用户名: 密码: 验证码:
蜡状芽孢杆菌对水体中镉的吸附特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物吸附法因其安全性和经济性等优点,成为水体重金属镉污染修复的潜在技术之一。同时,也引起国内外学者的广泛关注。本论文在展开大宝山矿山水体、悬浮物和沉积物重金属污染分布与评价的基础上,采用课题组前期筛选的耐镉细菌Bacillus cereusRC-1作为微生物吸附剂,对水体中Cd~(2+)的吸附特性与机理进行了初步研究。论文取得的主要研究成果如下:
     1、开展了大宝山尾矿坝周围水体的重金属污染采样监测工作。大宝山尾矿坝水体、悬浮物和沉积物都遭受了以重金属Cu、Zn、Cd和Pb为主的复合污染,特别是Cd污染尤为严重。水体中Cu、Zn、Cd和Pb最高超标倍数分别达6倍、20倍、35倍和3倍,其中,Cd含量不仅与水体pH值呈负相关,还与水体氧化还原电位有较高的相关系数(R~2=0.9387)。此外,在探讨了沉积物中重金属含量分布特征的基础上,采用地累积指数法和潜在生态风险指数法对其重金属污染的生态风险程度进行了评价,发现沉积物中重金属污染程度顺序为Cu> Cd> Zn> Pb。
     2、以课题组已筛选的耐镉细菌为研究对象,初步探讨了其对Cd~(2+)的耐受性和抗性机制。经过16S rDNA序列同源性分析和NCBI数据库的比对,该菌株属于蜡状芽孢杆菌(Bacillus cereus),GenBank登录号为JF683581。该菌株在含20mg/L Cd~(2+)液体培养基中的生长速率与对照组的相当且最小抑制浓度为200mg/L,预示该菌体在水体镉污染治理方面有很大的应用潜力。此外,采用高温法和SDS法进行质粒消除试验,结果表明处理前后菌株的抗镉性能差异不大即抗性不稳定,同时质粒提取与检测试验也未发现质粒条带。因此,初步认为该菌株的抗性基因可能位于染色体上。
     3、研究了生长菌株B.cereus RC-1对Cd~(2+)的吸附特性。确定了生长菌株吸附的最佳条件为:pH为7.0、温度为28±2℃、转速为150rpm。另外,Freundlich模型拟合效果较好,表明生长菌体对Cd~(2+)吸附是一个异质面的吸附过程。同时,一级动力学能较好地模拟生物吸附反应的初始阶段,而且预测值与实际值接近;二级动力学能较好的模拟生物吸附反应的整个过程,而且相关系数较高。
     4、当无营养物质提供时,对比研究了B.cereus RC-1的活细胞和死细胞对Cd~(2+)的吸附。首先,确定了活、死细胞吸附的最佳条件均为:pH为5.0、吸附剂浓度为1.5g/L、转速为150rpm;采用了Langmuir、Freundlich和Redlich-Peterson等三种吸附平衡模型对菌株吸附过程进行模拟。对于活细胞,三个模型都适合拟合其吸附过程,表明活细胞吸附是一个异质面的吸附过程,除了细胞表面吸附之外,其他生物吸附机制如胞内积累等有可能参与了Cd~(2+)的去除过程;对于死细胞,Langmuir模型最适合拟合其吸附过程,而且RL值远远小于活细胞,说明死细胞的吸附过程是一个单分子层吸附并且更加有利进行。其次,对于死菌体吸附,基本在30min内,达到了最大吸附量的93%,而活菌体则需要约50min,而且二级动力学更适合描述两者的动态吸附过程,说明两者是以化学吸附过程为主。最后,通过Zeta测定、TEM、SEM-EDS、FTIR、胞内积累试验和解析试验等,探究了死细胞吸附效果优于活细胞的主要原因是:一方面死细胞表面展示了更多的吸附位点和负电荷量,另一方面活细胞内部对Cd~(2+)积累作用并不显著。
     5、当有营养物质提供时,探讨了生长菌株B.cereus RC-1对Cd~(2+)吸附机理。首先,SEM-EDS、TEM和AFM结果表明,除了20mg/L Cd~(2+)初始浓度之外,随着Cd~(2+)浓度的增加,菌体表面粗糙度Ra和RMS都显著增加,尤其当高浓度Cd~(2+)时(>20mg/L),生长菌株部分细胞发生了严重变形和细胞质收缩。其次,Zeta测定表明当低浓度Cd~(2+)(≤20mg/L)时,随着菌体的生长时期所起作用的大小也有所不同;而在高浓度Cd~(2+)(>20mg/L)下,静电吸引在生长初期迅速达到了平衡,但生长后期可能通过其他方式来吸附Cd~(2+)。 FTIR分析表明生长菌株表面参与吸附官能团有-OH、C=O、-NH和-CH等,其中-OH和C=O是优先吸附位点,而且在高浓度下,蛋白质中酰胺基在吸附过程中可能起主要作用。最后,胞内外积累试验表明当较低Cd~(2+)浓度(≤20mg/L)时,吸附过程以胞内积累为主;当高Cd~(2+)浓度(>20mg/L)时,吸附过程以胞外吸附为主。综合分析,表明生长菌体在不同镉浓度下的吸附机制有所不同,而且当较低Cd~(2+)浓度(≤20mg/L)时,生长菌体的吸附效果较好。
     6、探究了生长菌体在不同生长时期的吸附机制。B.cereus RC-1对Cd~(2+)吸附过程初期是一个产酸的过程,后期开始产生碱性物质,这可能是菌体在不同生长时期有不同的吸附机制,同时pH值总体变化不大,说明离子交换不显著。而且,菌体的胞外吸附与胞内积累同菌体处于哪个生长时期有很大关系,对数期细胞的总吸附容量大于稳定期的。此外,当含有ATP酶活性抑制剂DCC的条件下,DCC不仅提高了生长菌体对Cd~(2+)的去除率,而且还阻止了细胞内部Cd~(2+)重新释放到环境中去,进而避免了二次污染。
Microbiological biosorption because of its security and economic advantages is one ofthe cadmium pollution restoration potential techniques, and it also causes widespread concernin the domestic and foreign. In this thesis, on the basis of the pollution evaluation of heavymetals for Dabaoshan mine water, suspended particles and sediment, the main object of thisstudy is research on the bisoroption characteristics and mechanism of the cadmium-resistantbacteria in water, which is screened by our team preliminary. The main conclusions are asfollows:
     1. The heavy metals pollution evaluation of mine tailing from Dabaoshan mine wascarried out. The tailings dam suffered severe water pollution of heavy metals by measuringthe water, suspended particles and sediments, such as Cu, Zn, Cd and Pb, especially Cd.Moreover, the maximum exceeded multiples of the standard reached6,20,35and3timesrespectively. Meanwhile, the Cd(II) concentration in water is not only have a negativecorrelation with pH, but also has a high correlation coefficient with the redox potential of thewater. In addition, based on the discussion of the pollution distribution of heavy metals insediments by using the methods of land accumulation index and potential ecological riskindex, it was found that the degree of pollution of heavy metals in sediments was very high,showing the combination contamination of heavy metals in sediments, such as Cu, Zn, Cd andPb. Furthermore, the order of pollution of heavy metals in sediments was Cu> Cd>Zn> Pb.
