully explore itsapplication potential. Complex immobilization of resting cells harboring nitrilase was utilizedto evaluate the application potential of immobilized nitrilase. Chitosan and PVA were selectedfor entrapment experiment, and acceptable residual activity and mechanical strength wereobserved. The immobilization conditions were8%of PVA and4%of chitosan, and theentrapped beads were maintained in saturated borate solution containing6%of sodiumtripolyphosphate. Interestingly, the thermostability of immobilized cells at30°C and40°Cwas improved by over100%. Also, immobilization led to obvious improvement of storagestability at4°C and-20°C. Conversion of3-cyanopyridine with different concentrationsdemonstrated that100mM3-cyanopyridine in the reaction mixture was the optimumconcentration of substrate. Fed-batch reaction using immobilized cells as the catalyst wascarried out for bioconversion of3-cyanopyridine. Finally,208g·L-1nicotinic acid wasobtained after18feedings (100mmol·L-1) within525min. Repetitive batch reaction modecould further improve nicotinic acid production through22feedings.
引文
1Clark JH. Chemistry goes green[J]. Nat Chem,2009,1(1):12-13
    2Noyori R. Synthesizing our future[J]. Nat Chem,2009,1(1):5-6
    3Wohlgemuth R. Biocatalysis-key to sustainable industrial chemistry[J]. Curr Opin Biotechnol,2010,21(6):713-724
    4Sheldon RA. E factors, green chemistry and catalysis: an odyssey[J]. Chem Commun,2008,29:3352-3365
    5Koeller KM, Wong CH. Enzymes for chemical synthesis[J]. Nature,2001,409(6817):232-240
    6Ran N, Zhao L, Chen Z, et al. Recent applications of biocatalysis in developing green chemistryfor chemical synthesis at the industrial scale[J]. Green Chem,2008,10(4):361-372
    7Schulze B, Wubbolts MG. Biocatalysis for industrial production of fine chemicals[J]. Curr OpinBiotechnol,1999,10:609-615
    8Schmid A, Dordick JS, Hauer B, et al. Industrial biocatalysis today and tomorrow[J]. Nature,2001,409:258-266
    9Tao J, Xu JH. Biocatalysis in development of green pharmaceutical processes[J]. Curr Opin ChemBiol,2009,13(1):43-50
    10Savile CK, Janey JM, Mundorff EC, et al. Biocatalytic asymmetric synthesis of chiral aminesfrom ketones applied to sitagliptin manufacture[J]. Science,2010,329(5989):305-30911徐建妙,郑裕国,沈寅初.腈水解酶的来源、结构、作用机制及其应用[J].微生物学通报,2005,32(5):141-146
    12Sanderson K. Chemistry: Enzyme expertise[J]. Nature,2011,471:397-398
    13Banerjee A, Sharma R, Banerjee UC. The nitrile-degrading enzymes: current status and futureprospects[J]. Appl Microbiol Biotechnol,2002,60:33-44
    14Rey P, Rossi JC, Taillades J, et al. Hydrolysis of nitriles using an immobilized nitrilase:Applications to the synthesis of methionine hydroxy analogue derivatives[J]. J Agric Food Chem,2004,52(26):8155-8162
    15Mylerova V, Martinkova L. Synthetic applications of nitrile-converting enzymes[J]. Curr OrgChem,2003,7(13):1279-1295
    16Veselá A, Franc M, Pelantová H, et al. Hydrolysis of benzonitrile herbicides by soilactinobacteria and metabolite toxicity[J]. Biodegradation,2010,21(5):761-770
    17Zhou ZM, Hashimoto Y, Kobayashi M. Nitrile degradation by Rhodococcus: Useful microbialmetabolism for industrial productions[J]. Actinomycetologica,2005,19(1):18-26
    18Thimann KV, Mahadevan S. Nitrilase. I. Occurrence, preparation, and general properties of theenzyme[J]. Arch Biochem Biophys,1964,105(1):133-141
    19Gong JS, Lu ZM, Li H, et al. Nitrilases in nitrile biocatalysis: Recent progress and forthcomingresearch[J]. Microb Cell Fact,2012,11:142
    20Shaw NM, Robins KT, Kiener A. Lonza:20years of biotransformations[J]. Adv Synth Catal,2003,345(4):425-435
