用户名: 密码: 验证码:
内源二十碳二烯酸和二十碳三烯酸对拟南芥生理影响及植物XB3-like蛋白家族功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的固着性使它整个生命过程中不可避免面临各种不利的外部环境(如干旱胁迫、盐胁迫、涝害、高温、低温、病原菌侵袭等)。在长期的进化过程中,植物形成了一套响应胁迫和提高抗性的机制。因此,理解植物应答逆境胁迫伤害、适应性变化等诸多生理过程,对提高农作物的产量和品质有重要意义。内源二十碳二烯酸和二十碳三烯酸对拟南芥生理影响
     VLCPUFA(svery long chain polyunsaturated fatty acids)对人体营养和健康非常重要。虽然人体自身能够合成VLCP(UFAs,但其效率极低。目前,该类脂肪酸的主要来源是深海鱼油,其主要有效成分是二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)。但由于过度捕捞、环境污染等诸多原因,导致鱼油的供给已远不能满足市场需求。随着植物转基因技术的发展,许多生产超长链多不饱和脂肪酸的转基因油料作物已诞生,如油菜,大豆和亚麻等。因此,研究这些异源脂肪酸在植物生理和对非生物胁迫的耐受性具有可行性。该研究将为转基因植物中商业化生产超长连多不饱和脂肪酸奠定理论基础。
     我们以內源合成二十碳二烯酸(EDA)和二十碳三烯酸(ETrA)的转IgASE1基因的拟南芥作为材料,结合外源添加实验,研究EDA和ETrA对拟南芥的生理表型及干旱胁迫的耐受性的影响。主要研究结果总结如下:
     (1)RT-PCR分析表明,IgASE1基因在转基因拟南芥中表达;气相色谱分析其叶片脂肪酸组成,结果表明:內源合成的EDA和ETrA占总脂肪酸含量的25.6mol%;叶片膜脂组成分析表明,EDA和ETrA参与了生物膜脂的构成,从而将膜脂内不饱和脂肪酸的含量由野生型的59.6mol%,增加到转基因植株中73.7mol%。
     (2)连续多代拟南芥生长表型调查结果表明,与野生型拟南芥相比,转基因拟南芥表型上有差异:苗期生长缓慢,花较小且花瓣较薄,种子更饱满,后熟时间缩短。
     (3)外源添加ABA实验结果显示,与野生型拟南芥相比转基因拟南芥在种子萌发,苗期生长及气孔的张开方面对ABA的敏感性增强。
     (4)选用萌发后3天的幼苗和萌发后3周的苗子分别进行模拟干旱和断水处理实验,结果表明转基因拟南芥比野生型拟南芥对干旱的耐受能力强。利用qRT-PCR分析依赖于ABA途径的关键基因(RD29B、 RD26和CBF3)和非依赖于ABA途径的关键基因(COR15A、ADH1和CBF2)的表达情况,结果表明转基因拟南芥对干旱的强耐受力来源于依赖ABA途径和非依赖ABA途径的共同作用。
     (5)外源添加EDA和ETrA可以在野生型中模拟转基因拟南芥对ABA敏感和对干旱耐受的表型,即EDA和ETrA在拟南芥对ABA和干旱的响应过程中作用。植物XB3-like蛋白家族功能研究
     具有同源性结构域及序列,进化上相关的蛋白质归在同一个蛋白家族,对蛋白家族的分析研究有利于对该蛋白家族的功能及进化进行系统研究。随着基因组测序的飞速发展,至今已有五十多种植物完成或正在进行全基因组测序,这为在多个物种中分析比对一个蛋白家族提供可行性。
     水稻XB3,是XA21丝氨酸/苏氨酸激酶的底物,在XA21介导的抗病途径中起到重要作用。在拟南芥中同源基因有5个,分别命名为XBAT31、XBAT32、XBAT33、XBAT34和XBAT35。对XBAT32和XBAT35的研究发现,它们在植物的生长发育及抗逆过程中起到重要作用。经过我们对这些蛋白结构分析发现,它们都包括锚定重复序列(ANK)和保守的C3HC4型指环结构。因此,我们将同时含有ANK和C3HC4指环结构的蛋白归为一个蛋白家族,并命名为XB3-like蛋白家族。本研究利用生物信息学的方法分析比对数据库提供的所有物种序列(29种),对该蛋白家族的功能及进化进行系统研究,以期找到具有合适功能的基因用于生产实践。
     (1)我们利用生物信息学方法从已公布的29种全基因组测序的物种中搜索到187个同时具有ANK和C3HC4型指环结构的蛋白。因其与XB3结构上相似,我们命名为XB3-like蛋白家族,编码这组蛋白的基因命名为XB3-like基因家族。对29个物种中XB3-like基因的数量统计后发现,两种藻中无XB3-like基因,结果说明该蛋白家族在植物进化过程中可能是由蕨类开始出现的。
     (2)根据XB3-like蛋白间的同源性关系构建进化树,发现该家族蛋白可分为三组,且三组蛋白的指环结构域之间存在明显差异。另外,我们还发现多数植物中XB3-like蛋白分别属于上述三组蛋白,而蓖麻和苜蓿中仅有2个XB3-like蛋白且都属于第Ⅰ组。
     (3)对模式植物拟南芥和三种作物(水稻、玉米和大豆)的芯片分析结果显示,该基因家族在植物的整个生命周期和不同的组织中均有广泛表达和偏好性表达,这个结果说明该家族基因可能在植物不同发育阶段和不同组织发挥重要的生物学功能。
     (4)我们利用荧光定量的方法检测到拟南芥和玉米中多个XB3-like基因的表达受激素和非生物胁迫信号的影响,预示着它们可能在植物生长发育以及胁迫响应过程中扮演了重要角色。
     (5)拟南芥XBAT31表达受多种激素和非生物胁迫信号的诱导。于是我们对XBAT31基因的功能产生兴趣。我们将基因上游2Kb启动子序列与GUS报告基因连接后表达,发现XBAT31在不同组织均有表达,其中茎、叶及花序中表达量较高。
     (6)XBAT31基因低量表达突变体在萌发期和苗生长早期对盐胁迫耐受性较野生型拟南芥低。其中,突变体内非依赖ABA途径内的基因表达量明显降低,可能是使突变体在萌发期和苗期对盐胁迫的耐受性降低的原因。因此,我们推测XBAT31在盐胁迫信号的转导过程中可能起正向作用。
Plants are sessile organisms hence they cannot escape unfavourable environmentalconditions within their life cycle, such as high salinity, drought, waterlog, high or lowtemperature, pathogen attack and mechanical agitation. For long-term evolution, plants haveevolved finely tuned stress signaling and resistance mechanisms. Understanding themechnisms of plant stress responses and adaptation to enrionmental cues is very important inthe improvement of yield and quality of crops.Effect of heterologous eicosadienoic acid and eicosatrienoic acid on physiologicalchanges in Arabidopsis
     The very long chain (≥C20) polyunsaturated fatty acids (VLCPUFAs), such aseicosapentaenoic acid (EPA) and docosapentaenoic acid (DHA), are essential for humanhealth and nutrition. They can be synthetized in human, but the productivity is very low. Oilyfish is good source for these fatty acids. However, the depletion of marine fish resources andenvironmental pollution result in severe shortage of fish oil. Therefore, various attempts havebeen carried out to engineer oilseed crops, such as canola, soybean and flax, to produce thesevery long chain polyunsaturated fatty acids with some success. However, before introducingthese crop plants to agriculture, the roles of VLCPUFAs in transgenic plants such asphysiological changes and tolerance to abiotic stressed have to be evaluated. This will providevital information for the commercialization of VLCPUFA-producing transgenic plants.