     2. The study on the biological characteristics and the degree of Cd-tolerance was carriedout with a certain cadmium-resistant bacteria existing in our research group. The strainbelongs to Bacillus cereus and its GenBank accession number is JF683581from the analysisof16S rDNA sequence homology and the comparison of NCBI database. The growth rate ofthis strain in liquid medium containing20mg/L Cd~(2+)was quite well by comparison with thecontrol and the minimum inhibitory concentration of strain was200mg/L, which indicatedthat Bacillus cereus RC-1had a great potential application in the cadmium pollutionrestoration. In addition, it was found that the Cd(II)-resistance of this strain was insignificantand showed instability by applying the method of high-temperature and SDS plasmid elimination test, while the test of plasmid extraction and detection didn’t find any plasmidbands. Therefore, we presented a preliminary view of the strain Cd(II)-resistance gene may belocated on the chromosome.
     3. The biosorption characteristics for the growing cells of B.cereus RC-1wereinvestigated. The optimum conditions of the biosorption was pH=7.0, temperature=28±2℃and rotate speed=150rpm. As for the growing cells, the Freundlich isotherm model was betterin the two kinds of biosorption model, showing the biosorption process of B.cereus RC-1wasa heterogeneous surface. The dynamics simulations of growing cells showed that thefirst-order kinetics could simulate the initial stages of biosorption process and predicatedvalues were very close to the experimental data. Besides, the second-order kinetics had morecapable of simulating the entire biological biosorption process with higher correlationcoefficient.
     4. The comparative study of biosorption characteristics and mechanisms for the live anddead cells of this strain was carried out. For the both types of cells, the optimum biosorptionconditions was pH=5.0, biosorbent dose=1.5g/L and rotate speed=150rpm. Among the threekinds of biosorption model, such as Langmuir, Freundlich and Redlich-Peterson, all the threemodels were suitable for the simulation of the Cd(II) biosorption by live cells, whichsuggested the biosorption process was a heterogeneous surface, and some other biosorptionmechanisms such as ion exchange may be involved in the Cd(II) biosorpiton. As for the deadcells, Langmuir isotherm was the best model for simulating the biosorption process, and theRLvalue is far less than the live cells, suggesting that the dead cells were more favorable forthe Cd (II) biosorption. In addition, the bisorption capacity of dead cells reached the93%ofthe maximum biosorption capacity within30min, while it required approximately50min forthe live cells. Moreover, the second-order kinetic model was more suitable to describe thebiosorption process for both types of cells, and the biosorption was dominated by chemicalbiosorption process. Finally, it could be concluded that the biosorption capacity of dead cellswas higher than that of live cells, which was mainly due to the more biosorption sites on thedead cells surface displayed by heat treatment and the lower intracellular accumulation for the live cells by means of several analysis instruments, such as Zeta potential measurement, TEM,SEM-EDS, FTIR, the test of intracellular accumulation and desorption.
     5. The study on the biosorption mechanisms of the growing cells was carried out througha variety of analytical methods. Firstly, the biosorption process of the growing cells was aprocess of acid production for the initial biosorption, followed by alkaline production.Therefore, we presented that the growing cells have different biosorption mechanisms fordifferent growth periods, but the overall change in pH of the culture medium is not large. Atthe same time, the electrostatic adsorption played an important role in the biosorption forlower concentration Cd~(2+)(≤20mg/L) and had different impact on the biosorption with differentgrowth periods. However, as for the higher concentration Cd~(2+)(≥50mg/L), the electrostaticadsorption is not significant, suggesting some other mechanisms involved in the removal ofCd(II). Secondly, it had been concluded that the cell surface biosorpiton played a veryimportant role in the Cd(II) biosorption for the growing cells by the measurement ofSEM-EDS, TEM and AFM. Moreover, the RMS and Ra of the growing cells were increasedwith the increase of the Cd~(2+)concentration. When the initial Cd~(2+)concentration was greaterthan or equal to50mg/L, some cells were deformed or even cracked. At this time, the growingcells had resistance to the higher concentration of Cd~(2+)by both extracellular biosorption andintracellular accumulation. Finally, the functional groups on the surface of the growing cells,such as-OH, C=O,-NH and-CH, were involved in the biosorption process, of which-OHand C=O were the preferred adsorption sites. Furthermore, the amides I, II and III bandspectrum peak changed significantly, which indicated that amide group of the protein playedan important role in the biosroption.
     6. The bisorption mechanisms of the growing cells were studied deeply. The growingcells have some different mechanisms in different growth period under different initial Cd~(2+)concentrations. These results showed that intracellular accumulation was higher thanextracellular biosorption for the lower Cd~(2+)concentration (<20mg/L), while the extracellularbiosorption is far greater than the intracellular accumulation for the higher Cd~(2+)concentration(>20mg/L). In addition, the extracellular biosorption and intracellular accumulation have a great relationship with the growth periods through the test of accumulation for the growingcells. Moreover, the growing cells of logarithmic growth phase showed greater bindingcapacity for Cd(II) than the growing cells of stationary phase. Finally, when the liquidmedium contained DCC inhibiting ATP activities, both types of the growing cells not onlyimproved the removal efficiency, but also prevented intracellular Cd~(2+)re-released into theenvironment, avoiding secondary contamination.
引文
[1]艾伯特·斯特沃特加化学元素遍览[M].河南科学技术出版社,2002.
    [2]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001.
    [3]黄宝圣.镉的生物毒性及其防治策略[J].生物学通报,2012,40(11):26-28
    [4]刘丽君.水环境中镉污染处理的研究进展[J].环境科学与管理,2012,37(6):124-127.
    [5]陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害及防治对策[J].2001,27(106):37-39.
    [6] http://www.miyoung.com.cn/news/newsdetail_395.html
    [7]黄小华,周耀明,王玉红,等. La-Gly-VB6对Pb-Cd复合胁迫下植物的影响[J].城市环境与城市生态,2001,14(5):1-3.