    21Brady D, Beeton A, Zeevaart J, et al. Characterisation of nitrilase and nitrile hydratasebiocatalytic systems[J]. Appl Microbiol Biotechnol,2004,64(1):76-85
    22Kobayashi M, Shimizu S. Versatile nitrilases: Nitrile-hydrolyzing enzymes[J]. FEMS MicrobiolLett,1994,120(3):217-224
    23Robinson WG, Hook RH. Ricinine nitrilase: I. Reaction product and substrate specificity[J]. JBiol Chem,1964,239:4257-4262
    24Hook RH, Robinson WG. Ricinine nitrilase: II. Purification and properties[J]. J Biol Chem,1964,239:4263-4267
    25Harper DB. Microbial metabolism of aromatic nitriles: enzymology of C-N cleavage by Nocardiasp.(Rhodochrous group) N.C.I.B.11216[J]. Biochem J,1977,165:309-319
    26Gradley ML, Deverson CJF, Knowles CJ. Asymmetric hydrolysis ofR-(-),S(+)-2-methylbutyronitrile by Rhodococcus rhodochrous NCIMB11216[J]. Arch Microbiol,1994,161:246-251
    27Yanase H, Sakai T, Tonomura K. Purification, crystallization and some properties ofβ-cyano-L-alanine-degrading enzyme in Pseudomonas sp.13[J]. Agric Biol Chem,1983,47(3):473-482
    28Macadam AM, Knowles CJ. The stereospecific bioconversion of α-aminopropionitrile toL-alanine by an immobilised bacterium isolated from soil[J]. Biotechnol Lett,1985,7(12):865-870
    29Mathew CD, Nagasawa T, Kobayashi M, et al. Nitrilase-catalyzed production of nicotinic acidfrom3-cyanopyridine in Rhodococcus rhodochrous J1[J]. Appl Environ Microbiol,1988,54(4):1030-1032
    30Kobayashi M, Nagasawa T, Yamada H. Nitrilase of Rhodococcus rhodochrous J1: Purificationand characterization[J]. Eur J Biochem,1989,182(2):349-356
    31Lévy-Schil S, Soubrier F, Crutz-Le Coq AM, et al. Aliphatic nitrilase from a soil-isolatedComamonas testosteroni sp.: gene cloning and overexpression, purification and primary structure[J]. Gene,1995,161(1):15-20
    32Nagasawa T, Mauger J, Yamada H. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalisJM3: Purification and characterization[J]. Eur J Biochem,1990,194(3):765-772
    33Yamamoto K, Komatsu Ki. Purification and characterization of nitrilase responsible for theenantioselective hydrolysis from Acinetobacter sp. AK226[J]. Agric Biol Chem,1991,55(6):1459-1466
    34Yamamoto K, Fujimatsu I, Komatsu K-I. Purification and characterization of the nitrilase fromAlcaligenes faecalis ATCC8750responsible for enantioselective hydrolysis of mandelonitrile[J]. JFerment Bioeng,1992,73(6):425-430
    35Bhalla TC, Miura A, Wakamoto A, et al. Asymmetric hydrolysis of α-aminonitriles to opticallyactive amino acids by a nitrilase of Rhodococcus rhodochrous PA-34[J]. Appl Microbiol Biotechnol,1992,37:184-190
    36Kobayashi M, Yanaka N, Nagasawa T, et al. Purification and characterization of a novel nitrilaseof Rhodococcus rhodochrous K22that acts on aliphatic nitriles[J]. J Bacteriol,1990,172(9):4807-4815
    37Stalker DM, Malyj LD, McBride KE. Purification and properties of a nitrilase specific for theherbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene[J]. J Biol Chem,1988,263(13):6310-6314
    38Almatawah QA, Cramp R, Cowan DA. Characterization of an inducible nitrilase from athermophilic bacillus[J]. Extremophiles,1999,3:283-291
    39Hoyle AJ, Bunch AW, Knowles CJ. The nitrilases of Rhodococcus rhodochrous NCIMB11216[J]. Enzyme Microb Technol,1998,23:475-482
    40Layh N, Parratt J, Willetts A. Characterization and partial purification of an enantioselectivearylacetonitrilase from Pseudomonas fluorescens DSM7155[J]. J Mol Catal B Enzym,1998,5(5-6):467-474
    41Bhalla TC, Kumar H. Nocardia globerula NHB-2: a versatile nitrile-degrading organism[J]. CanJ Microbiol,2005,51:705-708
    42Banerjee A, Kaul P, Banerjee U. Purification and characterization of an enantioselectivearylacetonitrilase from Pseudomonas putida[J]. Arch Microbiol,2006,184(6):407-418