     Homozygous single-copy transgenic Arabidopsis plants expressing the IgASE1, in whichEDA and ETrA was produced, were used for this study. We compared the difference betweentransgenic Arabidopsis and wild type in their morphology and responses to abiotic stress andbelow are our findings:
     (1) We carried out RT-PCR to detect the transcript level of IgASE1from rosette leavesand the result showed that IgASE1was indeed expressed in these transgenic plants. We nextmeasured the total fatty acid content in the leaf tissue by gas chromatography and the resultshowed that the transgenic plants contained two additional fatty acids conresponding to EDAand ETrA compared to the wild type. The result of the total fatty acid content in the leaf tissueshowed that these two fatty acids accumulated to25.6mol%of total fatty acids. We measuredthe total fatty acids in membranes and showed that these two fatty acids were found inmembrane of transgenic plant and the accumulation of unsaturated fatty acids was up to73.7mol%of the total fatty acids and compared to59.6mol%in the wild type plant.
     (2) Compared to the wild type Arabidopsis, we found the transgenic plant growed slowerduring seedling stage and the leaves were smaller. The flowers of the transgenics were smallerwith smaller petals that appear to be translucent. Seeds of the transgenic plants were largerand less dormant than the wild-type.
     (3) To test the sensitiveness of transgenic Arabidopsis to ABA, given the importance ofABA in the abiotic stress adaptation, the germination, early seedling growth and stomatalopening of wild-type and transgenic Arabidopsis were compared. The result showed that thetransgenic seedlings were hypersensitive to ABA during germination, early seedlingdevelopment and stomatal closing.
     (4) We mimicked the drought condition by treating three-day-old seedlings of both thewild-type and the transgenics with glycerol or mannitol for7days. Three weeks old plantswere subjected to drought stress by withholding water for22days. These results indicate thatthe transgenic plant exhibited enhanced drought tolerance than the wild-type Arabidopsis. Todetermine whether the drought tolerance of35S:IgASE1transgenics is due to ABA, wecompared the expression profiles by quantitative qRT-PCR of some drought-inducible genesin ABA-dependent and ABA-independent pathways. The result showed that both theABA-dependent and the ABA-independent drought-inducible genes displayed increasedtranscript levels in the transgenic plant during drought stress, implying that the adaption todrought stress in the EDA and ETrA producing transgenics involves both the ABA-dependentand ABA-independent pathways.
     (5)Exogenous application of EDA and ETrA can mimick the ABA and drought responses in wild type plants similar to that found in transgenic plants. These results indicatedthe involvement of these eicosapolyenoic acids in the regulation of ABA mediated seedgermination, early seedling development as well as in responses to drought of the matureplants, at least partially.Global analysis of XB3-like protein family in plants
     Proteins in the same family share homology domains or sequences and are relatives inevolution. Therefore, global analysis of a protein family is conduceivable in the study of theirfunction and evolution. With the rapid development of DNA sequencing technology, the fullor partial genome sequences of more than50plant species have been completed or ongoing.Therefore, it is feasible to analyze a protein family in a large number of plants.