    [8]阳承胜,束文圣,徐润林等.利用PFU原生动物群落监测铅锌尾矿人工湿地废水净化效能[J].环境污染与防治,2000,22(5):20-22.
    [9]周青,黄晓华.镉对种子萌发的影响[J].农业环境保护,2000,19(3):156-158.
    [10]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社1998:302-303.
    [11]陈晋阳,黄卫.无定形氢氧化铁吸附水溶液中镉离子机理的XPS研究[J].分析测试学报,2002,21(3):70-72.
    [12]姜述芹,周保学,于秀娟,等.氢氧化镁处理含镉废水的研究[J].环境化学,2003,22(6):601-604.
    [13]杨彤,曹文海,许耀生.化学法处理重金属离子废水的改进[J].电镀与精饰,1999,21(5):38-40.
    [14]陈阳,钟国清.电镀镉废水处理的实验研究[J]. Planting and Finishing,2004,26(5):36-38.
    [15]邱廷省,成先雄,郝志伟,等.含镉废水处理技术现状及发展[J].四川有色金属,2002,4:38-41.
    [16]方云如,张智宏,杨建男,等.铁氧体法处理含铬和镉废水的研究[J].江苏石油化工学院学报,1999,11(4):8-10.
    [17]杨智宽.污染控制化学[M].武汉:武汉大学出版社,1998,1:298-303.
    [18]张剑如,叶金武,徐立宏.含镉废水处理研究进展[J].广东化工,2007,34(2):28-30.
    [19]沈萍,朱国伟.含镉废水处理方法的比较[J].污染防治技术,2010,23(6)56-59.
    [20] Misra R.K., Jain S.K., Khatri P.K. Iminodiacetic acid functionalized cation exchangeresin for adsorption removal of Cr(II), Cd(II), Ni(II), and Pb(II) from their aqueoussolutions[J]. Journal Hazardous Materials,2011,185:1508-1512.
    [21]耿振香,李云.用淀粉黄原酸盐处理含镉废水的研究[J].应用化工,2005,34(9):545-547.
    [22]宝迪,张树芳,王永军.天然沸石处理含铅、镉废水的试验研究[J].内蒙古石油化工,2003,29(2):5-7.
    [23] Tajar A.F., Kaghazchi T.K., Soleimani M. Adsorption of cadmium from aqueoussolutions on sulfurized activated carbon prepared from nut shells[J]. Journal ofHazardous Materials,2009,165:1159-1164.
    [24]王鲁敏,殷军港,邓昌亮,等.内蒙风化煤对镉离子溶液的吸附行为[J].化学研究与应用,2003,15(2):276-277.
    [25]郑礼胜,王志龙.用矿渣处理含镉废水的探索试验[J].化工环保,1996,6(4):244-246.
    [26]李贞,何少先.利用硅藻土处理含镉废水机理的初步研究[J].环境科学进展,1993,1(6):64-67.
    [27]刘羽,胥焕岩,黄志良,等.羟基磷灰石吸附水溶液中Cd2+的影响因素的研究[J].岩石矿物学杂志,2001,20(4):583-584.
    [28]唐兰模,沈敦瑜,符迈群,等.用壳聚糖除去溶液中微量镉的研究[J].化学世界,1998(10):549-552.
    [29]费维扬.面向21世纪的溶剂萃取技术[J].化工进展,2001(1):11-13.
    [30] Mathilde R.J., Janne F.R., Signe N., et al. Electrodialytic removal of cadmium fromwastewater sludge[J]. Journal of Hazardous Materials,2004,106(2-3):127-132.
    [31]王志忠,高以烜.反渗透技术处理镀镉废水的探讨[J].工业水处理,1985,5(5):17-21.
    [32] Kitae B., Yang J.W. Competitive bind of anionic metals with cetylpyridinium chloridemicelle in micellar-enhanced ultrafiltration[J]. Desalination,2004,167:101-110.
    [33]何鼎胜,马铭.三正辛胺-二甲苯液膜迁移Cd的研究[J].高等学校化学学报,2000,21(4):605-608.
    [34] Wang L.K., Hung Y.T., Shammas N.K. Advanced physicochemical treatmenttechnologies. In: Handbook of Environmental Engineering.2007, Vol.5. Human, NewJersey.
    [35]魏树和,周启星,王新,等.杂草中具重金属超积累特征植物的筛选[J].自然科学进展,2003,13(12):1259-1265.
    [36] Liu J.G., Dong Y., Xu H., et al., Accumulation of Cd, Pb and Zn by19wetland plantspecies in constructed wetland. Journal of Hazardous Materials,2007,147(3):947-953.
    [37] Ziagova M., Dimitriadis G., Aslanidou D., et al.,2007. Comparative study of Cd(II) andCr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binarymixtures[J]. Biosource Technology,98(15):2859-2865.
    [38] Butter T.J. The removal and recovery of cadmium from dilute aqueous solutions bybiosorption and electrolysis at laboratory scale[J]. Water Research,1998,32(2):400-405.
    [39] Say R., Yimaz N., Denizli A. Removal of heavy metal ions using the fungus Penicilliumcanescens[J].Adsorption Science&Technology,2003,21(7):643-650.
    [40] Hashim M.A., Chu K.H. Biosorption of cadmium by brown, green and red seaweeds[J].Chemical Engineering Journal,2004,97:249-255.
    [41]王建龙,陈灿.生物吸附法去除重金属离子的研究进展[J].环境科学学报,2010,30(4):673-701.
    [42] Lu W., Shi J., Wang C., et al. Biosorption of lead, copper and cadmium by an indigenousisolate Enterobacter sp. J1possessing high heavy-metal resistance[J]. Journal ofHazardous Materials,2006,134:80-86.
    [43] Ozdemir G., Ceyhan N., Ozturk T., et al. Biosorption of chromium(VI), cadmium(II) andcopper(II) by Pantoea sp.TEM18[J]. Chemical Engineering Journal,2004,102:249-253.
    [44] Augusto da Costa A.C., de Franca F.P. Cadmium uptake by Spirulina maxima: toxicityand mechanism[J]. World Journal of Microbiology and Biotechnology,1998,14(4):579-581.
    [45] Rama R.K., Uma L., Subramanian G., et al. Biosorption of toxic metal ions byalkali-extracted biomass of a marine cyanobacterium, Phormidium vaderianum BDU30501[J]. World Journal of Microbiology and Biotechnology,1999,15(6):729-732.
    [46] Pardo R., Herguedas M., Barrado E., et al. Biosorption of cadmium, copper, lead andzinc by inactive biomass of Pseudomonas Putida[J]. Analytical and BioanalyticalChemistry,2003,376(1):26-32.