    43Mueller P, Egorova K, Vorgias CE, et al. Cloning, overexpression, and characterization of athermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi[J]. Protein Expr Purif,2006,47(2):672-681
    44Chauhan S, Wu S, Blumerman S, et al. Purification, cloning, sequencing and over-expression inEscherichia coli of a regioselective aliphatic nitrilase from Acidovorax facilis72W[J]. Appl MicrobiolBiotechnol,2003,61(2):118-122
    45Prasad S, Misra A, Jangir V, et al. A propionitrile-induced nitrilase of Rhodococcus sp. NDB
    1165and its application in nicotinic acid synthesis[J]. World J Microbiol Biotechnol,2007,23(3):345-353
    46Zhu D, Mukherjee C, Biehl ER, et al. Discovery of a mandelonitrile hydrolase fromBradyrhizobium japonicum USDA110by rational genome mining[J]. J Biotechnol,2007,129:645-650
    47Alonso FOM, Oestreicher EG, Antunes OAC. Production of enantiomerically pureD-phenylglycine using Pseudomonas aeruginosa10145as biocatalyst[J]. Braz J Chem Eng,2008,25:1-8
    48Chmura A, Shapovalova AA, van Pelt S, et al. Utilization of arylaliphatic nitriles byhaloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils[J]. Appl Microbiol Biotechnol,2008,81:371-378
    49Zheng YG, Chen J, Liu ZQ, et al. Isolation, identification and characterization of Bacillus subtilisZJB-063, a versatile nitrile-converting bacterium[J]. Appl Microbiol Biotechnol,2008,77:985-993
    50Zhang ZJ, Xu JH, He YC, et al. Cloning and biochemical properties of a highly thermostable andenantioselective nitrilase from Alcaligenes sp. ECU0401and its potential for (R)-()-mandelic acidproduction[J]. Bioproc Biosyst Eng,2011,34(3):315-322
    51Kim JS, Tiwari M, Moon HJ, et al. Identification and characterization of a novel nitrilase fromPseudomonas fluorescens Pf-5[J]. Appl Microbiol Biotechnol,2009,83(2):273-283
    52Nigam VK, Khandelwal AK, Gothwal RK, et al. Nitrilase-catalysed conversion of acrylonitrileby free and immobilized cells of Streptomyces sp.[J]. J Biosci,2009,34(1):21-26
    53Shen M, Zheng YG, Shen YC. Isolation and characterization of a novel Arthrobacternitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid[J]. Process Biochem,2009,44(7):781-785
    54Dong HP, Liu ZQ, Zheng YG, et al. Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with(R)-enantioselective hydrolysis of racemic ethyl4-cyano-3-hydroxybutyate by Rhodococcus erythropolis[J].Appl Microbiol Biotechnol,2010,87(4):1335-1345
    55Williamson DS, Dent KC, Weber BW, et al. Structural and biochemical characterization of anitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8[J]. Appl Microbiol Biotechnol,2010,88(1):143-153
    56Xue YP, Xu SZ, Liu ZQ, et al. Enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrilefor production of (R)-(-)-mandelic acid by a newly isolated mutant strain[J]. J Ind Microbiol Biotechnol,2011,38(2):337-345
    57Nageshwar YVD, Sheelu G, Shambhu RR, et al. Optimization of nitrilase production fromAlcaligenes faecalis MTCC10757(IICT-A3): effect of inducers on substrate specificity[J]. BioprocBiosyst Eng,2011,34(5):515-523
    58Harper DB. Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusariumsolani[J]. Biochem J,1977,167(3):685-692
    59Goldlust A, Bohak Z. Induction, purification, and characterization of the nitrilase of Fusariumoxysporum f sp. melonis[J]. Biotechnol Appl Biochem,1989,11(6):581-601
    60Winkler M, Kaplan O, Vejvoda V, et al. Biocatalytic application of nitrilases from Fusariumsolani O1and Aspergillus niger K10[J]. J Mol Catal B Enzym,2009,59:243-247
