用户名: 密码: 验证码:
RNA介导的启动子DNA甲基化在调控拟南芥盐胁迫应答中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因组的表达调控主要受到染色质结构变化的影响,而染色质结构的变化则是由组蛋白的翻译后修饰和DNA甲基化调控等表观遗传修饰所控制的。在真核生物中,DNA甲基化修饰是调控基因表达的一个重要的表观遗传学标志。在类病毒感染的烟草中首先被发现的RNA介导的DNA甲基化(RNA-directed DNA methylation, RdDM),则是植物在非生物胁迫下引起转录水平基因沉默(transcriptional gene silencing, TGS)的一个重要调控机制。小干扰RNA(small interfering RNA, siRNA)的存在与缺失直接影响了其对应的沉默位点的mRNA表达丰度的高低。大约三分之一的DNA甲基化位点是富含siRNA靶向位点的,暗示了siRNA在DNA甲基化修饰中的重要作用。并且越来越多的实验证据证明了siRNA可以被多种外界胁迫所诱导进而影响其靶向的位点染色质结构。
     虽然非生物胁迫中的脱落酸(abscisic acid,ABA)依赖的盐胁迫信号转导途径已经研究的比较深入,但是DNA甲基化和去甲基化修饰是否参与到这个调控过程中仍不是十分清楚,并且siRNA是如何通过RdDM来响应外界非生物胁迫的作用机理也需要深入研究。本研究通过对AtMYB74基因的系统分析,证明RdDM参与到了植物ABA依赖的盐胁迫调控信号途径,进一步揭示了非生物胁迫下siRNA在RdDM过程中调控基因表达的作用机理。主要研究结果和主要结论如下:
     (1)AtMYB74基因编码一个R2R3型MYB转录因子
     通过对GENEVESTIGATOR和Arabidopsis eFP Browser数据库的分析,发现了1286个响应盐胁迫调控的基因。然后利用拟南芥表观遗传学图谱,对它们的启动子DNA甲基化情况进一步分析,鉴定出可能被DNA甲基化修饰调控响应盐胁迫的候选基因,最终选定AtMYB74作为研究对象进行深入探索。
     对转录物序列分析发现,AtMYB74的mRNA全长包含975个碱基,编码一条324个氨基酸的多肽链。其13位至65位和66位至117位氨基酸编码MYB转录因子家族保守的R2和R3DNA结合结构域,与拟南芥及其他植物物种的MYB家族同源。经过qRT-PCR和GUS染色分析,发现AtMYB74基因在拟南芥各组织器官中特异表达且丰度较低。通过洋葱表皮的瞬时转化实验在细胞核中观察到AtMYB74-GFP融合蛋白的GFP荧光,证明AtMYB74蛋白的亚细胞定位是在细胞核中。
     (2)超表达AtMYB74转基因植株在种子萌发期对ABA和盐胁迫敏感
     超表达AtMYB74可以诱导AtRD29B、AtRAB18和AtRD20等盐胁迫响应基因的表达。在NaCl和ABA的处理下,AtMYB74超表达转基因植株的种子萌发率较野生型明显下降;而RNAi转基因植株的种子萌发率则与野生型无差别。当在NaCl处理下添加ABA合成抑制剂钨酸钠时,超表达植株的敏感表型则会部分恢复。由此,萌发率的敏感表型证明了AtMYB74是在种子萌发期间通过ABA依赖的信号途径对盐胁迫进行响应进而行使其生物学功能的。
     (3)盐胁迫条件下DNA甲基化修饰调控AtMYB74的转录活性
     在NaCl和ABA处理的野生型中,AtMYB74的基因转录水平有明显的升高,证明AtMYB74是在转录水平上响应盐胁迫。而在RdDM突变体中,AtMYB74的mRNA表达水平变化远不如野生型中明显;同时,DNA去甲基化RNAi转基因植株中,同样处理下也显示出同样的结果,证明RdDM修饰对AtMYB74的转录起调控作用。对AtMYB74转录起始位点上游200个碱基区(-700~-500)域进行亚硫酸氢盐处理测序PCR(bisulfitesequencing PCR, BSP)结果发现,存在NaCl和ABA时,野生型中该区域的5-甲基胞嘧啶含量比对照组有明显升高。值得注意的是,CpHpH位点的胞嘧啶甲基化所占百分比下降了接近一半,而CpG位点只降低了10%。而在RNAi转基因植株中只是在所有位点的胞嘧啶甲基化程度出现轻微下降。
     通过对不同时间点的AtMYB74表达量及其启动子CpHpH位点DNA甲基化的检测,发现在盐胁迫处理后从0.5小时开始AtMYB74的表达量出现上升,在3小时时达到峰值,从6小时开始有轻微下降但仍维持在明显高于对照组的水平;而对应的CpHpH位点的DNA甲基化水平也是从0.5小时开始下降,在3小时时达到最低值,随后处在低于对照组的水平。同样的结果在ABA处理组中也被检测到,证明盐了胁迫对AtMYB74的表达量诱导升高是通过动态的CpHpH位点DNA甲基化修饰所调控的。
     (4)靶向AtMYB74启动子的24-nt siRNA的积累影响DNA甲基化
     序列分析发现,5条24-nt siRNA(ASRP215119、ASRP41948、ASRP27256、ASRP13208、ASRP2423)均可以靶向AtMYB74启动子-603位至-447位区域的相应位点。经过BSP分析后发现,盐胁迫下DNA甲基化的变化位点也是发生在这一区段或临近位置。但不论是在5-azaC处理的野生型中,还是在RdDM突变体以及去甲基化RNAi转基因植株中,都不会因为盐胁迫的存在而使这一区段的DNA甲基化水平发生明显变化,由此证明这一区段的CpHpH位点DNA甲基化修饰具有重要调控作用。通过siRNAqRT-PCR和siRNA Northern Bolt杂交检测实验,也发现靶向这一区段的5条24-nt siRNA的积累量在盐胁迫下会明显下降。而在对照组dcl3突变体中,因为siRNA合成途径被阻断则检测不到24-nt siRNA积累量变化。因此,盐胁迫是通24-nt siRNA的表达量减少来降低DNA甲基化的修饰作用,进而激活的AtMYB74基因表达的。
     (5)外源表达24-nt siRNA促进AtMYB74启动子DNA甲基化
     通过pFGC5941表达载体可以产生发夹结构的双链RNA进而生成siRNA的特性,本研究构建了可以分别产生靶向AtMYB74启动子和cDNA的siRNA的表达载体,命名为R1和R2。同样以GUS作为检测对象,构建了35S启动子、AtMYB74启动子和缺失siRNA靶向区段的AtMYB74启动子的pBI121表达载体,命名为P1、P2和P3。通过瞬时共转化实验,发现P1-R1组对应P1组,P2-R2组、P3-R1组对应P2组都没有明显GUS活性变化,而存在siRNA直接靶向的P2-R1组则比对照P2组的GUS活性明显降低。同样经过BSP检测发现,P2-R1组在该靶向区段的DNA甲基化水平升高了43%,而其他组则无明显变化。上述结果证明异源表达人工合成的siRNA可以在瞬时共转化时靶向AtMYB74启动子,同样可以通过RdDM调控对应GUS表达,从另一方面证明了siRNA对于RdDM调控的重要作用。
     (6)RdDM和ABA响应元件(ABA-responsive cis-elements,ABRE)均调控AtMYB74参与的盐胁迫的信号途径
     序列分析发现,AtMYB74启动子含有ABRE顺式作用元件,通过CHIP-PCR的方法验证了ABI5转录因子可以结合AtMYB74启动子上的ABRE顺式作用元件。尽管盐胁迫下abi5突变体中AtMYB74的转录本仍然会增加,但增加水平远低于野生型,并且含有P3载体的转基因拟南芥的GUS染色变化也说明ABRE顺式作用元件参与到了AtMYB74的调控中。同样在abi5突变体中检测到了CpHpH位点DNA甲基化水平的降低和靶向启动子的siRNA积累量下降。这些结果证明ABRE顺式作用元件和RdDM途径均参与了AtMYB74响应盐胁迫的调控。
Genome expression is mainly influenced by the chromatin structure, which is governedby processes often associated with epigenetic regulation, including histone post-translationalmodification and DNA methylation. DNA methylation is an important epigenetic mark forthe regulation of gene expression in eukaryotes. RNA-directed DNA methylation (RdDM),which was first discovered in viroid-infected tobacco, is an important regulatory phenomenoninvolved in repressive epigenetic modifications that can trigger transcriptional gene silencing(TGS) under abiotic stress in plants. The gain or loss of DNA methylation is correlated with aconsiderable decrease or increase in the corresponding amount of mRNA abundance and withthe presence or absence of24-nt siRNAs at each silenced epiallele. Approximately one-thirdof methylated DNA loci in Arabidopsis is rich in siRNAs, implying an primary determinantof siRNAs in DNA methylation. Increasing evidence has shown that the activity of siRNAscould be triggered by various environmental stimuli to affect the targeting chromatinstructure.