    [47] Puranik P.R., Chabukswar N.S., Paknikar K.M. Cadmium biosorption by strep tomycespimprina waste biomass[J]. Applied Microbiology and Biotechnology,1995,55(2):113-124.
    [48] Selatnia A., Bakhti M.Z., Madani A., et al. Biosorption of Cd2+from aqueous solution bya NaOH-treated bacterial dead Streptomyces biomass[J]. Hydromethallurgy,2004a,75(1-4):11-24.
    [49] Huang F., Dang Z., Guo C.L., et al. Biosorption of Cd(II) by live and dead cells ofBacillus cereus RC-1isolated from cadmium-contaminated soil[J]. Colloids and SurfacesB: Biointerfaces,2013,107:11-18.
    [50] Loukidou M.X., Karapantsios T.D., Zouboulis A I., et al. Diffusion kinetic study ofcadmium(II) biosorption by Aeromonas caviae[J]. Journal of Chemical Technology andBiotechnology,2004,79(7):711-719.
    [51] Chang J.S., Law R., Chang C.C. Biosorption of lead, copper and cadmium by biomass ofPseudomonas aeruginosa PU21[J]. Water Research,1997,31(7):1651-1658.
    [52] Tsezos M., Volesky B. The mechanism of uranium biosorption by Rhizopus arrhizus[J].Biotechnology and Bioengineering,1982,385-401.
    [53]汤岳琴,牛慧等.产黄青霉菌对铅的吸附机理研究—参与铅生物吸附的化学物质及功能团的确定[J].四川大学学报(工程科学版),2001,33(3):50-54.
    [54]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除[J].上海环境科学,2002,21(2):89-92.
    [55] Wang J.L. Biosorption of copper(II) by chemically modified biomass of Saccharomycescerevisiae[J]. Process Biochemistry,2002,37(8):847-850.
    [56]廖家莉,杨远友,罗顺忠,等.固定化啤酒酵母对241Am溶液吸附特性的研究[J].环境科学学报,2003,23(4):552-554.
    [57] Kedari C.S., Das S.K., Ghosh S. Biosorption of long lived radionuclides usingimmobilized cells of Saccharomyces cerevisiae[J]. World Journal of Microbiology andBiotechnology,2001,17(8):789-793.
    [58] Ruchi G., Saxena R.K., Rani G. Fermentation waste of aspergillus terreus: a potentialcopper biosorption[J]. World Journal of Microbiology and Biotechnology,2002,18(5):397-401.
    [59] Adela K., Aleksander P. Comparison of Rhizopus nigricans in a pelleted growth formwith some other types of waste microbial biomass as biosorbents for metal ions[J]. WorldJournal of Microbiology and Biotechnology,2001,17:677-685.
    [60]李志勇,郭祀远,李琳.多糖在藻类富集微量元素中的作用机理[J].生命的化学,1998,18(1):17-19.
    [61] Zhang X.Z., Luo S.G., Yang Q., et al. Accumulation of uranium at low concentration bythe green alga Scenedesmus obliquus34[J]. Jounral of Applied Phycology,1997,9(1):65-71.
    [62] CostaA.C.A., Franga F.P. The behavior of the microalgae Tetraselmis chuii incadmium-contaminated solutions[J].Aquaculture International,1998,6(1):57-66.
    [63] Schiewer S. Modelling complexation and electrostatic atraction in heavy metalbiosorption by Sargassum biomass[J]. Jounral ofApplied Phycology,1999,11(1):79-87.
    [64] Esteves A.J.P., Valdman E., Leite S.G.F. Repeated removal of cadmium and zinc from anindustrial effluent by waste biomass Sargassum sp.[J]. Biotechnology Leters,2000,22:499-502.
    [65]郑逢中,洪丽玉,郑文教.红树杆物落叶碎屑对水中重金属吸附的初步研究[J].厦门大学学报(自然科学版),1998,36(1):137-141.
    [66]张红雨,冀兰涛,王乃岩,等.梧桐树落叶碎屑对水中重金属吸附的初步研究[J].精细化工,2002,19(2):80-82.
    [67]扬洪.壳聚糖对重金属离子的吸附行为[J].烟台大学学报,1999,12(4):309-312
    [68] Lalvani S.B., Hubner A., Wiltowski T.S. Removing crand crby using lignin[J]. EnergySources,2000,22(1):45-46.
    [69]刘文群,徐尔尼,李曼,等.真菌对微量元素铁、锌、硒生物富集作用的研究[J].环境与开发,2000,15(3):3-4.
    [70] Gupta V.K., Rastogi A., Saini V.K., et al. Biosorption of copper(II) from aqueoussolutions by Spirogyra species[J]. Journal of Colloid and Interface Science,2006,296(1):59-63.
    [71] Ramiro J.E., Martins R.P., Rui A.R. Cadmium and zinc adsorption by the aquatic mossFontinalis antipyretica: effect of temperature, pH and water hardness[J]. Water Research,2004,38(5):693-699.
    [72]李明春,姜恒,候文强.酵母菌对重金属离子吸附的研究[J].菌物系统,1998,17(4):367-373.
    [73] Carlos G.R., Victor R.T., Bruno G.G. Cadmium and zinc removal from aqueous solutionsby Bacillus jeotgali: pH, salinity and temperature effects[J], Bioresource Technology,2008,99(4):3864-3870.
    [74]朱一民,周东琴,魏德州. Norcardia amarae菌体对水相中Pb2+的吸附特性[J].东北大学学报(自然科学版),2003,24(10):212-216.
    [75]郜瑞莹,陈灿,王建龙.酿酒酵母吸附Zn2+和Cd2+动力学[J].清华大学学报(自然科学版),2007,47(6):897-900
    [76] Malik A. Metal bioremediation through growing cells[J]. Journal of Hazardous Materials,2004,30(2):261-278.
    [77] Torres E., Cid A., Herrero C., et al. Removal of cadmium ions by the marine diatomPhaeoda ctylum tricornutum bohlin accumulation and long-term kinetics of uptake[J].Bioresource Technology,1998,63(7):213-220.
    [78] Tuzun I., Bayramoglu G., Yalcin E., et al. Equilibrium and kinetic studies on biosorptionof Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii[J]. Journalof Environmental Management,2005,77(2):85-92.
    [79] Aksu Z., Donmez G., Binary biosorption of cadmium(II) and nickel(II) onto driedChlorella vulgaris: Co-ion effect on mono-component isotherm parameters[J]. ProcessBiochemistry,2006,41(4):860-868.
    [80] Yan G., Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucorrouxii[J]. Water Research,2003,37:4486-4496.