     In Oryza sativa,XB3is a substrate for the XA21serine and threonine kinase and isnecessary for Xa21-mediated immunity. In Arabidopsis, five homologos genes have beennamed XBAT31, XBAT32, XBAT33, XBAT34, XBAT35, respectively. So far, XBAT32andXBAT35have been reported played roles in plant growth and development and stresstolerance. We analysed the domains of the proteins’ sequences using tools and found that allthe proteins contained ankyrin repeats (ANK) and a conserved C3HC4RF domain. Then wenamed the proteins contained ankyrin repeats (ANK) and conserved C3HC4RF domain theXB3-like proteins. We used bioinformatics methods to gather extensive information regardingthis family in the29plant genomes that have been completely sequenced. Then the functionand evolution of these proteins were studied, and the interesting gene will be found and used.
     (1) Using bioinformatics methods, we identified187proteins which contain ANK and aconserved C3HC4RF domain, from29species with complete genomes and named theseproteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa)XB3and the encoding genes the XB3-like gene. In this study, we observed that the XB3-likegene family originated from the ferns and were identified in27species of land plants (noXB3-like gene in Chlamydomonas reinhardtii or Volvox carteri).
     (2)To clarify the phylogenetic relationship among the XB3-like genes and to infer theevolutionary history of the gene family, the full-length protein sequences of the XB3-likefamily members in plants were used to construct a joint unrooted phylogenetic tree, from which it can be observed that the proteins fell into three major groups (group I to group III)with well-supported bootstrap values. Interestingly, we found that the C3HC4-type RFdomain was conserved in each group. In addition, most plants contain3groups of XB3-likegenes, except for Ricinus communis and Medicago truncatula, which only contains group IXB3-like genes.
     (3)To investigate the expression profile of the XB3-like gene family in plants, we usedbioinformatics methods to gather extensive microarray information regarding this family inthe model plant Arabidopsis and in other crops (Oryza sative, Zea mays and Glycine max).These results demonstrated that the accumulation of XB3-like gene transcripts wasdemonstrated during different developmental stages and in different tissues. It is suggestedthat the XB3-like proteins may be play roles in during different development stages and indifferent tissues.
     (4) To investigate the potential function of the XB3-like gene family in plant, wesurveyed the responses of XB3-like genes to phytohormones and in Arabidopsis and Zea maysusing real-time PCR. The results demonstrated that phytohormones and mimic abiotic stressesaffect the expression of XB3-like genes and suggest that these proteins may play roles ingrowth and development as well as responses to abiotic stresses in plants.
     (5) Then we are interested in XBAT31, because the expression of XBAT31was inducedby all phytohormones and mimic abiotic stresses tested. Upstream of the gene2Kb sequencepromoter was used to promote the expression of GUS reporter gene. And the result showedthat XBAT31were expressed in different tissues, especially high expression in stems, leavesand inflorescence.
     (6) We compared the responses to salt stress between wild type and RNAi mutant, inwhich the expression of XBAT31was less than in wild type, during germination and seedlinggrowth. The result showed that the mutants couldn’t tolerate the salt stress. To determinewhether the less tolerance of mutants was dependent ABA, we compared the expressionprofiles by quantitative qRT-PCR of some of abiotic-induced genes in ABA-dependentpathway and ABA-independent pathway. The result showed that the transcript level ofABA-independent genes was reduced in mutants, and that will be part of reason for lesstolerance in mutants than wild type Arabidopsis. Therefore, we hypothesized that the XBAT31may play a positive role in response to salt stress signal.
引文
王爱国,叶发辉。活性氧对花生叶片大分子量DNA的损伤。植物生理学通讯,1993,29:260-262
    杨世杰,汪矛,李莲芳,邵小明。植物生物学,2000,科学出版社
    张洁明,孙景宽,刘宝玉,刘新成,张文辉。盐胁迫对荆条、白蜡、沙枣种子萌发的影响。植物研究,2006,5
    张其德。盐胁迫对植物及其光合作用的影响(下)。植物杂志,1999,6:32-33
    赵可夫,范海。盐生植物及其对盐渍生境的适应生理。科学出版社,2005
    Aenlle K. K., Foster T. C.. Gene Expression and Signal Transduction Cascades MediatingEstrogen Effects on Memory. Genomics, Proteomics, and the Nervous System.,2011,161-176
    Ali A., Tucker T., Thompson T., Salim M.. Effects of salinity and mixed ammonium andnitrate nutrition on the growth and nitrogen utilization of barley. J. Agro. Crop Sci.,2001,186:223-228
    Apse M. P., Aharon G. S., Snedden W. A., Blumwald E.. Salt tolerance conferred byoverexpression of a vacuolar Na+/H+antiport in Arabidopsis. Science,1999,285:1256-1258