    61Kaplan O, Vejvoda V, Plíhal O, et al. Purification and characterization of a nitrilase fromAspergillus niger K10[J]. Appl Microbiol Biotechnol,2006,73(3):567-575
    62Vejvoda V, Kaplan O, Bezouska K, et al. Purification and characterization of a nitrilase fromFusarium solani O1[J]. J Mol Catal B Enzym,2008,50(2-4):99-106
    63Vejvoda V, Kubác D, Davidová A, et al. Purification and characterization of nitrilase fromFusarium solani IMI196840[J]. Process Biochem,2010,45(7):1115-1120
    64Choi SY, Goo YM. Hydrolysis of the nitrile group in α-aminophenylacetonitrile by nitrilase;Development of a new biotechnology for stereospecific production of S-α-phenylglycine[J]. Arch PharmRes,1986,9(1):45-47
    65Fukuda Y, Harada T, Izumi Y. Formation of L-α-hydroxy-acids from D,L-α-hydroxynitriles byTorulopsis candida GN405[J]. J Ferment Technol,1973,51:393-397
    66Rustler S, Chmura A, Sheldon RA, et al. Characterisation of the substrate specificity of the nitrilehydrolyzing system of the acidotolerant black yeast Exophiala oligosperma R1[J]. Stud Mycol,2008,61:165–174
    67Rustler S, Stolz A. Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast-Exophiala oligosperma R1[J]. Appl Microbiol Biotechnol,2007,75:899-908
    68Rezende RP, Teixeira Dias JC, Ferraz V, et al. Metabolism of benzonitrile by Cryptococcus sp.UFMG-Y28[J]. J Basic Microbiol,2000,40(5-6):389-392
    69Rausch T, Hilgenberg W. Partial purification of nitrilase from Chinese cabbage[J].Phytochemistry,1980,19(5):747-750
    70Ishikawa T, Okazaki K, Kuroda H, et al. Molecular cloning of Brassica rapa nitrilases and theirexpression during clubroot development[J]. Mol Plant Pathol,2007,8(5):623-637
    71Agerbirk N, Warwick SI, Hansen PR, et al. Sinapis phylogeny and evolution of glucosinolatesand specific nitrile degrading enzymes[J]. Phytochemistry,2008,69:2937-2949
    72Piotrowski M, Sch nfelder S, Weiler EW. The Arabidopsis thaliana isogene NIT4and itsorthologs in tobacco encode β-Cyano-L-alanine hydratase/nitrilase[J]. J Biol Chem,2001,276(4):2616-2621
    73Janowitz T, Trompetter I, Piotrowski M. Evolution of nitrilases in glucosinolate-containingplants[J]. Phytochemistry,2009,70(15-16):1680-1686
    74Vorwerk S, Biernacki S, Hillebrand H, et al. Enzymatic characterization of the recombinantArabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster[J]. Planta,2001,212(4):508-516
    75Jenrich R, Trompetter I, Bak S, et al. Evolution of heteromeric nitrilase complexes in Poaceaewith new functions in nitrile metabolism[J]. Proc Natl Acad Sci USA,2007,104(47):18848-18853
    76Yamada H, Kobayashi M. Nitrile hydratase and its application to industrial production ofacrylamide[J]. Biosci Biotechnol Biochem,1996,60(9):1391-1400
    77Gong JS, Lu ZM, Shi JS, et al. Isolation, identification, and culture optimization of a novelglycinonitrile-hydrolyzing fungus—Fusarium oxysporum H3[J]. Appl Biochem Biotechnol,2011,165(3-4):963-977
    78Yazbeck DR, Durao PJ, Xie Z, et al. A metal ion-based method for the screening of nitrilases[J].J Mol Catal B Enzym,2006,39:156-159
    79Scheiner D. Determination of ammonia and Kjeldahl nitrogen by indophenol method[J]. WaterRes,1976,10(1):31-36
    80Kruse JM, Mellon MG. Colorimetric determination of ammonia and cyanate[J]. Anal Chem,1953,25(8):1188-1192
    81van Sint Fiet S, van Beilen JB, Witholt B. Selection of biocatalysts for chemical synthesis[J].Proc Natl Acad Sci USA,2006,103(6):1693-1698
    82Santoshkumar M, Nayak A, Anjaneya O, et al. A plate method for screening of bacteria capableof degrading aliphatic nitriles[J]. J Ind Microbiol Biotechnol,2010,37(1):111-115
    83He YC, Ma CL, Xu JH, et al. A high-throughput screening strategy for nitrile-hydrolyzingenzymes based on ferric hydroxamate spectrophotometry[J]. Appl Microbiol Biotechnol,2011,89(3):817-823