    [81] Kefala M.I., Zouboulis A.I., Matis K.A. Biosorption of cadmium ions by Actinomycetesand separation by flotation[J]. Environmental Pollution,1999,104:283-293.
    [82] Langmuir I. The adsorption of gases on plane surface of glass, mica and platinum[J].Journal of theAmerican Chemical Society,1918,40:1361-1403.
    [83] Freundlich H. Adsorption in solutions[J]. Physical Chemistry Periodical,1906,57:385-470.
    [84] Ilhami T., Gulay B., Emine Y., et al. Equilibrium and kinetic studies on biosorption ofHg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii[J]. Journal ofEnvironmental Management,2005,77(2):85-92.
    [85]刘云国,冯宝莹,樊霆,等.真菌吸附重金属离子的研究[J].湖南大学学报(自然科学版),2008,35(1):71-74.
    [86] Redlich O., Peterson D.L. A useful adsorption isotherm[J]. The Journal PhysicalChemistry,1959,63(6):1024.
    [87] Ho Y.S. Review of second-order models for adsorption systems[J]. Journal of HazardousMaterials,2006,136(3):681-689.
    [88] Arica M.Y., Bayramoglu G., Yilmaz M., et al. Biosorption of Hg2+, Cd2+, and Zn2+byCa-alginate and immobilized wood-rotting fungus Funalia trogii[J]. Journal ofHazardous Materials,2004,109(1-3):191-199.
    [89]郑玉建,张杰,依不拉音.微生物在水体重金属污染治理中的应用[J].国外医学医学地理分册,2006,27:39-42.
    [90]王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6):72~75.
    [91] Wang B.E., Hu Y.Y., Xie L., et al. Biosorption behavior of azo dye by inactiveCMC immobilized AsPergillus fumigarus beads[J]. Bioresource Teehnology,2008,99(4):794-800.
    [92]李洪强,刘成伦,徐龙君.微生物吸附剂及其在重金属废水处理中的应用[J].材料保护,2006,39:48-52.
    [93] Purani K., Paknikar K.M. Biosorption of lead and zinc from solutions usingstreptovertieillium cinnamoneum waste biomass[J]. Journal of Biotechnology,1997,55(2):113-124.
    [94]李霞,李风亭,张冰如.生物吸附法去除水中重金属离子[J].工业水处理,2004,24:l-5.
    [95] Bai H., Zhang Z.M., Yang G., et al. Bioremdeiation of cadmium by growingPhodobacter sphaeroides: Kinetics characteristic and mechanism studies[J]. BioresourceTechnology,2008,99:7716-7722.
    [96] Guo H.J., Luo S.L., Chen L., et al, Bioremediation of heavy metals by growinghyperaccumulaor endophytic bacterium Bacillus sp.L14[J]. Bioresource Technology,2010,101(2):8599-8605.
    [97]王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社,2002:306-315.
    [98] Ozdemir G., Ozturk T., Ceyhan N., et al. Heavy metal biosorption by biomass ofOebrobaetrum anthropi produeing exopolysaceharide in aetivated sludge[J]. BioresoureeTechnology,2003,90:71-74.
    [99] Sar P., Kazv S.K., Asthana R.K. Metal adsorption and desorption by lyophilizedPseudomonas aeruginosa[J]. International Biodeterioration&Biodegradation,1999,44:101-110.
    [100] Yin H., He B., Peng H., et al. Removal of Cr(VI) and Ni(II) from aqueous solution byfused yeast: Study of cations release and biosorption mechanism[J]. Journal ofHazardous Materials,2008,158:568-576.
    [101] Kuyucak N, Volesky B. The mechanism of cobalt biosorption[J]. Biotechnologyand Bioengineering,1989,33(7):823-831.
    [102] Mashitah M.D., Zulfadhly Z., Bhatia S. Binding mechanism of heavy metalsbiosorption by Pycnoporus sanguineus[J].Artificial Cells, Blood Substitutes andBiotechnology,1999,27(5-6):441-448.
    [103] Kishore K.K., Meng X., Chrietodoulatos C., et al. Biosorption mechanism of ninedifferent heavy metals onto biomatrix from rice husk[J]. Journal of Hazardous Materials,2008,153:1222-1234.
    [104] Zhou D., Zhang L., Guo S. Mechanisms of lead biosorption on cellulose/chitinbeads[J]. Water Research,2005,39:3755-3762.
    [105] Kratochvil D., Fourest E., Volesky B. Biosorption of copper by Sargassum fluitansbiomass in fixed-bed column[J]. Biotechnology Letters,1995,17(7):777-782.
    [106] Lyer A., Mody K., Jha B., Biosorption of heavy metals by a marine bacterium[J].Marine Pollution Bulletin,2005,50(3):340-343.
    [107] Sara B., Rita M., Catarina L., et al. Assembly and export of extracellular polymericsubstances(EPS) in Cyanobacteria: A phylogenomic approach. Advances in BotanicalResearch,2013,65:235-279.
    [108] Marques P., Rosa M.F., Pinheiro H.M. pH effects on the removal of Cu2+, Cd2+andPb2+from aqueous solution by waste brewery biomass[J]. Bioprocess Engineering,2000,23(2):135-141.
    [109] Thomas R.A.P.,Beswick A.J,Basnakova G.,et al. Growth of naturally occurringmicrobial isolates inmetal2cit rate medium and bioremediation of metal citratewastes[J]. Journal of Chemical Technology and Biotechnology,2000,75:18-195.
    [110] Pagnanelli F., Viggi C.C., Toro L. Isolation and quantification of cadmium removalmechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorptionvesus bioprecipitation[J]. Bioresource Technology,2010,101(9):2981-2987.
    [111] Das N. Recovery of precious metals through biosorption—A review[J].Hydrometallurgy,2010,103(1-4):180-189.
    [112]叶锦韶,尹华,彭辉,等.掷孢酵母对含铬废水的生物吸附[J].暨南大学学报,2005,26(3):401-405.
    [113] Blackwell K.J., Tobin J.M., Avery S.V. Manganese toxicity towards Saccharomycescerevisiae: Dependence on intracellular and extracellular magnesium concentrations[J].Applied Microbiology and Biotechnology,1998,49(6):751-757.
    [114] Tsezos M., Volesky B. Biosorption of uranium and thorium[J]. Biotechnology andBioengineering,1981,24:583-604.
    [115] Ashkenazy R., Gottlieb L., Yannai S. Charaeterization of aecton-washed yeast biomassfunctional groups involved in lead biosorption[J]. Biotechnology and Bioengineering,1997,55(l): l-10.