     Although the ABA-dependent salt stress signal transduction pathway has beenintensively studied, whether or not DNA methylation/demethylation is involved in thispathway remains unknown. The mechanism of how the siRNA mediates DNA methylation byRdDM to respond to abiotic stress also needs to be elucidated. Our findings provide a novelABA-dependent salt stress regulatory signal pathway and allows for a better understanding ofthe role of siRNAs in controlling the RdDM pathway to regulate gene expression in responseto abiotic stress. The main results and conclusions presented in this thesis are as follows:
     (1) AtMYB74encodes a R2R3-MYB transcription factor and differentially expresses invarious tissues.
     By analyzing the database of GENEVESTIGATOR and Arabidopsis eFP Browser withsalt stress treatment,1286genes were found. Promoter analysis of the selected genes was then carried out in Arabidopsis epigenome maps to identify hypermethylated regions. Theresults showed that gene candidates with promoter hypermethylation in response to salt stresswere identified. AtMYB74was chosen for our further study.
     The full-length cDNA corresponding to the AtMYB74mRNA is975bp and encodes aputative protein of324amino acids. The R2and R3MYB DNA binding repeats (amino acids13to65and66to117, respectively) of AtMYB74are highly conserved with all other MYBproteins in Arabidopsis and in other plant species. AtMYB74is constitutively expressed invarious tissues at low abundance by qRT-PCR analysis and GUS staining detection. Inaddition, onion epidermal cells transformed with an expression plasmid for theAtMYB74-GFP fusion protein exhibited GFP fluorescence in the nucleus.
     (2) Transgenic plants overexpressing AtMYB74show hypersensitivity to ABA and saltstress during seed germination.
     Overexpression of AtMYB74also induced the expression of salt stress responsive genes,such as AtRD29B, AtRAB18, and AtRD20. However, under NaCl or ABA treatment, thegermination of OE transgenic seeds was inhibited more severely than that of WT plants andthe germination rates of RNAi transgenic seeds were similar to those of WT plants. Moreover,application of ABA biosynthesis inhibitors (tungstate) in the medium suppressed thehypersensitivity of OE transgenic seeds to NaCl. The reduced germination rates of the OElines suggest that AtMYB74is involved in the response to salt stress during seed germinationin an ABA-dependent manner in plants.
     (3) Dynamic DNA methylation results in AtMYB74activation in response to ABA andsalt stress.
     The level of AtMYB74transcripts increased significantly by both NaCl and ABAtreatments in WT plants, indicating that AtMYB74responds to salt stress and ABA signals atthe transcriptional level. In addition, in the RdDM mutants, the NaCl and ABA treatmentsdemonstrate much less changes in the accumulation of AtMYB74mRNA than that in WT,suggesting the involvement of RdDM in the transcriptional regulation of AtMYB74.Meanwhile, the deficiency of active DNA demethylation in ROS1-RNAi and ZDP-RNAitransgenic plants resulted in a slight increment after treatment. The200bp promoter regionapproximately500bp upstream of the transcription initiation site of AtMYB74was analyzed by bisulfite sequencing. WT plants treated with NaCl and ABA exhibited the a visiblereduction in total5-meC contents compared with the control. Interestingly, the percentage ofCpHpH methylation was nearly halved in the treated plants, and only around10%reductionin CpG contexts was detected. And the RNAi transgenic plants showed only a slightreduction in all context of DNA methylation.
     Time-course analysis revealed that the mRNA level under salt stress showed a increasefrom0.5h, with the highest levels occurring at3h, accompanied by the lowest percentage ofCpHpH methylation. After6h, AtMYB74expression under salt stress was appearently higherin treated plants than that in the control; a lower percentage of CpHpH methylation was alsodemonstrated in WT plants. Similar results were obtained in ABA-treated plants. Theseresults indicate that stress increases the expression of AtMYB74by reducing dynamic DNAmethylation in the CpHpH context.
     (4) DNA methylation is controlled by the accumulation of24-nt siRNAs targetingAtMYB74promoter.
     Five24-nt siRNAs (ASRP215119, ASRP41948, ASRP27256, ASRP13208, andASRP2423) located in a cluster were identified to target at a narrow region (-603bp to-477bp) of the2.9kb promoter of AtMYB74. Moreover, bisulfite sequencing analysis of individualclones showed that DNA methylation considerably changes in or near the siRNA targetregion. However, no obvious changes were detected in the5-azaC-treated WT, ddc, dcl3, rdr2,ROS1-RNAi, and ZDP-RNAi transgenic plants, indicating that CpHpH hypomethylation isdependent on RdDM. The accumulation of five24-nt siRNAs was substantially reducedunder the salt stress and ABA in WT plants compared with those in dcl3plants by siRNAqRT-PCR and Northern Blot analysis, suggesting that decreases in DNA methylation causedby the reductions in24-nt siRNA accumulation lead to the activation of AtMYB74under saltstress.
     (5) Exogenous24-nt siRNAs direct RdDM in the AtMYB74promoter in Nicotianabenthamiana leaves.
     Considering that the siRNAs diced from the hairpin RNA could induce transcriptionalsilencing of the target genes, two types of expression cassettes were constructed to generatesiRNAs and express reporter gene (R1and R2). In the reporter gene cassettes of pBI121, gusA was driven by the35S promoter (P1), AtMYB74promoter (P2), and mutated AtMYB74promoter with the deletion of a200bp region where these siRNAs are targeted (P3). GUSactivities between groups P1and P1-R1, P2and P2-R2, and P2and P3-R1did not showobvious changes after transient cotransformation. The GUS activity of group P2-R1wasobviously lower than that of group P2. In addition, bisulfite sequencing analysis revealed thatthe DNA methylation in the200bp promoter region increased43%due to the siRNAsyielded by the hairpin RNA. The constructs P1-R1, P2-R1, and P3-R1could efficientlygenerate siRNAs in the transformed tobacco. Overall, results demonstrate that the ectopicexpression of artificial siRNAs targeting the AtMYB74promoter also can regulate GUSexpression through RdDM.
     (6) Both RdDM and ABA-responsive cis-elements (ABREs) contribute to the regulationof AtMYB74under salt stress in the ABA-dependent pathway.
     Four putative ABREs were identified by bioinformatics analysis in the AtMYB74promoter. ChIP-PCR detection found that ABI5occupancy on the AtMYB74promoter viaABREs. Although the transcripts of AtMYB74in abi5increased under stress, they remainedlower than those in WT plants, indicating that ABREs also participate in the regulation ofAtMYB74. GUS staining showed that stress-induced accumulation of AtMYB74transcriptscould be detected in P3transgenic seedlings, suggesting that increasing levels of GUS maybe caused by ABREs’ regulation. Furthermore, in abi5, both the CpHpH DNA methylation ofAtMYB74and the accumulation of five24-nt siRNAs remarkably decreased. Theseobservations reveal that both ABREs and RdDM participate in the regulation of the AtMYB74promoter activity to respond to salt stress.
引文
李彦,张英鹏,孙明,高弼模。盐胁迫对植物的影响及植物耐盐机理研究进展。植物生理科学,2008,24(1):258-265
    刘爱荣,赵可夫。盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用。植物生理与分子生物学学报,2005,31(4):389-395
    潘瑞炽,董愚得。植物生理学。北京:高等教育出版社,1995,322-328
    王爱国,叶发辉,罗广华。活性氧对花生叶片大分子量DNA的损伤。植物生理学通讯,1993,29:260-262
    王宝山。植物生理。科学出版社,2004,151-156
    韦存虚,王建波,陈义芳,周卫东,孙国荣。盐生植物星星草叶表皮具有泌盐功能的蜡质层。生态学报,2004,24(11):2451-2456
    吴小萍,陈晓萍,斯昇亮。丝裂原活化蛋白激酶信号通路相关研究。生物学通报,2006,41(6):20
    余叔文,汤章城。植物生理与分子生物学(第二版)。科学出版社,1998,752-769
    张宏飞,王锁民。高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展。植物学通报,2007,24:561-571
    张洁明,孙景宽,刘宝玉,刘新成,张文辉。盐胁迫对荆条、白蜡、沙枣种子萌发的影响。植物研究,2006,26(5):595-599
    张其德。盐胁迫对植物及其光合作用的影响。植物杂志,1999,6:32-33
    赵可夫,范海。盐生植物及其对盐渍生境的适应生理(第一版)。北京:科学出版社,2005:131-180
    赵可夫,李法曾。中国盐生植物(第一版)。北京:科学出版社,1999:30-65
    赵勇,马雅琴,翁跃进。盐胁迫下小麦甜菜碱和脯氨酸含量变化。植物生理与分子生物学学报,2005,31(1):103-106
    Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. ArabidopsisAtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisicacid signaling. Plant Cell,2003,15(1):63-78.
    Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D., Shinozaki K.. Role ofarabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated geneexpression. Plant Cell,1997,9(10):1859-1868.
    Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K.. Role of DREB transcription factors inabiotic and biotic stress tolerance in plants. Plant Cell Rep.,2006,25(12):1263-1274.
    Alleman M., Sidorenko L., McGinnis K., Seshadri V., Dorweiler J.E., White J., Sikkink K.,Chandler V.L.. An RNA-dependent RNA polymerase is required for paramutation inmaize. Nature,2006,442(7100):295-298.
    Apse M.P., Aharon G.S., Snedden W.A., Blumwald E.. Salt tolerance conferred byoverexpression of a vacuolar Na+/H+antiport in Arabidopsis. Science,1999,285(5431):1256-1258.
    Attia H., Arnaud N., Karray N., Lachaal M.. Long-term effects of mild salt stress on growth,ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves.Physiol. Plant,2008,132(3):293-305.
    Ausin I., Mockler T.C., Chory J., Jacobsen S.E.. IDN1and IDN2are required for de novoDNA methylation in Arabidopsis thaliana. Nat. Struct. Mol. Biol.,2009,16(12):1325-1327.
    Baev V., Naydenov M., Apostolova E., Ivanova D., Doncheva S., Minkov I., Yahubyan G..Identification of RNA-dependent DNA-methylation regulated promoters in Arabidopsis.Plant Physiol. Biochem.,2010,48(6):393-400.
    Baumann K., Perez-Rodriguez M., Bradley D., Venail J., Bailey P., Jin H., Koes R., RobertsK., Martin C.. Control of cell and petal morphogenesis by R2R3MYB transcriptionfactors. Development,2007,134(9):1691-1701.
    Belin C., de Franco P.O., Bourbousse C., Chaignepain S., Schmitter J.M., Vavasseur A.,Giraudat J., Barbier-Brygoo H., Thomine S.. Identification of features regulating OST1kinase activity and OST1function in guard cells. Plant Physiol.,2006,141(4):1316-1327.
    Ben Amor B., Wirth S., Merchan F., Laporte P., d'Aubenton-Carafa Y., Hirsch J., Maizel A.,Mallory A., Lucas A., Deragon J.M., Vaucheret H., Thermes C., Crespi M.. Novel longnon-protein coding RNAs involved in Arabidopsis differentiation and stress responses.Genome Res.,2009,19(1):57-69.
    Bensmihen S., Giraudat J., Parcy F.. Characterization of three homologous basic leucinezipper transcription factors (bZIP) of the ABI5family during Arabidopsis thalianaembryo maturation. J. Exp. Bot.,2005,56(412):597-603.
    Blaha G., Stelzl U., Spahn C.M., Agrawal R.K., Frank J., Nierhaus K.H.. Preparation offunctional ribosomal complexes and effect of buffer conditions on tRNA positionsobserved by cryoelectron microscopy. Methods Enzymol.,2000,317:292-309.
    Blumwald E., Aharon G.S., Apse M.P.. Sodium transport in plant cells. Biochim. Biophys.Acta.,2000,1465(1-2):140-151.
    Bohumil M.. Germination requirements of invasive and non-invasive Atriplex species: acomparative study. Flora,2003,198:45-54
    Bork P., Brown N.P., Hegyi H., Schultz J.. The protein phosphatase2C (PP2C) superfamily:detection of bacterial homologues. Protein Sci.,1996,5(7):1421-1425.
    Borsani O., Zhu J., Verslues P.E., Sunkar R., Zhu J.K.. Endogenous siRNAs derived from apair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123(7):1279-1291.
    Boudsocq M., Lauriere C.. Osmotic signaling in plants: multiple pathways mediated byemerging kinase families. Plant Physiol.,2005,138(3):1185-1194.
    Boyko A., Blevins T., Yao Y., Golubov A., Bilichak A., Ilnytskyy Y., Hollunder J., Meins F.,Jr., Kovalchuk I.. Transgenerational adaptation of Arabidopsis to stress requires DNAmethylation and the function of Dicer-like proteins. PLoS One,2010,5(3): e9514.
    Bray E.A.. Abscisic acid regulation of gene expression during water-deficit stress in the eraof the Arabidopsis genome. Plant Cell Environ.,2002,25(2):153-161.
    Busk P.K., Pages M.. Regulation of abscisic acid-induced transcription. Plant Mol. Biol.,1998,37(3):425-435.
    Byrne M.E., Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A., Martienssen R.A..Asymmetric leaves1mediates leaf patterning and stem cell function in Arabidopsis.Nature,2000,408(6815):967-971.
    Camps M., Nichols A., Arkinstall S.. Dual specificity phosphatases: a gene family for controlof MAP kinase function. FASEB J.,2000,14(1):6-16.
    Cao X., Jacobsen S.E.. Role of the arabidopsis DRM methyltransferases in de novo DNAmethylation and gene silencing. Curr. Biol.,2002,12(13):1138-1144.
    Cao X., Springer N.M., Muszynski M.G., Phillips R.L., Kaeppler S., Jacobsen S.E..Conserved plant genes with similarity to mammalian de novo DNA methyltransferases.Proc. Natl Acad. Sci. USA,2000,97(9):4979-4984.
    Chan S.W., Henderson I.R., Zhang X., Shah G., Chien J.S., Jacobsen S.E.. RNAi, DRD1, andhistone methylation actively target developmentally important non-CG DNA methylationin arabidopsis. PLoS Genet.,2006,2(6): e83.
    Chen S., Li J., Wang S., Hüttermann A., Altman A.. Salt, nutrient uptake and transport, andABA of Populus euphratica: a hybrid in response to increasing salt. Trees (Berl),2001,15:186–194
    Cheng H., Song S., Xiao L., Soo H.M., Cheng Z., Xie D., Peng J.. Gibberellin acts throughjasmonate to control the expression of MYB21, MYB24, and MYB57to promote stamenfilament growth in Arabidopsis. PLoS Genet.,2009,5(3): e1000440.
    Chhipa B.R., Lal P.. Na/K ratios as the basis of salt tolerance in wheat. Aust. J. Agric. Res.,1995,46(3):533-539
    Chinnusamy V., Zhu J.K.. RNA-directed DNA methylation and demethylation in plants. Sci.China C Life Sci.,2009,52(4):331-343.
    Choi C.S., Sano H.. Abiotic-stress induces demethylation and transcriptional activation of agene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet.Genomics,2007,277(5):589-600.
    Choi Y., Gehring M., Johnson L., Hannon M., Harada J.J., Goldberg R.B., Jacobsen S.E.,Fischer R.L.. DEMETER, a DNA glycosylase domain protein, is required for endospermgene imprinting and seed viability in arabidopsis. Cell,2002,110(1):33-42.
    Christmann A., Moes D., Himmelbach A., Yang Y., Tang Y., Grill E.. Integration of abscisicacid signalling into plant responses. Plant Biol.(Stuttg),2006,8(3):314-325.
    Cokus S.J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C.D., Pradhan S.,Nelson S.F., Pellegrini M., Jacobsen S.E.. Shotgun bisulphite sequencing of theArabidopsis genome reveals DNA methylation patterning. Nature,2008,452(7184):215-219.
    Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N.,Dellaporta S.L., Tonelli C.. A guard-cell-specific MYB transcription factor regulatesstomatal movements and plant drought tolerance. Curr. Biol.,2005,15(13):1196-1200.
    Dai X., Xu Y., Ma Q., Xu W., Wang T., Xue Y., Chong K.. Overexpression of an R1R2R3MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress intransgenic Arabidopsis. Plant Physiol.,2007,143(4):1739-1751.