    84Zhu Q, Fan A, Wang YS, et al. Novel sensitive high-throughput screening strategy fornitrilase-producing strains[J]. Appl Environ Microbiol,2007,73(19):6053-6057
    85Banerjee A, Sharma R, Banerjee UC. A rapid and sensitive fluorometric assay method for thedetermination of nitrilase activity[J]. Biotechnol Appl Biochem,2003,37(3):289-293
    86Pace HC, Hodawadekar SC, Draganescu A, et al. Crystal structure of the worm NitFhit RosettaStone protein reveals a Nit tetramer binding two Fhit dimers[J]. Curr Biol,2000,10(15):907-917
    87Thuku RN, Weber BW, Varsani A, et al. Post-translational cleavage of recombinantly expressednitrilase from Rhodococcus rhodochrous J1yields a stable, active helical form[J]. FEBS J,2007,274(8):2099-2108
    88Kiziak C, Klein J, Stolz A. Influence of different carboxy-terminal mutations on the substrate-,reaction-and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191[J].Protein Eng Des Sel,2007,20(8):385-396
    89Chen J, Zheng RC, Zheng YG, et al. Microbial transformation of nitriles to high-value acids oramides[J]. Adv Biochem Eng Biotechnol,2009,113:33-77
    90Fernandes BCM, Mateo C, Kiziak C, et al. Nitrile hydratase activity of a recombinant nitrilase[J].Adv Synth Catal,2006,348(18):2597-2603
    91Stevenson DE, R Feng FD, Groleau D, et al. Mechanistic and structural studies on RhodococcusATCC39484nitrilase[J]. Biotechnol Appl Biochem,1992,15(3):283-302
    92Nagasawa T, Wieser M, Nakamura T, et al. Nitrilase of Rhodococcus rhodochrous J1.Conversion into the active form by subunit association.[J]. Eur J Biochem,2000,267(1):138-144
    93Harper DB. Characterization of a nitrilase from Nocardia sp.(Rhodochrous group) N.C.I.B.11215, Using p-hydroxybenzonitrile as sole carbon source[J]. Int J Biochem,1985,17(6):677-683
    94Reetz MT, Zonta A, Simpelkamp J. Effiziente heterogene biokatalysatoren durch den einschluvon lipasen in hydrophoben sol-gel-materialien[J]. Angew Chem,1995,107(3):373-376
    95Velankar H, Clarke KG, Preez Rd, et al. Developments in nitrile and amide biotransformationprocesses[J]. Trends Biotechnol,2010,28(11):561-569
    96Kaul P, Banerjee A, Banerjee UC. Stereoselective nitrile hydrolysis by immobilized whole-cellbiocatalyst[J]. Biomacromolecules,2006,7(5):1536-1541
    97Dias J, Rezende R, Linard V. Bioconversion of nitriles by Candida guilliermondii CCT7207cells immobilized in barium alginate[J]. Appl Microbiol Biotechnol,2001,56(5):757-761
    98Liu ZQ, Zhou M, Zhang XH, et al. Biosynthesis of iminodiacetic acid from iminodiacetonitrileby immobilized recombinant Escherichia coli harboring nitrilase[J]. J Mol Microbiol Biotechnol,2012,22(1):35-47
    99Kumar S, Mohan U, Kamble AL, et al. Cross-linked enzyme aggregates of recombinantPseudomonas putida nitrilase for enantioselective nitrile hydrolysis[J]. Bioresource Technol,2010,101(17):6856-6858
    100Stalker DM, McBride KE. Cloning and expression in Escherichia coli of a Klebsiella ozaenaeplasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil[J]. J Bacteriol,1987,169(3):955-960
    101Bartling D, Seedorf M, Mith Fer A, et al. Cloning and expression of an Arabidopsis nitrilasewhich can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid[J]. Eur J Biochem,1992,205(1):417-424
    102Kobayashi M, Izui H, Nagasawa T, et al. Nitrilase in biosynthesis of the plant hormoneindole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directedmutagenesis of cysteine residues[J]. Proc Natl Acad Sci USA,1993,90(1):247-251