    [116]刘瑞霞,汤鸿霄,劳伟雄.重金属的生物吸附机理及吸附平衡模式研究[J].化学进展,2002,14(2):87-92.
    [117] Bertini I., Hartmann H., Klein T., et al. High resolution solutions structure of the proteinpart of Cu7metallothionein[J]. European Journal of Biochemistry,2000,267:1008-1018.
    [118] Eecles H. Treatment of metal-coniaminated wastes: why select a biological process[J].Trends in Biotechnology,1999,17:462-465.
    [119]张炳华,张彦琼,王吉伟,等.微生物重金属抗性的研究进展[J].中国医学工程,2006,14:153-155.
    [120]刘爱民.耐镉细菌筛选与吸附镉机理研究及其在镉污染土壤修复中的应用[D].南京农业大学,2005.
    [121] Nies D.H. Resistance to cadmium, cobalt, zinc, and nickel in microbes[J]. Plasmid,1992,27:17-28.
    [122] Miersch J., Tsehimedbalshir M., Barloeher F., et al. Heavy metals and thiol compoundsin Mucor racemosus and Artieulospora tetracladia[J]. Mycological Research,2001,105:883-889.
    [123] Valls M., Gonzalez-Duarte R., Atrian S., et al. Bioaccumulation of heavy metals withprotein fusions of metallothionein to bacterial OMPs[J]. Biochimie,1998,80(10):855-861.
    [124] Lebeau T., Bagot D., Jezequel K., et al. Cadmium biosorption by free and immobilizedmicroorganisms cultivated in a liquid soil extract medium: effects of Cd, pH andtechniques of culture[J]. Science of the Total Environment,2002,291:73-83.
    [125] Zouboulis A.I., Loukidous M.X., Matis K.A. Biosorption of toxic metals from aqueoussolutions by bacteria strains isolated from metal-polluted soils[J]. Process Biochemistry,2004,39(8):909-916.
    [126] Jaeckel P., Krauss G.J., Krauss G. Cadmium and zinc response of the fungiHeliscus lugdunensis and Verticillium cf. alboatrum isolated from highly pollutedwater[J]. Science of the Total Environment,2005,346(1-3):274-279.
    [127] Lima G.I.A., Corticeiro S.C., Figueira P.A. Glutathione-mediated cadmiumsequestration in Rhizobium leguminosarum[J]. Enzyme and Microbial Technology,2006,39(4):763-769.
    [128]赵宇鴳.粤北大宝山含硫化物矿山开发的镉环境地球化学及生态效应—兼论镉在表生系统的环境地球化学表现[D].广州:中山大学硕士学位论文,2006.
    [129]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].2004,23(6):1172-1176.
    [130]付善明,周永章,赵宇,等.广东大宝山铁多金属矿废水对河流沿岸土壤的重金属污染[J].2007,28(4):805-812.
    [131]文湘华, Allen H.E.乐安江沉积物酸碱特性及其对重金属释放特性的影响[J].1996,15(6):510-515.
    [132]裘祖楠.城乡河流底泥中Cd的形态分布及其向水相释放的关系[J].中国环境科学,1989,9(6):401-406.
    [133]方涛,肖邦定,张晓华,等.曝气对两种不同类型沉积物中重金属释放的影响[J].中国环境科学,2002,22(4):355-359.
    [134]戴茜,单红仙,崔文林,等.悬浮泥沙含量与电导率关系及其影响因素的试验研究[J].海洋学报,2011,33(4):88-94.
    [135]王云燕,柴立元,王庆伟,等.重金属离子(Zn2+Cu2+Cd2+Pb2+)-水系羟合配离子配位平衡研究[J].中国有色金属学报,2008,18(1):183-191.
    [136] Calmano W., Hong J.F., Frstner U. Binding and mobilization of heavy metal incontaminated sediment affected by the pH and redox potential[J]. Water Science andTechnology,1993,28(8-9),223-235.
    [137]陈清敏,张晓军,胡明安.大宝山铜铁矿区水体重金属污染评价[J].环境科学与技术,2006,29(6):64-71.
    [138]魏焕鹏,党志,易筱筠,等.大宝山矿区水体和沉积物中重金属的污染评价[J].环境工程学报,2011,9(5):1943-1949.
    [139]魏焕鹏.大宝山矿区水体和沉积物中重金属的污染评价[J].广州:华南理工大学硕士学位论文,2011.
    [140]周建民,党志,蔡美芳,等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究,2005,18(3):5-10.
    [141]段星春,王文锦,党志,等.大宝山矿区水体重金属的行为研究[J].地球与环境,2007,35(3):255-260.
    [142]秦建桥,夏北成,周绪,等.粤北大宝山矿区尾矿场周围土壤重金属含量对土壤酶活性影响[J].生态环境,2008,17(4):1503-1508.
    [143]盛菊江,范德江,杨东方,等.长江口及其邻近海域沉积物重金属分布特征和环境质量评价[J].环境科学,2008,29(9):2405-2412.
    [144]余辉,张文斌,余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J].环境科学,2011,32(2):437-444.
    [145]黄财宾,李云海,陈坚,等.泉州湾悬浮颗粒物中重金属的分布特征及其影响因素[J].环境科学,2010,31(5):1167-1175.
    [146]杨振,胡明安,黄松.大宝山矿区河流表层沉积物重金属污染及潜在生态风险评价[J].桂林工学院学报,2007,27(1):44-48.
    [147]刘爱民,黄为一.耐镉菌株的分离及其对Cd2+的吸附富集[J].中国环境科学,2006,26(1):91-95.
    [148]肖潇.基于镉超累积植物内生菌的重金属污染修复研究[D].长沙:湖南大学博士学位论文,2011.
    [149] Huang L., Zeng G., Huang D., et al. Adsorption of lead(II) from aqueous solution ontoHydrilla verticillata[J]. Biodegradation,2009,20(5):651-660.
    [150]刘红娟,张慧,党志,等.一株耐镉细菌的分离及其富集Cd机理[J].环境工程学报,2009,3(2):367-371.
    [151]刘红娟.一株蜡状芽孢杆菌的分离鉴定及其抗镉机理[J].广州:华南理工大学硕士学位论文,2009
    [152]刘红娟,党志,张慧,等蜡状芽孢杆菌抗重金属性能及对镉的累积[J].农业环境科学学报,2010,29(1):25-29.
    [153]段学军,黄春晓. Ralstonia eutropha菌株镉抗性调节基因CzcR的克隆与序列测定[J].生态环境,2007,16(6):1665-1668.
    [154]段学军,闵航.一株耐镉细菌的分离鉴定及其抗性基因定位的初步研究[J].环境科学学报,24(1):154-158.