    Das P.M., Singal R.. DNA methylation and cancer. J. Clin. Oncol.,2004,22(22):4632-4642.
    Davenport R., James R.A., Zakrisson-Plogander A., Tester M., Munns R.. Control of sodiumtransport in durum wheat. Plant Physiol.,2005,137(3):807-818.
    Denekamp M., Smeekens S.C.. Integration of wounding and osmotic stress signalsdetermines the expression of the AtMYB102transcription factor gene. Plant Physiol.,2003,132(3):1415-1423.
    Desikan R., Cheung M.K., Bright J., Henson D., Hancock J.T., Neill S.J.. ABA, hydrogenperoxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot.,2004,55(395):205-212.
    Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L.. MYBtranscription factors in Arabidopsis. Trends Plant Sci.,2010,15(10):573-581.
    Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., ShinozakiK., Yamaguchi-Shinozaki K.. OsDREB genes in rice, Oryza sativa L., encodetranscription activators that function in drought-, high-salt-and cold-responsive geneexpression. Plant J.,2003,33(4):751-763.
    Dyachenko O.V., Zakharchenko N.S., Shevchuk T.V., Bohnert H.J., Cushman J.C.,Buryanov Y.I.. Effect of hypermethylation of CCWGG sequences in DNA ofMesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry(Mosc),2006,71(4):461-465.
    Finkelstein R.R., Gampala S.S., Rock C.D.. Abscisic acid signaling in seeds and seedlings.Plant Cell,2002,14Suppl: S15-45.
    Finkelstein R.R., Lynch T.J.. The Arabidopsis abscisic acid response gene ABI5encodes abasic leucine zipper transcription factor. Plant Cell,2000,12(4):599-609.
    Finnegan E.J., Dennis E.S.. Isolation and identification by sequence homology of a putativecytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res.,1993,21(10):2383-2388.
    Flowers T.J.. Chloride as a nutrient and as an osmoticum. In: Tinker B, L uuchli A, eds.Asvanced in plant nutrition, New York: Praeger,1988,55-78
    Flowers T.J.. Improving crop salt tolerance. J. Exp. Bot.,2004,55(396):307-319.
    Fujii H., Verslues P.E., Zhu J.K.. Identification of two protein kinases required for abscisicacid regulation of seed germination, root growth, and gene expression in Arabidopsis.Plant Cell,2007,19(2):485-494.
    Fujii H., Zhu J.K.. Arabidopsis mutant deficient in3abscisic acid-activated protein kinasesreveals critical roles in growth, reproduction, and stress. Proc. Natl Acad. Sci. USA,2009,106(20):8380-8385.
    Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K.. ABA-mediated transcriptionalregulation in response to osmotic stress in plants. J. Plant Res.,2011,124(4):509-525.
    Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y..Function, intracellular localization and the importance in salt tolerance of a vacuolarNa(+)/H(+) antiporter from rice. Plant Cell Physiol.,2004,45(2):146-159.
    Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K.,Yamaguchi-Shinozaki K.. Abscisic acid-dependent multisite phosphorylation regulatesthe activity of a transcription activator AREB1. Proc. Natl Acad. Sci. USA,2006,103(6):1988-1993.
    Furini A., Koncz C., Salamini F., Bartels D.. High level transcription of a member of arepeated gene family confers dehydration tolerance to callus tissue of Craterostigmaplantagineum. Embo J.,1997,16(12):3599-3608.
    Gao Z., Liu H.L., Daxinger L., Pontes O., He X., Qian W., Lin H., Xie M., Lorkovic Z.J.,Zhang S., Miki D., Zhan X., Pontier D., Lagrange T., Jin H., Matzke A.J., Matzke M.,Pikaard C.S., Zhu J.K.. An RNA polymerase II-and AGO4-associated protein acts inRNA-directed DNA methylation. Nature,2010,465(7294):106-109.
    Gaxiola R.A., Li J., Undurraga S., Dang L.M., Allen G.J., Alper S.L., Fink G.R.. Drought-and salt-tolerant plants result from overexpression of the AVP1H+-pump. Proc. NatlAcad. Sci USA,2001,98(20):11444-11449.
    Giraudat J.. Abscisic acid signaling. Curr. Opin. Cell Biol.,1995,7(2):232-238.
    Golay J., Basilico L., Loffarelli L., Songia S., Broccoli V., Introna M.. Regulation ofhematopoietic cell proliferation and differentiation by the myb oncogene family oftranscription factors. Int. J. Clin. Lab. Res.,1996,26(1):24-32.
    Gomez-Porras J.L., Riano-Pachon D.M., Dreyer I., Mayer J.E., Mueller-Roeber B..Genome-wide analysis of ABA-responsive elements ABRE and CE3reveals divergentpatterns in Arabidopsis and rice. BMC Genomics,2007,8:260.
    Gong Z., Morales-Ruiz T., Ariza R.R., Roldan-Arjona T., David L., Zhu J.K.. ROS1, arepressor of transcriptional gene silencing in Arabidopsis, encodes a DNAglycosylase/lyase. Cell,2002,111(6):803-814.
    Gonzalez-Guzman M., Apostolova N., Belles J.M., Barrero J.M., Piqueras P., Ponce M.R.,Micol J.L., Serrano R., Rodriguez P.L.. The short-chain alcohol dehydrogenase ABA2catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell,2002,14(8):1833-1846.
    Gonzalez A., Mendenhall J., Huo Y., Lloyd A.. TTG1complex MYBs, MYB5and TT2,control outer seed coat differentiation. Dev. Biol.,2009,325(2):412-421.
    Gonzalez A., Zhao M., Leavitt J.M., Lloyd A.M.. Regulation of the anthocyanin biosyntheticpathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.Plant J.,2008,53(5):814-827.
    Gossett D.R., Banks S.W., Millhollon E.P., Lucas M.C.. Antioxidant Response to NaClStress in a Control and an NaCl-Tolerant Cotton Cell Line Grown in the Presence ofParaquat, Buthionine Sulfoximine, and Exogenous Glutathione. Plant Physiol.,1996,112(2):803-809.
    Guo Y., Halfter U., Ishitani M., Zhu J.K.. Molecular characterization of functional domainsin the protein kinase SOS2that is required for plant salt tolerance. Plant Cell,2001,13(6):1383-1400.
    Haag J.R., Ream T.S., Marasco M., Nicora C.D., Norbeck A.D., Pasa-Tolic L., Pikaard C.S..In vitro transcription activities of Pol IV, Pol V, and RDR2reveal coupling of Pol IV andRDR2for dsRNA synthesis in plant RNA silencing. Mol. Cell,2012,48(5):811-818.
    Haga N., Kato K., Murase M., Araki S., Kubo M., Demura T., Suzuki K., Muller I., Voss U.,Jurgens G., Ito M.. R1R2R3-Myb proteins positively regulate cytokinesis throughactivation of KNOLLE transcription in Arabidopsis thaliana. Development,2007,134(6):1101-1110.
    Halfter U., Ishitani M., Zhu J.K.. The Arabidopsis SOS2protein kinase physically interactswith and is activated by the calcium-binding protein SOS3. Proc. Natl Acad. Sci. USA,2000,97(7):3735-3740.
    Han N., Shao Q., Lu C.M., Wang B.S.. The leaf tonoplast V-H(+)-Atpase activity of a C3halophyte Suaeda salsa is enhanced by salt stress in a Ca-dependent mode. J. PlantPhysiol.,2005,162(3):267-274.
    Hansen H., Grossmann K.. Auxin-induced ethylene triggers abscisic acid biosynthesis andgrowth inhibition. Plant Physiol.,2000,124(3):1437-1448.
    Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J.. Plant Cellular and MolecularResponses to High Salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol.,2000,51:463-499.
    He X.J., Hsu Y.F., Pontes O., Zhu J., Lu J., Bressan R.A., Pikaard C., Wang C.S., Zhu J.K..NRPD4, a protein related to the RPB4subunit of RNA polymerase II, is a component ofRNA polymerases IV and V and is required for RNA-directed DNA methylation. GenesDev.,2009a,23(3):318-330.
    He X.J., Hsu Y.F., Zhu S., Wierzbicki A.T., Pontes O., Pikaard C.S., Liu H.L., Wang C.S.,Jin H., Zhu J.K.. An effector of RNA-directed DNA methylation in arabidopsis is anARGONAUTE4-and RNA-binding protein. Cell,2009b,137(3):498-508.
    Henderson I.R., Jacobsen S.E.. Tandem repeats upstream of the Arabidopsis endogene SDCrecruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev.,2008,22(12):1597-1606.