    Ashraf M.. Inducing drought tolerance in plants: recent advances. Biotechnol. Adv.,2010,28:169-183
    Attia H., Karray N., Rabhi M., Lachaal M.. Salt-imposed restrictions on the uptake ofmacroelements by roots of Arabidopsis thaliana. Acta Physiol. Plant.,2008,30:723-727
    Bates L., Waldren R., Teare I.. Rapid determination of free proline for water-stress studies.Plant soil,1973,39:205-207
    Becerra C., Jahrmann T., Puigdomènech P., Vicient C. M.. Ankyrin repeat-containing proteinsin Arabidopsis: characterization of a novel and abundant group of genes codingankyrin-transmembrane proteins. Gene,2004,340:111-121
    Belin C., de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A.,Giraudat J., Barbier-Brygoo H., Thomine S.. Identification of features regulating OST1kinase activity and OST1function in guard cells. Plant Physiol.,2006,141:1316-1327
    Biggers J., Lawitts J., Lechene C.. The protective action of betaine on the deleterious effectsof NaCl on preimplantation mouse embryos in vitro. Molecular Reprod. Dev.,1993,34:380-390
    Blaha G., Stelzl U., Spahn C. M., Agrawal R. K., Frank J., Nierhaus K. H.. Preparation offunctional ribosomal complexes and effect of buffer conditions on tRNA positionsobserved by cryoelectron microscopy. Methods Enzymol.,2000,317:292-309
    Blumwald E.. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol.,2000,12:431-434
    Bostock R. M., Kuc J. A., Laine R. A.. Eicosapentaenoic and arachidonic acids fromPhytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science,1981,212:67-69
    Bostock R. M., Savchenko T., Lazarus C., Dehesh K.. Eicosapolyenoic acids: Novel MAMPswith reciprocal effect on oomycete-plant defense signaling networks. Plant Signal. Behav.,2011,6:531-533
    Bostock R. M., Yamamoto H., Choi D., Ricker K. E., Ward B. L.. Rapid stimulation of5-lipoxygenase activity in potato by the fungal elicitor arachidonic acid. Plant Physiol.,1992,100:1448-1456
    Bostock R., Schaeffer D., Hammerschmidt R.. Comparison of elicitor activities of arachidonicacid, fatty acids and glucans from Phytophthora infestans in hypersensitivity expression inpotato tuber. Physiol. Mol. Plant Pathol.,1986,29:349-360
    Boudsocq M., Lauriere C.. Osmotic signaling in plants: multiple pathways mediated byemerging kinase families. Plant Physiol.,2005,138:1185-1194
    Bray E. A.. Abscisic acid regulation of gene expression during water-deficit stress in the eraof the Arabidopsis genome. Plant Cell Environ.,2002,25:153-161
    Breckle S. W.. Salinity tolerance of different halophyte types. Genetic aspects of plantmineral nutrition,1990,167-175
    Camps M., Nichols A., Arkinstall S.. Dual specificity phosphatases: a gene family for controlof MAP kinase function. FASEB J.,2000,14:6-16
    Carvalho S. D., Saraiva R., Maia T. M., Abreu I. A., Duque P.. XBAT35, a novel ArabidopsisRING E3ligase exhibiting dual targeting of its splice isoforms, is involved inethylene-mediated regulation of apical hook curvature. Mol. Plant,2012,5:1295-1309
    Cheng W. H., Endo A., Zhou L., Penney J., Chen H. C., Arroyo A., Leon P., Nambara E.,Asami T., Seo M.. A unique short-chain dehydrogenase/reductase in Arabidopsis glucosesignaling and abscisic acid biosynthesis and functions. Sci. Signal.,2002,14:2723
    Choi D., Bostock R. M., Avdiushko S., Hildebrand D. F.. Lipid-derived signals thatdiscriminate wound-and pathogen-responsive isoprenoid pathways in plants: methyljasmonate and the fungal elicitor arachidonic acid induce different3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids inSolanum tuberosum L. Proc. Natl Acad. Sci. USA,1994,91:2329-2333
    Choi D., Ward B. L., Bostock R. M.. Differential induction and suppression of potato3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthorainfestans and to its elicitor arachidonic acid. Plant Cell,1992,4:1333-1344
    Curry J., Morris C. F., Walker-Simmons M.. Sequence analysis of a cDNA encoding a group3LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol Biol.,1991,16:1073-1076
    Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R.. Abscisic acid: emergence of acore signaling network. Ann. Rev. Plant Biol.,2010,61:651-679
    Delauney A. J., Verma D. P. S.. Proline biosynthesis and osmoregulation in plants. Plant J.,1993,4:215-223
    Flowers T.. Chloride as a nutrient and as an osmoticum. Adv. Plant Nutr.,1988,3:
    Fraser T. C. M., Qi B., Elhussein S., Chatrattanakunchai S., Stobart A. K., Lazarus C. M..Expression of the isochrysis C18-Δ9polyunsaturated fatty acid specific elongasecomponent alters Arabidopsis glycerolipid profiles. Plant Physiol.,2004,135:859-866
    Freemont P. S., Hanson I. M., Trowsdale J.. A novel cysteine-rich sequence motif. Cell,1991,64:483-484
    Fujii H., Verslues P. E., Zhu J. K.. Identification of two protein kinases required for abscisicacid regulation of seed germination, root growth, and gene expression in Arabidopsis.Plant Cell,2007,19:485-494