    [155]李钧敏,金则新.银离子抗性细菌质粒的分离与鉴定[J].应用生态学报,2006,17(2):305-308.
    [156]曾艳,孙建光,王敏,等.一株高抗镉细菌KCd1的分离鉴定及其抗性基因初步研究[J].2010,28(1):46-51.
    [157]潘园园,陈雯莉,黄巧云.一株抗重金属铜镉细菌的分离、鉴定及其16S rDNA的序列分析[J].微生物学通报,2005,32(5):68-72.
    [158] White C., Sharman A.K., Gadd G.M. An integrated microbial process for thebioremediation of soil contaminated with toxic metals[J]. Nature Biotechnology,1998,16:572-575.
    [159] Weber T.W., Chakravorti R.K. Pore and solid diffusion models for fixed bedadsorbents[J]. JounalAmerica Instructer Chemical Engineering,1974,20(2):228-238.
    [160] Sibel T., Ahmet C., Tamer A. Removal of lead and copper ions from aqueous solutionsby bacter strain isolated from soil[J]. Chemical Engineering Journal,2006,115(3):203-211.
    [161] Yin P., Yu Q., Jin B., Ling Z. Biosorption removal of cadmium from aqueous solutionby using pretreated fungal biomass cultured from starch wastewater[J]. Water Research,1999,33(8):1960-1963.
    [162] Kiran I., Akar T., Ozca A.S., et al. Biosorption kinetics and isotherm studies of AcidRed57by dried Cephalosporium aphidicola cells from aqueous solutions[J]. BiochemicalEngineering Journal,2006,31(3):197-203.
    [163] Kapoor A., Viraraghavaa T., Cullimore R.D. Removal of heavy metals using the fungusAspergillus niger[J]. Bioresource Technology,1999,70(1):95-104.
    [164] Fan T., Liu Y.G., Feng B.Y., et al. Biosorption of cadmium(II), zinc(II) and lead(II) byPenicillium simplicissimum: Isotherms, kinetics and thermodynamics[J]. Journal ofHazardous Materials,2008,160(2-3):655-661.
    [165] Volesky B. Detoxification of metal-bearing effluents: biosorption for the next century[J].Hydrometallurgy,2001,59(2-3):203-216.
    [166] Yamamoto K., Kato J., Yano T., et al. Kinetics and modeling of hexavalent chromiumreduction in Enterobacter cloacae[J]. Biotechnology and Bioengineering,1993,41(1):129-133.
    [167] Mohamed, Z.A. Removal of cadmium and manganese by a non-toxic strain of thefreshwater cyaobacterium Gloeothece magna[J]. Water Research,2001,35(18):4405-4409.
    [168]郑刘春.玉米秸秆及其纤维素的改性和吸附水体中镉离子的机理研究[D]广州:华南理工大学博士学位论文,2011.
    [169] Kadukova J., Vircikova E. Comparison of differences between copper bioaccumulationand biosorption[J]. Environment International,2005,31(2):227-232.
    [170] Purchase D., Miles R.J., Young T.W.K. Cadmium uptake and nitrogen fixing ability inheavy metals resistant laboratory and field strains of Rhizobium leguminosarum biovartrifolii[J]. FEMS Microbiology Ecology,1997,22(1):85-93.
    [171] G ksungur Y., üren S., Güven U. Biosorption of cadmium and lead ions by ethanoltreated waste baker’s yeast biomass[J]. Bioresource Technology,2005,96:103-109.
    [172] Tangaromsuk J., Plkethitiyook P., Kruatrachue M., et al. Cadmium biosorption bySphingomonas paucimobilis biomass[J]. Bioresource Technology,2002,85:103-105.
    [173] Gabr R.M., Hassan S.H.A., Shoreit A.A.M., Biosorption of lead and nickel by livingand non-living cells of Pseudomonas aeruginosa ASU6a[J]. InternationalBiodeterioration&Biodegradation,2008,62:195-203.
    [174] Pan J., Ge X., Liu R. et al. Characteristic features of Bacillus cereus cell surfaces withbiosorption of Pb(II) ions by AFM and FT-IR[J]. Colloids and Surfaces B: Biointerfaces,2006,52:89-95.
    [175] Figueira E., Lima A.I.G., Pereira S.I.A., Cadmium tolerance plasticity in Rhizobiumleguminosarum bv.viciae: glutathione as a detoxifying agent[J]. Canadian Journal ofMicrobiology,2005,51(1):7-14.
    [176] zdemir S., Kilinc E., Poli A., et al. Biosorption of Cd, Cu, Ni, Mn and Zn fromaqueous solutions by thermophilic bacteria, Geobacillus toebiisub.sp. decanicus andGeobacillus thermoleovorans sub.sp. stromboliensis: Equilibrium, kinetic andthermodynamic studies[J]. Chemistry Engineering Journal,2009,152:195-206.
    [177] Matis K.A., Zouboulis A.I. Flotation of cadmium-loaded biomass[J]. Biotechnology andbioengineering,1994,44(3):354-360.
    [178] Mameri N., Boudries N., Addour D.L., et al. Batch zinc biosorption by a bacterialnonliving streptomyces rimosus biomass[J]. Water Research,1999,33:1347-1354.
    [179] Ucun H., Bayhan Y.K., Kaya Y., et al. Biosorption of chromium(VI) from aqueoussolution by cone biomass of Pinus sylvestris[J]. Bioresource Technology,2002,85:155-158.
    [180] Achary A.J., Sahu J.N., Mohanty C.R. Removal of lead(II) from wastewater byactivated carbon developed from Tamarind wood by zinc chloride activation[J]. ChemicalEngineering Journal,2009,149(1-3):249-262.
    [181] Davis T.A., Volesky B., Mucci A. A review of the biochemistry of heavy metalbiosorption by brown algae. Water Research,2003,37:4311-4330.
    [182] Li H., Lin Y., Guan W. et al. Biosorption of Zn(II) by live and dead cells ofStreptomyces ciscaucasicus strain CCNWHX72-14[J]. Journal of Hazardous Materials,2010,179(1-3):151-159.
    [183] Kapoor A., Viraraghavan T. Removal of heavy metals from aqueous solutions usingimmobilized fungal biomass in continuous mode[J]. Water Research,1998,32:1968-1977.
    [184] Yilmaz E.I., Ensari, N.Y. Cadmium biosorption by Bacillus circulansstrain EB1[J].World Journal of Microbiology and Biotechnology,2005,21:777-779.
    [185] Kat rc og lu H., Aslim B., Türker A.R., et al. Removal of cadmium(II) ion from aqueoussystem by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1isolated from freshwater(Mogan Lake)[J]. Bioresource Technology,2008,99:4185-4191.