    103Kobayashi M, Yanaka N, Nagasawa T, et al. Primary structure of an aliphatic nitrile-degradingenzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22and expression of its gene andidentification of its active site residue[J]. Biochemistry,1992,31(37):9000-9007
    104Wu S, Fogiel AJ, Petrillo KL, et al. Protein engineering of nitrilase for chemoenzymaticproduction of glycolic acid[J]. Biotechnol Bioeng,2008,99(3):717-720
    105Zhu D, Mukherjee C, Yang Y, et al. A new nitrilase from Bradyrhizobium japonicum USDA110: Gene cloning, biochemical characterization and substrate specificity[J]. J Biotechnol,2008,133(3):327-333
    106Kaplan O, Bezouska K, Plihal O, et al. Heterologous expression, purification andcharacterization of nitrilase from Aspergillus niger K10[J]. BMC Biotechnol,2011,11(1):1-15
    107Kaplan O, Bezou ka K, Malandra A, et al. Genome mining for the discovery of new nitrilases infilamentous fungi[J]. Biotechnol Lett,2011,33(2):309-312
    108Schreiner U, Hecher B, Obrowsky S, et al. Directed evolution of Alcaligenes faecalis nitrilase[J].Enzyme Microb Technol,2010,47(4):140-146
    109Yeom SJ, Kim HJ, Lee JK, et al. An amino acid at position142in nitrilase from Rhodococcusrhodochrous ATCC33278determines the substrate specificity for aliphatic and aromatic nitriles[J].Biochem J,2008,415:401-407
    110Kiziak C, Stolz A. Identification of amino acid residues responsible for the enantioselectivityand amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191[J]. ApplEnviron Microbiol,2009,75(17):5592-5599
    111Sosedov O, Baum S, Burger S, et al. Construction and application of variants of thePseudomonas fluorescens EBC191arylacetonitrilase for increased production of acids or amides[J]. ApplEnviron Microbiol,2010,76(11):3668-3674
    112Pet í ková A, Sosedov O, Baum S, et al. Influence of point mutations near the active site on thecatalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa[J]. J MolCatal B Enzym,2012,77:74-80
    113Chuck R. A catalytic green process for the production of niacin[J]. Chimia,2000,54(12):508-513
    114Almatawah QA, Cowan DA. Thermostable nitrilase catalysed production of nicotinic acid from3-cyanopyridine[J]. Enzyme Microb Technol,1999,25(8-9):718-724
    115Sharma NN, Sharma M, Kumar H, et al. Nocardia globerula NHB-2: Bench scale production ofnicotinic acid[J]. Process Biochem,2006,41(9):2078-2081
    116Zhang ZJ, Xu JH, He YC, et al. Efficient production of (R)-(-)-mandelic acid with highlysubstrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp.[J]. Process Biochem,2010,45(6):887-891
    117Gr ger H. Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: afurther example for the diversity of biocatalysis[J]. Adv Synth Catal,2001,343(6-7):547-558
    118Straathof AJJ, Sie S, Franco TT, et al. Feasibility of acrylic acid production by fermentation[J].Appl Microbiol Biotechnol,2005,67(6):727-734119罗晖,王铁钢,于慧敏,等. Rhodococcus rhodochrous tg1-A6腈水解酶的表达和催化研究[J].现代化工,2006,26(2):109-111
    120Panova A, Mersinger LJ, Liu Q, et al. Chemoenzymatic synthesis of glycolic acid[J]. Adv SynthCatal,2007,349(8-9):1462-1474
    121He YC, Xu JH, Su JH, et al. Bioproduction of glycolic acid from glycolonitrile with a newbacterial isolate of Alcaligenes sp. ECU0401[J]. Appl Biochem Biotechnol,2009,160(5):1428-1440
    122Hu JG, Wang YJ, Zheng YG, et al. Isolation of glycolonitrile-hydrolyzing microorganism basedon colorimetric reaction[J]. Enzyme Microb Technol,2007,41:244-249
    123Zhou XF, Zhang YL, Xu DQ, et al. Treatment of succinonitrile wastewater by immobilized highefficiency microorganism strains[J]. Water Sci Technol,2008,58(4):911-918
    124McBride KE, Kenny JW, Stalker DM. Metabolism of the herbicide bromoxynil by Klebsiellapneumoniae subsp. ozaenae[J]. Appl Environ Microbiol,1986,52(2):325-330