    Fujii H., Zhu J. K.. Arabidopsis mutant deficient in3abscisic acid-activated protein kinasesreveals critical roles in growth, reproduction, and stress. Pro. Natl. Acad.Sci.,2009,106:8380-8385
    Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K.. ABA-mediated transcriptionalregulation in response to osmotic stress in plants. J. Plant Res.,2011,124:509-525
    Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y.. Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice. Plant Cell Physiol.,2004,45:146-159
    Garc a-Pineda E., Castro-Mercado E., Lozoya-Gloria E. Gene expression and enzyme activityof pepper (Capsicum annuum L.) ascorbate oxidase during elicitor and wounding stress.Plant Sci.,2004,166:237-243
    González-Guzmán M., Apostolova N., Bellés J. M., Barrero J. M., Piqueras P., Ponce M. R.,Micol J. L., Serrano R., Rodríguez P. L.. The short-chain alcohol dehydrogenase ABA2catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell,2002,14:1833-1846
    Guo Y., Halfter U., Ishitani M., Zhu J. K.. Molecular characterization of functional domains inthe protein kinase SOS2that is required for plant salt tolerance. Plant Cell,2001,13:1383-1400
    Halfter U., Ishitani M., Zhu J. K.. The Arabidopsis SOS2protein kinase physically interactswith and is activated by the calcium-binding protein SOS3. Proc Natl. Acad. Sci. USA,2000,97:3735-3740
    Han N., Shao Q., Lu C. M., Wang B. S.. The leaf tonoplast V-H+-ATPase activity of a C3halophyte Suaeda salsa is enhanced by salt stress in a Ca-dependent mode. J. PlantPhysiol.,2005,162:267-274
    Hartung W., Sauter A., Hose E.. Abscisic acid in the xylem: where does it come from, wheredoes it go to? J. Exp. Bot.,2002,53:27-32
    Henriksson E., Nordin Henriksson K.. Salt-stress signalling and the role of calcium in theregulation of the Arabidopsis ATHB7gene. Plant Cell Environ.,2005,28:202-210
    Huang J., Zhao X., Yu H., Ouyang Y., Wang L., Zhang Q.. The ankyrin repeat gene family inrice: genome-wide identification, classification and expression profiling. Plant Mol. Biol.,2009,71:207-226
    Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., Tabata S., Kakubari Y.,Yamaguchi-Shinozaki K., Shinozaki K.. Regulation of drought tolerance by genemanipulation of9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acidbiosynthesis in Arabidopsis. Plant J.,2001,27:325-333
    Johnson R. R., Wagner R. L., Verhey S. D., Walker-Simmons M. K.. The abscisicacid-responsive kinase PKABA1interacts with a seed-specific abscisic acid responseelement-binding factor, TaABF, and phosphorylates TaABF peptide sequences. PlantPhysiol.,2002,130:837-846
    Johnston C. A., Temple B. R., Chen J. G., Gao Y., Moriyama E. N., Jones A. M., Siderovski D.P., Willard F. S.. Comment on" AG protein coupled receptor is a plasma membranereceptor for the plant hormone abscisic acid". Sci. Signal.,2007,318:914c
    Kinney A. J., Cahoon E. B., Damude H. G., Hitz W. D., Liu Z. B., Kolar Jr C. W.. Productionof very long chain polyunsaturated fatty acids in oil seed plants. Google Patents (2011)
    Kishor P. K., Hong Z., Miao G. H., Hu C. A. A., Verma D. P. S.. Overexpression of[delta]-pyrroline-5-carboxylate synthetase increases proline production and confersosmotolerance in transgenic plants. Plant Physiol.,1995,108:1387-1394
    Knight V. I., Wang H., Lincoln J. E., Lulai E. C., Gilchrist D. G., Bostock R. M..Hydroperoxides of fatty acids induce programmed cell death in tomato protoplasts.Physiol. Mol. Plant Pathol.,2001,59:277-286
    Kohorn B. D.. cell wall associated kinases. Curr. Opin. Cell Biol.,2001,13:529-533
    Koornneef M., Bentsink L., Hilhorst H.. Seed dormancy and germination. Curr. Opin. Plantbiol.,2002,5:33-36
    Kraft E., Stone S. L., Ma L., Su N., Gao Y., Lau O. S., Deng X. W., Callis J.. Genome analysisand functional characterization of the E2and RING-type E3ligase ubiquitinationenzymes of Arabidopsis. Plant Physiol.,2005,139:1597-1611
    Kris-Etherton P. M., Harris W. S., Appel L. J.. Fish consumption, fish oil, omega-3fatty acids,and cardiovascular disease. Circulation.,2003,23: e20-e30
    Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N.,Koshiba T., Kamiya Y., Nambara E.. The Arabidopsis cytochrome P450CYP707Aencodes ABA8′-hydroxylases: key enzymes in ABA catabolism. Embo. J.,2004,23:1647-1656
    Lee K. H., Piao H. L., Kim H. Y., Choi S. M., Jiang F., Hartung W., Hwang I., Kwak J. M.,Lee I. J., Hwang I.. Activation of glucosidase via stress-induced polymerization rapidlyincreases active pools of abscisic acid. Cell,2006,126:1109-1120
    Li J., Wang X. Q., Watson M. B., Assmann S. M.. Regulation of abscisic acid-inducedstomatal closure and anion channels by guard cell AAPK kinase. Sci. Signal.,2000,287:300