    [186] Sari A., Tuzen M.Biosorption of Pb (II) and Cd(II) from aqueous solution using greenalga (Ulvalactuca) biomass[J]. Journal of Hazardous Materials,2008,152:302-308.
    [187] Fang L., Cai. P., Chen W., et al. Impact of cell wall structure on the behavior of bacterialcells in the binding of copper and cadmium[J]. Colloids and Surfaces A:Physicochemical and EngineeringAspects,2009,347:50-55.
    [188] olak F., Atar N., Yaz c o lu D., et al. Biosorption of lead from aqueous solutions byBacillus strains possessing heavy-metal resistance[J]. Chemical Engineering Journal,2011,173:422-428.
    [189] igdem A., zcan A.S., Erdo an Y. Characterization of Punica granatum L.peels andquantitatively determination of its biosorption behavior towards lead(II) ions and AcidBlue40. Colloids and Surfaces B: Biointerfaces,2012,100:197-204.
    [190] Huang C., Huang C.P., Morehart A.L. The removal of Cu(II) from dilute aqueoussolutions by Saccharomyces cerevisiae[J]. Water Research,1990,24:433-439.
    [191] Park D., Yun Y.S., Cho H.Y., et al. Chromium biosorption by thermally treated biomassof the brown seaweed, Ecklonia sp[J]. Industrial&Engineerign Chemistry Research,2004,43(26):8226-8232.
    [192] Du L.N., Wang B., Li G., et al. Biosorption of the metal-complex dye Acid Black172bylive and heated biomass of Pseudomonas sp. Strain DYl: kinetics and sorptionmechanisms[J]. Journal of Hazardous Materials,2012,(205-206):47-54.
    [193] Romera E., Gonzalez F., Ballester A., et al. Comparative study of biosorption of heavymetals using different types of algae[J]. Bioresource Technology,2007,98(17):3344-3353.
    [194] Yuan H.P., Zhang J.H., Lu Z.M., et al. Studies on biosorption equilibrium and kineticsof Cd2+by Streptomyces sp. K33and HL-12[J]. Journal of Hazardous Materials,2009,164:423-431
    [195] Gong R., Ding Y., Lui H., et al. Lead biosorption and desorption by intact andpretreated spirula maxima biomass[J]. Chemosphere,2005,58:125-130.
    [196] Mata Y.N., Blázquez M.L., Ballester A., et al. Sugar-beet pulp pectin gels asbiosorbentfor heavy metals: Preparation and determination of biosorption and desorptioncharacteristics[J]. Chemical Engineering Journal,2009,150:289-301.
    [197] Zhou J.L., Huang P.L., Lin R.G. Sorption and desorption of Cu and Cd by macro-algaeand micro-algae, Environmental Pollution,1998,101:67-75.
    [198] Pabst M.W., Miller C.D., Dimkpa C.O., et al. Defining the surface adsorption andinternalization of copper and cadmium in a soil bacterium, Pseudomonas putida[J].Chemosphere,2010,81:904-910.
    [199] Ramos I., Esteban E., Lucena J.J. Cadmium uptake and subcellular distribution in plantsof Lactucasp.Cd-Mn interaction[J]. Plant Science,2002,162:761-767.
    [200] Gadd G.M. Biosorption: critical view of scientific rationale, environmental importanceand significance for pollution treatment[J]. Journal of Chemical Technology andBiotechnology,84(1):13-28.
    [201] Harish S., Kumar D., Vaijapurkar S. A new chlorophycean nickel hyperaccumulator[J].Bioresource Technology,2008,99(9):3930-3934.
    [202] Podda F., Zuddas P., Minacci A., et al. Heavy metal coprecipitation withhydrozincite[Zn5(CO3)2(OH)6] from mine waters caused by photosyntheticmicroorganisms.Applied and Environmental Microbiology,2000,66(11):5092-5098.
    [203] Remacle J., Muguruza I., Fransolet M. Cadmium removal by astrain of Alcaligenesdenitrificans isolated from a metal-polluted pond[J]. Water Research,1992,26(7):923-926.
    [204] Tucker S.L., Thornton K., Tasker K., et al. A fungal metallothionein is required forpathogenicity of Magnaporthe grisea[J]. Plant Cell,2004,16:1575-1588.
    [205] Ching-mei W.W., Lin L.Y. Immobilization of metallothionein as a sensitive biosensorchip for the detection of metal ions by surface plasmon resonance[J]. Biosensors andBioelectronics,2004,20:864-871.
    [206] Tanja K., Ralph J., et al. Silver-based crystalline nanoparticles, microbiallyfabricated[J]. Applied Physical Sciences&Microbiology,1999,96(24):13611-13614.
    [207] Davis-Hoover W.J., Brackett K.A., Vesper S.J. Pseudomonas aeruginosa thatsequesters lead. Abstract General Meeting: American Society for Microbiology,1998,98:408.
    [208] Ahimou F., Denis F.A., Youhami A., et al. Probing microbial cell surface charges byatomic force microscopy[J]. Langmuir,2002,18(25):9937-9941.
    [209]葛小鹏,潘建华,刘瑞霞,等.重金属生物吸附研究中蜡状芽孢杆菌菌体微观形貌的原子力显微镜观察与表征[J].环境科学学报,2004,24(5):753-760.
    [210] Lin Y., Wang X., Wang B., et al. Bioaccumulation characterization of zinc and cadmiumby streptomyces zinciresistens, a novel actinomycete[J]. Ecotoxicology and EnvironmentalSafety,2012,77:7-17.
    [211] Guo J.K., Lin Y.B., Zhao L.M., et al. Streptomyces plumbiresistens sp. nov., alead-resistant actinomycete isolated from lead-polluted soil in northwest of China[J].International Journal of Systematic and Evolutionary Microbiology,2009,59:1326-1330.
    [212]刘爱民,黄为一.应用红外方法探讨耐镉菌株高积累Cd2+的机理[J].环境科学学报,2005a,25(11):1502-1506.
    [213] Pethkar A.V., Kulkarni S.K., Paknikar K.M. Comparative studies on metal biosorptionby two strains of Cladosporium cladosporioides[J]. Bioresource Technology,2001,80:211-215.
    [214] Li Z., Yuan H., Hu X. Cadmium-resistance in growing Rhodotorula sp. Y11.Bioresource Technology,2008,99(5):1339-1344.
    [215] Anand P., Isar J., Saran S., et al. Bioaccumulation of copper by Trichoderma viride[J].Bioresource Technology,2006,97(8):1018-1025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700