    125Fischer-Colbrie G, Matama T, Heumann S, et al. Surface hydrolysis of polyacrylonitrile withnitrile hydrolysing enzymes from Micrococcus luteus BST20[J]. J Biotechnol,2007,129:62-68
    126Tauber MM, Cavaco-Paulo A, Robra K-H, et al. Nitrile hydratase and amidase fromRhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles[J]. Appl EnvironMicrobiol,2000,66(4):1634-1638
    127Battistel E, Morra M, Marinetti M. Enzymatic surface modification of acrylonitrile fibers[J].Appl Surf Sci,2001,177(1-2):32-41
    128Matamá T, Carneiro F, Caparrós C, et al. Using a nitrilase for the surface modification of acrylicfibres[J]. Biotechnol J,2007,2(3):353-360
    129Zhu XY, Gong JS, Li H, et al. Characterization and functional cloning of an aromatic nitrilasefrom Pseudomonas putida CGMCC3830with high conversion efficiency toward cyanopyridine[J]. J MolCatal B Enzym,2013,97:175-183
    130Gong JS, Lu ZM, Li H, et al. Metagenomic technology and genome mining: emerging areas forexploring novel nitrilases[J]. Appl Microbiol Biotechnol,2013,97(15):6603-6611
    131Lorenz P, Eck J. Metagenomics and industrial applications[J]. Nat Rev Micro,2005,3(6):510-516
    132Fawcett JK, Scott JE. A rapid and precise method for the determination of urea[J]. J Clin Pathol,1960,13(2):156-159
    133Takamatsu S, Braun U, Limkaisang S. Phylogenetic relationships and generic affinity ofUncinula septata inferred from nuclear rDNA sequences[J]. Mycoscience,2005,46(1):9-16
    134Pinnoi A, Jeewon R, Sakayaroj J, et al. Berkleasmium crunisia sp. nov. and its phylogeneticaffinities to the Pleosporales based on18S and28S rDNA sequence analyses[J]. Mycologia,2007,99(3):378-384
    135Toda T, Hyakumachi M, Suga H, et al. Differentiation of Rhizoctonia AG-D isolates fromturfgrass into subgroups I and II based on rDNA and RAPD analyses[J]. Eur J Plant Pathol,1999,105(9):835-846
    136Martínková L, Vejvoda V, Kaplan O, et al. Fungal nitrilases as biocatalysts: Recentdevelopments[J]. Biotechnol Adv,2009,27(6):661-670
    137Vejvoda V, Kaplan O, Klozova J, et al. Mild hydrolysis of nitriles by Fusarium solani strainO1[J]. Folia Microbiol,2006,51(4):251-256
    138Wu Y, Gong JS, Lu ZM, et al. Isolation and characterization of Gibberella intermedia CA3-1, anovel and versatile nitrilase-producing fungus[J]. J Basic Microbiol,2013,53(11):934-941
    139Babu V, Shilpi, Choudhury B. Nitrile-metabolizing potential of Amycolatopsis sp. IITR215[J].Process Biochem,2010,45(6):866-873
    140Vejvoda V, Kaplan O, Kubá D, et al. Immobilization of fungal nitrilase and bacterial amidase–two enzymes working in accord[J]. Biocatal Biotransform,2006,24(6):414-418
    141Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254
    142Pace HC, Brenner C. The nitrilase superfamily: classification, structure and function[J].Genome Biol,2001,2(1):1-9
    143Weber BW, Kimani SW, Varsani A, et al. The mechanism of the amidases: Mutating theglutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning[J]. J BiolChem,2013:In press
    144Raczynska JE, Vorgias CE, Antranikian G, et al. Crystallographic analysis of a thermoactivenitrilase[J]. J Struct Biol,2011,173(2):294-302
    145Maksimova YG, Vasilyev DM, Ovechkina GV, et al. Transformation of2-and4-cyanopyridines by free and immobilized cells of nitrile-hydrolyzing bacteria[J]. Appl Biochem Microbiol,2013,49(4):347-351
    146Kabaivanova LV, Chernev GE, Salvado IMM, et al. Silica-carrageenan hybrids used for cellimmobilization realizing high-temperature degradation of nitrile substrates[J]. Cent Eur J Chem,2011,9(2):232-239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700