    Link V. L., Hofmann M. G., Sinha A. K., Ehness R., Strnad M., Roitsch T.. Biochemicalevidence for the activation of distinct subsets of mitogen-activated protein kinases byvoltage and defense-related stimuli. Plant Physiol.,2002,128:271-281
    Liu J., Ishitani M., Halfter U., Kim C. S., Zhu J. K.. The Arabidopsis thaliana SOS2geneencodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci.USA,2000,97:3730-3734
    Liu J., Zhu J. K.. A calcium sensor homolog required for plant salt tolerance. Science,1998,280:1943-1945
    Liu X., Yue Y., Li B., Nie Y., Li W., Wu W. H., Ma L.. AG protein-coupled receptor is aplasma membrane receptor for the plant hormone abscisic acid. Sci. Signal.,2007,315:1712
    Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E.. Regulators ofPP2C phosphatase activity function as abscisic acid sensors. Science,2009,324:1064-1068
    MacRobbie E. A.. ABA activates multiple Ca2+fluxes in stomatal guard cells, triggeringvacuolar K+(Rb+) release. Proc. Natl. Acad. Sci. USA,2000,97:12361-12368
    Mandák B.. Germination requirements of invasive and non-invasive Atriplex species: acomparative study. Flora,2003,198:45-54
    M ser P., Thomine S., Schroeder J. I., Ward J. M., Hirschi K., Sze H., Talke I. N., AmtmannA., Maathuis F. J., Sanders D.. Phylogenetic relationships within cation transporterfamilies of Arabidopsis. Plant Physiol.,2001,126:1646-1667
    Maslenkova L., Zanev Y., Popova L.. Adaptation to salinity as monitored by PSII oxygenevolving reactions in barley thylakoids. J. Plant Physiol.,1993,142:629-634
    Melcher K., Ng L. M., Zhou X. E., Soon F. F., Xu Y., Suino-Powell K. M., Park S. Y., WeinerJ. J., Fujii H., Chinnusamy V.. A gate-latch-lock mechanism for hormone signalling byabscisic acid receptors. Nature,2009,462:602-608
    Merlot S., Gosti F., Guerrier D., Vavasseur A., Giraudat J.. The ABI1and ABI2proteinphosphatases2C act in a negative feedback regulatory loop of the abscisic acid signallingpathway. Plant J.,2001,25:295-303
    Michaely P., Tomchick D. R., Machius M., Anderson R. G.. Crystal structure of a12ANKrepeat stack from human ankyrinR. Embo. J.,2002,21:6387-6396
    Miyazono K. I., Miyakawa T., Sawano Y., Kubota K., Kang H. J., Asano A., Miyauchi Y.,Takahashi M., Zhi Y., Fujita Y.. Structural basis of abscisic acid signalling. Nature,2009,462:609-614
    Munns R.. Comparative physiology of salt and water stress. Plant Cell Environ.,2002,25:239-250
    Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J.. Arabidopsis OST1protein kinasemediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactiveoxygen species production. Plant Cell,2002,14:3089-3099
    Nakamura M., Nara T.. Essential fatty acid synthesis and its regulation in mammals.Prostaglandins Leukot. Essent. Fat. Acids,2003,68:145-150
    Nakashima K., Yamaguchi-Shinozaki K.. ABA signaling in stress-response and seeddevelopment. Plant cell rep.,2013,1-12
    Nambara E., Marion-Poll A.. Abscisic acid biosynthesis and catabolism. Annu. Rev. PlantBiol.,2005,56:165-185
    Napier J. A., Haslam R., Venegas Caleron M., Michaelson L. V., Beaudoin F., Sayanova O..Progress towards the production of very long-chain polyunsaturated fatty acid intransgenic plants: plant metabolic engineering comes of age. Physiol. Plant,2006,126:398-406
    Napier J. A.. The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol.,2007,58:295-319
    Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K., Hirayama T..ABA-Hypersensitive Germination1encodes a protein phosphatase2C, an essentialcomponent of abscisic acid signaling in Arabidopsis seed. Plant J.,2007,50:935-949
    Nodzon L. A., Xu W. H., Wang Y., Pi L. Y., Chakrabarty P. K., Song W. Y.. The ubiquitinligase XBAT32regulates lateral root development in Arabidopsis. Plant J.,2004,40:996-1006
    Ozeretskovskaya O., Varlamov V., Vasyukova N., Chalenko G., Gerasimova N., Panina Y. S..Influence of systemic signal molecules on the rate of spread of the immunizing effect ofelicitors over potato tissues. Appl. Bioche. Microbiol.,2004,40:213-216
    Parcy F., Valon C., Kohara A., Miséra S., Giraudat J.. The ABSCISIC ACID-INSENSITIVE3,FUSCA3, and LEAFY COTYLEDON1loci act in concert to control multiple aspects ofArabidopsis seed development. Plant Cell,1997,9:1265-1277
    Pardo J. M., Cubero B., Leidi E. O., Quintero F. J.. Alkali cation exchangers: roles in cellularhomeostasis and stress tolerance. J. Exp. Bot.,2006,57:1181-1199
    Parida A. K., Das A. B.. Salt tolerance and salinity effects on plants: a review. Ecotoxicol.Environ. Saf.,2005,60:324-349
    Park K. Y., Jung J. Y., Park J., Hwang J. U., Kim Y. W., Hwang I., Lee Y.. A role forphosphatidylinositol3-phosphate in abscisic acid-induced reactive oxygen speciesgeneration in guard cells. Plant Physiol.,2003,132:92-98
    Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S., Santiago J.,Rodrigues A., Chow T. F.. Abscisic acid inhibits type2C protein phosphatases via thePYR/PYL family of START proteins. Sci. Signal.,2009,324:1068
    Patterson B. D., MacRae E. A., Ferguson I. B.. Estimation of hydrogen peroxide in plantextracts using titanium(IV). Anal. Biochem.,1984,139:487-492
    Pessarakli M. Handbook of plant and crop stress. Marcel Dekker, Inc.(1994)
    Prasad M. E., Schofield A., Lyzenga W., Liu H., Stone S. L.. Arabidopsis RING E3ligaseXBAT32regulates lateral root production through its role in ethylene biosynthesis. PlantPhysiol.,2010,153:1587-1596
    Prasad M. E., Stone S. L.. Further analysis of XBAT32, an Arabidopsis RING E3ligase,involved in ethylene biosynthesis. Plant Signal. Behav.,2010,5:1425-1429
    Preisig C. L., Ku J. A.. Arachidonic acid-related elicitors of the hypersensitive response inpotato and enhancement of their activities by glucans from Phytophthora infestans (Mont.)deBary. Arch. Biochem. biophys.,1985,236:379-389
    Preisig C. L., Ku J. A.. Metabolism by potato tuber of arachidonic acid, an elicitor ofhypersensitive resistance. Physiol. Mol. Plant Pathol.,1988,32:77-88
    Qi B., Beaudoin F., Fraser T., Stobart A. K., Napier J. A., Lazarus C. M.. Identification of acDNA encoding a novel C18-Δ9polyunsaturated fatty acid-specific elongating activityfrom the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBSLett.,2002,510:159-165
    Qi B., Fraser T., Mugford S., Dobson G., Sayanova O., Butler J., Napier J. A., Stobart A. K.,Lazarus C. M.. Production of very long chain polyunsaturated omega-3and omega-6fattyacids in plants. Nat. Biotechnol.,2004b,22:739-745
    Qin Y. M., Hu C. Y., Pang Y., Kastaniotis A. J., Hiltunen J. K., Zhu Y. X.. Saturatedvery-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation byactivating ethylene biosynthesis. Plant Cell,2007,19:3692-3704
    Qiu Q. S., Guo Y., Dietrich M. A., Schumaker K. S., Zhu J. K.. Regulation of SOS1, a plasmamembrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3. Proc. Natl.Acad. Sci.USA,2002,99:8436-8441
    Raz V., Bergervoet J., Koornneef M.. Sequential steps for developmental arrest in Arabidopsisseeds. Development,2001,128:243-252
    Razem F. A., El-Kereamy A., Abrams S. R., Hill R. D.. The RNA-binding protein FCA is an
    Ren D., Yang H., Zhang S.. Cell death mediated by MAPK is associated with hydrogenperoxide production in Arabidopsis. J. Biol. Chem.,2002,277:559-565
    Ricker K. E., Bostock R. M.. Evidence for release of the elicitor arachidonic acid and itsmetabolites from sporangia of Phytophthora infestans during infection of potato. Physiol.Mol. Plant. Pathol.,1992,41:61-72
    Rodriguez P. L.. Protein phosphatase2C (PP2C) function in higher plants. Plant Mol. Biol.,1998,38:919-927
    Rozhnova N., Gerashchenkov G., Babosha A.. The effect of arachidonic acid and viralinfection on the phytohemagglutinin activity during the development of tobacco acquiredresistance. Russ. J. Plant Physiol.,2003,50:661-665
    Rubio S., Rodrigues A., Saez A., Dizon M. B., Galle A., Kim T. H., Santiago J., Flexas J.,Schroeder J. I., Rodriguez P. L.. Triple loss of function of protein phosphatases type2Cleads to partial constitutive response to endogenous abscisic acid. Plant Physiol.,2009,150:1345-1355
    Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M. P., Nicolas C., LorenzoO., Rodriguez P. L.. Gain-of-function and loss-of-function phenotypes of the proteinphosphatase2C HAB1reveal its role as a negative regulator of abscisic acid signalling.Plant J.,2004,37:354-369
    Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani M.. ArabidopsisCYP707As encode (+)-abscisic acid8′-hydroxylase, a key enzyme in the oxidativecatabolism of abscisic acid. Plant Physiol.,2004,134:1439-1449
    Sakamoto K., Goodyear L. J.. Invited review: intracellular signaling in contracting skeletalmuscle. J. Appl. Physiol.,2002,93:369-383
    Santner A., Estelle M.. Recent advances and emerging trends in plant hormone signalling.Nature,2009,459:1071-1078
    Savchenko T., Walley J. W., Chehab E. W., Xiao Y., Kaspi R., Pye M. F., Mohamed M. E.,Lazarus C. M., Bostock R. M., Dehesh K.. Arachidonic acid: an evolutionarily conservedsignaling molecule modulates plant stress signaling networks. Plant Cell,2010,22:3193-3205
    Schroeder J. I., Allen G. J., Hugouvieux V., Kwak J. M., Waner D.. Guard cell signaltransduction. Annu. Rev. Plant Biol.,2001,52:627-658
    Schweighofer A., Hirt H., Meskiene I.. Plant PP2C phosphatases: emerging functions in stresssignaling. Trends Plant Sci.,2004,9:236-243
    Sedgwick S. G., Smerdon S. J.. The ankyrin repeat: a diversity of interactions on a commonstructural framework. Trends Biochem. Sci.,1999,24:311-316
    Serini S., Fasano E., Piccioni E., Cittadini A., Calviello G.. Differential anti-cancer effects ofpurified EPA and DHA and possible mechanisms involved. Curr. Med. Chem.,2011,18:4065-4075