    Henikoff S., Comai L.. A DNA methyltransferase homolog with a chromodomain exists inmultiple polymorphic forms in Arabidopsis. Genetics,1998,149(1):307-318.
    Hirayama T., Shinozaki K.. Perception and transduction of abscisic acid signals: keys to thefunction of the versatile plant hormone ABA. Trends Plant Sci.,2007,12(8):343-351.
    Hobo T., Asada M., Kowyama Y., Hattori T.. ACGT-containing abscisic acid responseelement (ABRE) and coupling element3(CE3) are functionally equivalent. Plant J.,1999,19(6):679-689.
    Holliday R.. The inheritance of epigenetic defects. Science,1987,238(4824):163-170.
    Holliday R.. Epigenetics: an overview. Dev. Genet.,1994,15(6):453-457.
    Hrabak E.M., Chan C.W., Gribskov M., Harper J.F., Choi J.H., Halford N., Kudla J., Luan S.,Nimmo H.G., Sussman M.R., Thomas M., Walker-Simmons K., Zhu J.K., Harmon A.C..The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol.,2003,132(2):666-680.
    Hsieh C.L.. Evidence that protein binding specifies sites of DNA demethylation. Mol. CellBiol.,1999,19(1):46-56.
    Huang G.T., Ma S.L., Bai L.P., Zhang L., Ma H., Jia P., Liu J., Zhong M., Guo Z.F.. Signaltransduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep.,2012,39(2):969-987.
    Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., Shinozaki K.. Various abiotic stressesrapidly activate Arabidopsis MAP kinases ATMPK4and ATMPK6. Plant J.,2000,24(5):655-665.
    Jakoby M.J., Falkenhan D., Mader M.T., Brininstool G., Wischnitzki E., Platz N., Hudson A.,Hulskamp M., Larkin J., Schnittger A.. Transcriptional profiling of mature Arabidopsistrichomes reveals that NOECK encodes the MIXTA-like transcriptional regulatorMYB106. Plant Physiol.,2008,148(3):1583-1602.
    Jang Y.H., Lee J.H., Kim J.K.. Abscisic acid does not disrupt either the Arabidopsis FCA-FYinteraction or its rice counterpart in vitro. Plant Cell Physiol.,2008,49(12):1898-1901.
    Johnson L.M., Law J.A., Khattar A., Henderson I.R., Jacobsen S.E.. SRA-domain proteinsrequired for DRM2-mediated de novo DNA methylation. PLoS Genet.,2008,4(11):e1000280.
    Johnson R.R., Wagner R.L., Verhey S.D., Walker-Simmons M.K.. The abscisicacid-responsive kinase PKABA1interacts with a seed-specific abscisic acid responseelement-binding factor, TaABF, and phosphorylates TaABF peptide sequences. PlantPhysiol.,2002,130(2):837-846.
    Johnston C.A., Temple B.R., Chen J.G., Gao Y., Moriyama E.N., Jones A.M., SiderovskiD.P., Willard F.S.. Comment on "A G protein coupled receptor is a plasma membranereceptor for the plant hormone abscisic acid". Science,2007,318(5852):914; author reply914.
    Jung C., Seo J.S., Han S.W., Koo Y.J., Kim C.H., Song S.I., Nahm B.H., Choi Y.D., CheongJ.J.. Overexpression of AtMYB44enhances stomatal closure to confer abiotic stresstolerance in transgenic Arabidopsis. Plant Physiol.,2008,146(2):623-635.
    Kang Y.H., Kirik V., Hulskamp M., Nam K.H., Hagely K., Lee M.M., Schiefelbein J.. TheMYB23gene provides a positive feedback loop for cell fate specification in theArabidopsis root epidermis. Plant Cell,2009,21(4):1080-1094.
    Kankel M.W., Ramsey D.E., Stokes T.L., Flowers S.K., Haag J.R., Jeddeloh J.A., RiddleN.C., Verbsky M.L., Richards E.J.. Arabidopsis MET1cytosine methyltransferasemutants. Genetics,2003,163(3):1109-1122.
    Kanno T., Bucher E., Daxinger L., Huettel B., Bohmdorfer G., Gregor W., Kreil D. P.,Matzke M., Matzke A.J.. A structural-maintenance-of-chromosomes hingedomain-containing protein is required for RNA-directed DNA methylation. Nat. Genet.,2008,40(5):670-675.
    Kass S.U., Landsberger N., Wolffe A.P.. DNA methylation directs a time-dependentrepression of transcription initiation. Curr. Biol.,1997,7(3):157-165.
    Khadri M., Tejera N.A., Lluch C.. Sodium chloride-ABA interaction in two common bean(Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ. Exp. Bot.,2007,60:211-218
    Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., Eklof S., Till S.,Bogre L., Hirt H., Meskiene I.. SIMKK, a mitogen-activated protein kinase (MAPK)kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell,2000,12(11):2247-2258.
    Kishor P., Hong Z., Miao G.H., Hu C., Verma D.. Overexpression of[delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and ConfersOsmotolerance in Transgenic Plants. Plant Physiol.,1995,108(4):1387-1394.
    Klempnauer K.H., Gonda T.J., Bishop J.M.. Nucleotide sequence of the retroviral leukemiagene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene.Cell,1982,31(2Pt1):453-463.
    Kohorn B.D.. WAKs; cell wall associated kinases. Curr. Opin. Cell Biol.,2001,13(5):529-533.
    Koiwai H., Nakaminami K., Seo M., Mitsuhashi W., Toyomasu T., Koshiba T..Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, inArabidopsis. Plant Physiol.,2004,134(4):1697-1707.
    Kuhn J.M., Boisson-Dernier A., Dizon M.B., Maktabi M.H., Schroeder J.I.. The proteinphosphatase AtPP2CA negatively regulates abscisic acid signal transduction inArabidopsis, and effects of abh1on AtPP2CA mRNA. Plant Physiol.,2006,140(1):127-139.
    Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N.,Koshiba T., Kamiya Y., Nambara E.. The Arabidopsis cytochrome P450CYP707Aencodes ABA8'-hydroxylases: key enzymes in ABA catabolism. Embo J.,2004,23(7):1647-1656.
    Law J.A., Jacobsen S.E.. Establishing, maintaining and modifying DNA methylation patternsin plants and animals. Nat. Rev. Genet.,2010,11(3):204-220.
    Lecourieux D., Ranjeva R., Pugin A.. Calcium in plant defence-signalling pathways. NewPhytol.,2006,171(2):249-269.
    Lee K.H., Piao H.L., Kim H.Y., Choi S.M., Jiang F., Hartung W., Hwang I., Kwak J.M., LeeI.J., Hwang I.. Activation of glucosidase via stress-induced polymerization rapidlyincreases active pools of abscisic acid. Cell,2006,126(6):1109-1120.
    Li C.F., Henderson I.R., Song L., Fedoroff N., Lagrange T., Jacobsen S.E.. Dynamicregulation of ARGONAUTE4within multiple nuclear bodies in Arabidopsis thaliana.PLoS Genet.,2008,4(2): e27.
    Li S.F., Milliken O.N., Pham H., Seyit R., Napoli R., Preston J., Koltunow A.M., Parish R.W..The Arabidopsis MYB5transcription factor regulates mucilage synthesis, seed coatdevelopment, and trichome morphogenesis. Plant Cell,2009,21(1):72-89.
    Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., JacobsenS.E.. Requirement of CHROMOMETHYLASE3for maintenance of CpXpG methylation.Science,2001,292(5524):2077-2080.
    Link V.L., Hofmann M.G., Sinha A.K., Ehness R., Strnad M., Roitsch T.. Biochemicalevidence for the activation of distinct subsets of mitogen-activated protein kinases byvoltage and defense-related stimuli. Plant Physiol.,2002,128(1):271-281.
    Lippold F., Sanchez D.H., Musialak M., Schlereth A., Scheible W.R., Hincha D.K., UdvardiM.K.. AtMyb41regulates transcriptional and metabolic responses to osmotic stress inArabidopsis. Plant Physiol.,2009,149(4):1761-1772.
    Lister R., O'Malley R.C., Tonti-Filippini J., Gregory B.D., Berry C.C., Millar A.H., EckerJ.R.. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell,2008,133(3):523-536.
    Liu J., Ishitani M., Halfter U., Kim C.S., Zhu J.K.. The Arabidopsis thaliana SOS2geneencodes a protein kinase that is required for salt tolerance. Proc. Natl Acad. Sci. USA,2000,97(7):3730-3734.