    Sharp R. E., LeNoble M. E.. ABA, ethylene and the control of shoot and root growth underwater stress. J. Exp. Bot.,2002,53:33-37
    Shen Y. Y., Wang X. F., Wu F. Q., Du S. Y., Cao Z., Shang Y., Wang X. L., Peng C. C., Yu X.C., Zhu S. Y.. The Mg-chelatase H subunit is an abscisic acid receptor. Nature,2006,443:823-826
    Shi H., Ishitani M., Kim C., Zhu J. K.. The Arabidopsis thaliana salt tolerance gene SOS1encodes a putative Na+/H+antiporter. Proc. Natl. Acad. Sci. USA,2000,97:6896-6901
    Shi H., Lee B. H., Wu S. J., Zhu J. K.. Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol.,2002,21:81-85
    Siegenthaler P. A., Murata N.. Lipids in Photosynthesis: Structure, Function, and Genetics.Kluwer Academic Publishers Dordrecht (1998)
    Stintzi A., Weber H., Reymond P., Farmer E. E.. Plant defense in the absence of jasmonic acid:the role of cyclopentenones. Proc. Natl. Acad. Sci.USA,2001,98:12837-12842
    Stintzi A.. The Arabidopsis male-sterile mutant, opr3, lacks the12-oxophytodienoic acidreductase required for jasmonate synthesis. Proc. Natl. Acad. Sci.USA,2000,97:10625-10630
    Stone S. L., Hauksdóttir H., Troy A., Herschleb J., Kraft E., Callis J.. Functional analysis ofthe RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol.,2005,137:13-30
    Tapiero H., Nguyen Ba G., Couvreur P., Tew K.. Polyunsaturated fatty acids (PUFA) andeicosanoids in human health and pathologies. Biomed. Pharmacother.,2002,56:215-222
    Testerink C., Munnik T.. Phosphatidic acid: a multifunctional stress signaling lipid in plants.Trends Plant Sci.,2005,10:368-375
    Tjamos E. C., KU J. A.. Inhibition of steroid glycoalkaloid accumulation by arachidonic andeicosapentaenoic acids in potato. Science,1982,217:542-544
    Tuteja N.. Cold, salinity, and drought stress. Plant Stress Biology: From Genomics to SystemsBiology.,2009,137-159
    Wang B., Davenport R. J., Volkov V., Amtmann A.. Low unidirectional sodium influx intoroot cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerantrelative of Arabidopsis thaliana. J. Exp. Bot.,2006a,57:1161-1170
    Wang Y. S., Pi L. Y., Chen X., Chakrabarty P. K., Jiang J., De Leon A. L., Liu G. Z., Li L.,Benny U., Oard J.. Rice XA21binding protein3is a ubiquitin ligase required for fullXa21-mediated disease resistance. Plant Cell,2006b,18:3635-3646
    Welin B.V., Olson., Nylander M., Palva E. T.. Characterization and differential expressionof dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsisthaliana. Plant Mol. Biol.,1994,26:131-144
    White P. J., Broadley M. R.. Chloride in soils and its uptake and movement within the plant: areview. Ann. Bot.,2001,88:967-988
    White P. J.. Calcium channels in higher plants. Biochi. Biophys. Acta.,2000,1465:171-189
    Wilkinson S., Davies W. J.. ABA-based chemical signalling: the co-ordination of responses tostress in plants. Plant Cell Environ.,2002,25:195-210
    Wu G., Truksa M., Datla N., Vrinten P., Bauer J., Zank T., Cirpus P., Heinz E., Qiu X..Stepwise engineering to produce high yields of very long-chain polyunsaturated fattyacids in plants. Nat. biotechnol.,2005,23:1013-1017
    Xiong L., Zhu J. K.. Salt tolerance. Arabidopsis Book,2002,1: e0048
    Xu X., Jiang C. Z., Donnelly L., Reid M. S.. Functional analysis of a RING domain ankyrinrepeat protein that is highly expressed during flower senescence. J. Exp. Bot.,2007,58:3623-3630
    Yamaguchi-Shinozaki K., Shinozaki K.. The plant hormone abscisic acid mediates thedrought-induced expression but not the seed-specific expression of rd22, a generesponsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet.,1993,238:17-25
    Yang X., Sun C., Hu Y., Lin Z.. Molecular cloning and characterization of a gene encodingRING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J. Biosci.,2008,33:103-112
    Yeo A.. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp.Bot.,1998,49:915-929
    Yin P., Fan H., Hao Q., Yuan X., Wu D., Pang Y., Yan C., Li W., Wang J., Yan N.. Structuralinsights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol.Biol.,2009,16:1230-1236
    Yuan X., Zhang S., Liu S., Yu M., Su H., Shu H., Li X.. Global Analysis of Ankyrin RepeatDomain C3HC4-Type RING Finger Gene Family in Plants. PLoS One,2013a,8: e58003
    Yuan X., Zhang S., Qing X., Sun M., Liu S., Su H., Shu H., Li X.. Superfamily of AnkyrinRepeat Proteins in Tomato. Gene,2013b,
    Zhou R., Cutler A. J., Ambrose S. J., Galka M. M., Nelson K. M., Squires T. M., Loewen M.K., Jadhav A. S., Ross A. R., Taylor D. C.. A new abscisic acid catabolic pathway. PlantPhysiol.,2004,134:361-369
    Zhu J. K.. Regulation of ion homeostasis under salt stress. Curr Opin. Plant Biol.,2003,6:441-445
    Zhu J. K.. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.,2002,53:247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700