    Liu J., Zhu J.K.. A calcium sensor homolog required for plant salt tolerance. Science,1998,280(5371):1943-1945.
    Liu L., Lomonossoff G.. Agroinfection as a rapid method for propagating Cowpea mosaicvirus-based constructs. J. Virol. Methods,2002,105(2):343-348.
    Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K..Two transcription factors, DREB1and DREB2, with an EREBP/AP2DNA bindingdomain separate two cellular signal transduction pathways in drought-andlow-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10(8):1391-1406.
    Liu X., Yue Y., Li B., Nie Y., Li W., Wu W.H., Ma L.. A G protein-coupled receptor is aplasma membrane receptor for the plant hormone abscisic acid. Science,2007,315(5819):1712-1716.
    Lugert T., Werr W.. A novel DNA-binding domain in the Shrunken initiator-binding protein(IBP1). Plant Mol. Biol.,1994,25(3):493-506.
    Ma S., Gong Q., Bohnert H.J.. Dissecting salt stress pathways. J. Exp. Bot.,2006,57(5):1097-1107.
    Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E.. Regulators ofPP2C phosphatase activity function as abscisic acid sensors. Science,2009,324(5930):1064-1068.
    Mahajan S., Tuteja N.. Cold, salinity and drought stresses: an overview. Arch. Biochem.Biophys.,2005,444(2):139-158.
    Martinez-Macias M.I., Qian W., Miki D., Pontes O., Liu Y., Tang K., Liu R., Morales-RuizT., Ariza R.R., Roldan-Arjona T., Zhu J.K.. A DNA3' phosphatase functions in activeDNA demethylation in Arabidopsis. Mol. Cell,2012,45(3):357-370.
    Maser P., Thomine S., Schroeder J.I., Ward J.M., Hirschi K., Sze H., Talke I.N., AmtmannA., Maathuis F.J., Sanders D., Harper J.F., Tchieu J., Gribskov M., Persans M.W., SaltD.E., Kim S.A., Guerinot M.L.. Phylogenetic relationships within cation transporterfamilies of Arabidopsis. Plant Physiol.,2001,126(4):1646-1667.
    Maslenkora L.T.. Adaptation to salinity as monitored by pSⅡ oxygen evolving reactions inbarley thylakoids. J. Plant Physiol.,1993,142:629-634.
    Melcher K., Ng L.M., Zhou X.E., Soon F.F., Xu Y., Suino-Powell K.M., Park S.Y., WeinerJ.J., Fujii H., Chinnusamy V., Kovach A., Li J., Wang Y., Li J., Peterson F.C., JensenD.R., Yong E.L., Volkman B.F., Cutler S.R., Zhu J.K., Xu H.E.. A gate-latch-lockmechanism for hormone signalling by abscisic acid receptors. Nature,2009,462(7273):602-608.
    Melnyk C.W., Molnar A., Bassett A., Baulcombe D.C.. Mobile24nt small RNAs directtranscriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol.,2011,21(19):1678-1683.
    Mengiste T., Chen X., Salmeron J., Dietrich R.. The BOTRYTIS SUSCEPTIBLE1geneencodes an R2R3MYB transcription factor protein that is required for biotic and abioticstress responses in Arabidopsis. Plant Cell,2003,15(11):2551-2565.
    Merlot S., Gosti F., Guerrier D., Vavasseur A., Giraudat J.. The ABI1and ABI2proteinphosphatases2C act in a negative feedback regulatory loop of the abscisic acid signallingpathway. Plant J.,2001,25(3):295-303.
    Mikolajczyk M., Awotunde O.S., Muszynska G., Klessig D.F., Dobrowolska G.. Osmoticstress induces rapid activation of a salicylic acid-induced protein kinase and a homolog ofprotein kinase ASK1in tobacco cells. Plant Cell,2000,12(1):165-178.
    Miyazono K., Miyakawa T., Sawano Y., Kubota K., Kang H.J., Asano A., Miyauchi Y.,Takahashi M., Zhi Y., Fujita Y., Yoshida T., Kodaira K.S., Yamaguchi-Shinozaki K.,Tanokura M.. Structural basis of abscisic acid signalling. Nature,2009,462(7273):609-614.
    Morales-Ruiz T., Ortega-Galisteo A.P., Ponferrada-Marin M.I., Martinez-Macias M.I., ArizaR.R., Roldan-Arjona T.. DEMETER and REPRESSOR OF SILENCING1encode5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci. USA,2006,103(18):6853-6858.
    Muller D., Schmitz G., Theres K.. Blind homologous R2R3Myb genes control the pattern oflateral meristem initiation in Arabidopsis. Plant Cell,2006,18(3):586-597.
    Munns R.. Comparative physiology of salt and water stress. Plant Cell Environ.,2002,25(2):239-250.
    Munns R., Cramer G.R., Ball M.C.. Interactions between rising CO2, soil salinity and plantgrowth, In: Luo Y, Mooner HA, eds. Carbondioxide and environmental stress. London:Academic Press,1999,139-167
    Nakano Y., Steward N., Sekine M., Kusano T., Sano H.. A tobacco NtMET1cDNA encodinga DNA methyltransferase: molecular characterization and abnormal phenotypes oftransgenic tobacco plants. Plant Cell Physiol.,2000,41(4):448-457.
    Nakashima K., Ito Y., Yamaguchi-Shinozaki K.. Transcriptional regulatory networks inresponse to abiotic stresses in Arabidopsis and grasses. Plant Physiol.,2009,149(1):88-95.
    Nambara E., Marion-Poll A.. Abscisic acid biosynthesis and catabolism. Annu. Rev. PlantBiol.,2005,56:165-185.
    Nemhauser J.L., Hong F., Chory J.. Different plant hormones regulate similar processesthrough largely nonoverlapping transcriptional responses. Cell,2006,126(3):467-475.
    Nishimura N., Hitomi K., Arvai A.S., Rambo R.P., Hitomi C., Cutler S.R., Schroeder J.I.,Getzoff E.D.. Structural mechanism of abscisic acid binding and signaling by dimericPYR1. Science,2009,326(5958):1373-1379.
    Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K., Hirayama T..ABA-Hypersensitive Germination1encodes a protein phosphatase2C, an essentialcomponent of abscisic acid signaling in Arabidopsis seed. Plant J.,2007,50(6):935-949.
    Niu X., Bressan R.A., Hasegawa P.M., Pardo J.M.. Ion Homeostasis in NaCl StressEnvironments. Plant Physiol.,1995,109(3):735-742.
    North H.M., De Almeida A., Boutin J.P., Frey A., To A., Botran L., Sotta B., Marion-Poll A..The Arabidopsis ABA-deficient mutant aba4demonstrates that the major route forstress-induced ABA accumulation is via neoxanthin isomers. Plant J.,2007,50(5):810-824.
    Nuccio M.L., Rhodes D., McNeil S.D., Hanson A.D.. Metabolic engineering of plants forosmotic stress resistance. Curr. Opin. Plant Biol.,1999,2(2):128-134.
    Ortega-Galisteo A.P., Morales-Ruiz T., Ariza R.R., Roldan-Arjona T.. ArabidopsisDEMETER-LIKE proteins DML2and DML3are required for appropriate distribution ofDNA methylation marks. Plant Mol. Biol.,2008,67(6):671-681.
    Papa C.M., Springer N.M., Muszynski M.G., Meeley R., Kaeppler S.M.. Maizechromomethylase Zea methyltransferase2is required for CpNpG methylation. Plant Cell,2001,13(8):1919-1928.
    Pardo J.M., Cubero B., Leidi E.O., Quintero F.J.. Alkali cation exchangers: roles in cellularhomeostasis and stress tolerance. J. Exp. Bot.,2006,57(5):1181-1199.
    Parida A.K., Das A.B.. Salt tolerance and salinity effects on plants: a review. Ecotoxicol.Environ. Saf.,2005,60(3):324-349.
    Park K.Y., Jung J.Y., Park J., Hwang J.U., Kim Y.W., Hwang I., Lee Y.. A role forphosphatidylinositol3-phosphate in abscisic acid-induced reactive oxygen speciesgeneration in guard cells. Plant Physiol.,2003,132(1):92-98.
    Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J.,Rodrigues A., Chow T.F., Alfred S.E., Bonetta D., Finkelstein R., Provart N.J., DesveauxD., Rodriguez P.L., McCourt P., Zhu J.K., Schroeder J.I., Volkman B.F., Cutler S.R..Abscisic acid inhibits type2C protein phosphatases via the PYR/PYL family of STARTproteins. Science,2009,324(5930):1068-1071.
    Patterson B.D., MacRae E.A., Ferguson I.B.. Estimation of hydrogen peroxide in plantextracts using titanium(IV). Anal. Biochem.,1984,139(2):487-492.
    Paz-Ares J., Ghosal D., Wienand U., Peterson P.A., Saedler H.. The regulatory c1locus ofZea mays encodes a protein with homology to myb proto-oncogene products and withstructural similarities to transcriptional activators. Embo J.,1987,6(12):3553-3558.
    Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., SchroederJ.I.. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling inguard cells. Nature,2000,406(6797):731-734.
    Penterman J., Zilberman D., Huh J.H., Ballinger T., Henikoff S., Fischer R.L.. DNAdemethylation in the Arabidopsis genome. Proc. Natl Acad. Sci. USA,2007,104(16):6752-6757.
    Qiu Q.S., Guo Y., Dietrich M.A., Schumaker K.S., Zhu J.K.. Regulation of SOS1, a plasmamembrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3. Proc. NatlAcad. Sci. USA,2002,99(12):8436-8441.
    Raffaele S., Vailleau F., Leger A., Joubes J., Miersch O., Huard C., Blee E., Mongrand S.,Domergue F., Roby D.. A MYB transcription factor regulates very-long-chain fatty acidbiosynthesis for activation of the hypersensitive cell death response in Arabidopsis. PlantCell,2008,20(3):752-767.
    Razem F.A., El-Kereamy A., Abrams S.R., Hill R.D.. The RNA-binding protein FCA is anabscisic acid receptor. Nature,2006,439(7074):290-294.
    Ren D., Yang H., Zhang S.. Cell death mediated by MAPK is associated with hydrogenperoxide production in Arabidopsis. J. Biol. Chem.,2002,277(1):559-565.
    Ron M., Avni A.. The receptor for the fungal elicitor ethylene-inducing xylanase is a memberof a resistance-like gene family in tomato. Plant Cell,2004,16(6):1604-1615.
    Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M.P., Nicolas C, LorenzoO., Rodriguez P.L.. Gain-of-function and loss-of-function phenotypes of the proteinphosphatase2C HAB1reveal its role as a negative regulator of abscisic acid signalling.Plant J.,2004,37(3):354-369.
    Saez A., Robert N., Maktabi M.H., Schroeder J.I., Serrano R., Rodriguez P.L.. Enhancementof abscisic acid sensitivity and reduction of water consumption in Arabidopsis bycombined inactivation of the protein phosphatases type2C ABI1and HAB1. PlantPhysiol.,2006,141(4):1389-1399.
    Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani M.. ArabidopsisCYP707As encode (+)-abscisic acid8'-hydroxylase, a key enzyme in the oxidativecatabolism of abscisic acid. Plant Physiol.,2005,134(4):1439-1449.
    Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K., Yamaguchi-ShinozakiK.. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved indrought-responsive gene expression. Plant Cell,2006,18(5):1292-1309.
    Saze H., Kakutani T.. Heritable epigenetic mutation of a transposon-flanked Arabidopsisgene due to lack of the chromatin-remodeling factor DDM1. Embo J.,2007,26(15):3641-3652.
    Saze H., Mittelsten Scheid O., Paszkowski J.. Maintenance of CpG methylation is essentialfor epigenetic inheritance during plant gametogenesis. Nat. Genet.,2003,34(1):65-69.
    Schmitz R.J., Schultz M.D., Lewsey M.G., O'Malley R.C., Urich M.A., Libiger O., SchorkN.J., Ecker J.R.. Transgenerational epigenetic instability is a source of novel methylationvariants. Science,2011,334(6054):369-373.
    Schweighofer A., Hirt H., Meskiene I.. Plant PP2C phosphatases: emerging functions instress signaling. Trends Plant Sci.,2004,9(5):236-243.
    Seo M., Koshiba T.. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci.,2002,7(1):41-48.
    Seo P.J., Xiang F., Qiao M., Park J.Y., Lee Y.N., Kim S.G., Lee Y.H., Park W.J., Park C.M..The MYB96transcription factor mediates abscisic acid signaling during drought stressresponse in Arabidopsis. Plant Physiol.,2009,151(1):275-289.
    Shen Q., Zhang P., Ho T.H.. Modular nature of abscisic acid (ABA) response complexes:composite promoter units that are necessary and sufficient for ABA induction of geneexpression in barley. Plant Cell,1996,8(7):1107-1119.
    Shen Y.Y., Wang X.F., Wu F.Q., Du S.Y., Cao Z., Shang Y., Wang X.L., Peng C.C., YuX.C., Zhu S.Y., Fan R.C., Xu Y.H., Zhang D.P.. The Mg-chelatase H subunit is anabscisic acid receptor. Nature,2006,443(7113):823-826.
    Shi H., Ishitani M., Kim C., Zhu J.K.. The Arabidopsis thaliana salt tolerance gene SOS1encodes a putative Na+/H+antiporter. Proc. Natl Acad. Sci. USA,2000,97(12):6896-6901.
    Shi H., Lee B.H., Wu S.J., Zhu J.K.. Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol.,2003,21(1):81-85.
    Shibukawa T., Yazawa K., Kikuchi A., Kamada H.. Possible involvement of DNAmethylation on expression regulation of carrot LEC1gene in its5'-upstream region. Gene,2009,437(1-2):22-31.
    Shin R., Burch A.Y., Huppert K.A., Tiwari S.B., Murphy A.S., Guilfoyle T.J., SchachtmanDP. The Arabidopsis transcription factor MYB77modulates auxin signal transduction.Plant Cell,2007,19(8):2440-2453.
    Silberbush M., Ben-Asher J.. Simulation study of nutrient uptake by plants from soilesscultures as affected by salinity buildup and transpiration. Plant Soil,2001,233:59-69.
    Smith L.M., Pontes O., Searle I., Yelina N., Yousafzai F.K., Herr A.J., Pikaard C.S.,Baulcombe D.C.. An SNF2protein associated with nuclear RNA silencing and the spreadof a silencing signal between cells in Arabidopsis. Plant Cell,2007,19(5):1507-1521.
    Spychalla J.P., Desborough S.L.. Superoxide Dismutase, Catalase, and alpha-TocopherolContent of Stored Potato Tubers. Plant Physiol.,1990,94(3):1214-1218.
    Steward N., Kusano T., Sano H.. Expression of ZmMET1, a gene encoding a DNAmethyltransferase from maize, is associated not only with DNA replication in activelyproliferating cells, but also with altered DNA methylation status in cold-stressedquiescent cells. Nucleic Acids Res.,2000,28(17):3250-3259.
    Stone J.M., Walker J.C.. Plant protein kinase families and signal transduction. Plant Physiol.,1995,108(2):451-457.
    Stracke R., Ishihara H., Huep G., Barsch A., Mehrtens F., Niehaus K., Weisshaar B..Differential regulation of closely related R2R3-MYB transcription factors controlsflavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J.,2007,50(4):660-677.
    Stracke R., Werber M., Weisshaar B.. The R2R3-MYB gene family in Arabidopsis thaliana.Curr. Opin. Plant Biol.,2001,4(5):447-456.
    Sunkar R., Zhu J.K.. Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis. Plant Cell,2004,16(8):2001-2019.
    Szabolcs I.. Soils and salinization. In: Pessarakli M, ed. Handbook of plant and crop stress.New York: Marcel Dekker,1994,8:3-11
    Tan B.C., Joseph L.M., Deng W.T., Liu L., Li Q.B., Cline K., McCarty D.R.. Molecularcharacterization of the Arabidopsis9-cis epoxycarotenoid dioxygenase gene family. PlantJ.,2003,35(1):44-56.
    Tate P.H., Bird A.P.. Effects of DNA methylation on DNA-binding proteins and geneexpression. Curr. Opin. Genet. Dev.,1993,3(2):226-231.
    Taylor I.B., Burbidge A., Thompson A.J.. Control of abscisic acid synthesis. J. Exp. Bot.,2000,51(350):1563-1574.
    Tester M., Davenport R.. Na+tolerance and Na+transport in higher plants. Ann. Bot.,2003,91(5):503-527.
    Testerink C., Munnik T.. Phosphatidic acid: a multifunctional stress signaling lipid in plants.Trends Plant Sci.,2005,10(8):368-375.
    Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K..Arabidopsis basic leucine zipper transcription factors involved in an abscisicacid-dependent signal transduction pathway under drought and high-salinity conditions.Proc. Natl Acad. Sci. USA,2000,97(21):11632-11637.
    Van C.W. and Willekensh. Elevated levels of superoxide dismutase protect transgenic plantsagainst ozone damage. Biotechnology,1994,12:165-168
    Wang B., Davenport R.J., Volkov V., Amtmann A.. Low unidirectional sodium influx intoroot cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerantrelative of Arabidopsis thaliana. J. Exp. Bot.,2006,57(5):1161-1170.
    Wang H., Qi Q., Schorr P., Cutler A.J., Crosby W.L., Fowke L.C.. ICK1, a cyclin-dependentprotein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3,and its expression is induced by abscisic acid. Plant J.,1998,15(4):501-510.
    Wang W., Vinocur B., Altman A.. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance. Planta,2003,218(1):1-14.
    Wang Y., Zhang W., Li K., Sun F., Han C., Wang Y., Li X.. Salt-induced plasticity of roothair development is caused by ion disequilibrium in Arabidopsis thaliana. J. Plant Res.,2008,121(1):87-96.
    Wasilewska A., Vlad F., Sirichandra C., Redko Y., Jammes F., Valon C., Frei dit Frey N.,Leung J.. An update on abscisic acid signaling in plants and more. Mol. Plant,2008,1(2):198-217.
    Wassenegger M., Heimes S., Riedel L., Sanger H.L.. RNA-directed de novo methylation ofgenomic sequences in plants. Cell,1994,76(3):567-576.
    White P.J.. Calcium channels in higher plants. Biochim. Biophys. Acta.,2000,1465(1-2):171-189.
    Wieland J., Nitsche A.M., Strayle J., Steiner H., Rudolph H.K.. The PMR2gene clusterencodes functionally distinct isoforms of a putative Na+pump in the yeast plasmamembrane. Embo J.,1995,14(16):3870-3882.
    Wierzbicki A.T., Ream T.S., Haag J.R., Pikaard C.S.. RNA polymerase V transcriptionguides ARGONAUTE4to chromatin. Nat. Genet.,2009,41(5):630-634.
    Wilkinson S., Davies W.J.. ABA-based chemical signalling: the co-ordination of responses tostress in plants. Plant Cell Environ.,2002,25(2):195-210.
    Winicov I.. New molecular approaches to improving salt tolerance in crop plants. Ann. Bot.,1998,82:703-710
    Wolffe A.P., Matzke M.A.. Epigenetics: regulation through repression. Science,1999,286(5439):481-486.
    Wu C.A., Yang G.D., Meng Q.W., Zheng C.C.. The cotton GhNHX1gene encoding a novelputative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. Plant CellPhysiol.,2004,45(5):600-607.
    Xie Z., Johansen L.K., Gustafson A.M., Kasschau K.D., Lellis A.D., Zilberman D., JacobsenS.E., Carrington J.C.. Genetic and functional diversification of small RNA pathways inplants. PLoS Biol.,2004,2(5): E104.
    Xie Z., Lee E., Lucas J.R., Morohashi K., Li D., Murray J.A., Sack F.D., Grotewold E..Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOURLIPS via direct targeting of core cell cycle genes. Plant Cell,2010,22(7):2306-2321.
    Xiong L., Zhu J.K.. Salt tolerance. Arabidopsis Book,2002,1: e0048.
    Yang J.H., Seo H.H., Han S.J., Yoon E.K., Yang M.S., Lee W.S.. Phytohormone abscisicacid control RNA-dependent RNA polymerase6gene expression and post-transcriptionalgene silencing in rice cells. Nucleic Acids Res.,2008,36(4):1220-1226.
    Yang K.Y., Liu Y., Zhang S.. Activation of a mitogen-activated protein kinase pathway isinvolved in disease resistance in tobacco. Proc. Natl Acad. Sci. USA,2001,98(2):741-746.
    Yang S.W., Jang I.C., Henriques R., Chua N.H.. FAR-RED ELONGATED HYPOCOTYL1and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1and HFR1totransmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell,2009,21(5):1341-1359.
    Yanhui C., Xiaoyuan Y., Kun H., Meihua L., Jigang L., Zhaofeng G., Zhiqiang L., Yunfei Z.,Xiaoxiao W., Xiaoming Q., Yunping S., Li Z., Xiaohui D., Jingchu L., Xing-Wang D.,Zhangliang C., Hongya G., Li-Jia Q.. The MYB transcription factor superfamily ofArabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.Plant Mol. Biol.,2006,60(1):107-124.
    Yao Y., Ni Z., Peng H., Sun F., Xin M., Sunkar R., Zhu J.K., Sun Q.. Non-coding smallRNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct. Integr.Genomics,2010,10(2):187-190.
    Yeo A.R.. Molecular biology of salt tolerance in the context of whole plant. Plant Physiol.,1998,49:915-929
    Yi L.P., Ma J., Li Y.. Impact of salt stress on the features and activities of root system forthree desert halophyte species in their seedling stage. Sci. China ser. D-Earth Sci.,2007,50:97-10
    Yokoi S., Quintero F.J., Cubero B., Ruiz M.T., Bressan R.A., Hasegawa P.M., Pardo J.M..Differential expression and function of Arabidopsis thaliana NHX Na+/H+antiporters inthe salt stress response. Plant J.,2002,30(5):529-539.
    Yoshida T., Nishimura N., Kitahata N., Kuromori T., Ito T., Asami T., Shinozaki K.,Hirayama T.. ABA-hypersensitive germination3encodes a protein phosphatase2C(AtPP2CA) that strongly regulates abscisic acid signaling during germination amongArabidopsis protein phosphatase2Cs. Plant Physiol.,2006,140(1):115-126.
    Yu E.Y., Kim S.E., Kim J.H., Ko J.H., Cho M.H., Chung I.K.. Sequence-specific DNArecognition by the Myb-like domain of plant telomeric protein RTBP1. J. Biol. Chem.,2000,275(31):24208-24214.
    Zhai J., Liu J., Liu B., Li P., Meyers B.C., Chen X., Cao X.. Small RNA-directed epigeneticnatural variation in Arabidopsis thaliana. PLoS Genet.,2008,4(4): e1000056.
    Zhang S., Klessig D.F.. MAPK cascades in plant defense signaling. Trends Plant Sci.,2001,6(11):520-527.
    Zhang X.. The epigenetic landscape of plants. Science,2008,320(5875):489-492.
    Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W., Chen H., Henderson I.R., Shinn P.,Pellegrini M., Jacobsen S.E., Ecker J.R.. Genome-wide high-resolution mapping andfunctional analysis of DNA methylation in arabidopsis. Cell,2006,126(6):1189-1201.
    Zhao F.G., Qin P.. Protective effect of exogenous polyamines on root tonoplast functionsagainst salt stress in barley seedlings. Plant Growth Regul.,2004,42:97-103
    Zheng B., Wang Z., Li S., Yu B., Liu J.Y., Chen X.. Intergenic transcription by RNApolymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional genesilencing in Arabidopsis. Genes Dev.,2009,23(24):2850-2860.
    Zheng X., Pontes O., Zhu J., Miki D., Zhang F., Li W.X., Iida K., Kapoor A., Pikaard C.S.,Zhu J.K.. ROS3is an RNA-binding protein required for DNA demethylation inArabidopsis. Nature,2008,455(7217):1259-1262.
    Zheng X., Zhu J., Kapoor A., Zhu J.K.. Role of Arabidopsis AGO6in siRNA accumulation,DNA methylation and transcriptional gene silencing. Embo J.,2007,26(6):1691-1701.
    Zhong R., Lee C., Zhou J., McCarthy R.L., Ye Z.H.. A battery of transcription factorsinvolved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell,2008,20(10):2763-2782.
    Zhou J., Lee C., Zhong R., Ye Z.H.. MYB58and MYB63are transcriptional activators of thelignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. PlantCell,2009,21(1):248-266.
    Zhou R., Cutler A.J., Ambrose S.J., Galka M.M., Nelson K.M., Squires T.M., Loewen M.K.,Jadhav A.S., Ross A.R., Taylor D.C., Abrams S.R. A new abscisic acid catabolic pathway.Plant Physiol.,2004,134(1):361-369.
    Zhu J.K.. Plant salt tolerance. Trends Plant Sci.,2001,6(2):66-71.
    Zhu J.K.. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.,2002,53:247-273.
    Zhu J.K.. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol.,2003,6(5):441-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700