用户名: 密码: 验证码:
大别山北麓罗山黄土古土壤古环境信息研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大别山地区处于中国南北地理及气候的分界线,属于对区域和全球气候响应的敏感地区,为了探讨大别山区域第四纪沉积物的古环境演变史,选取大别山北麓罗山剖面第四纪沉积物黄土古土壤作为研究对象,罗山剖面是该区域到目前为止发现的保存最完好的剖面,其完整的地层记录为研究的可信度提供了良好的保证,通过从罗山黄土古土壤提取古环境信息,进而对黄土古土壤的成因环境和古环境变化规律及物质来源等进行详细的研究,为中国中东部地区对全球变化的响应与反馈机制提供重要基础。论文首先通过古地磁、光释光测年结果对大别山北麓罗山黄土古土壤进行了定年,然后通过对样品的粒度、磁组构、磁化率等指标进行研究分析,初步探讨了罗山黄土古土壤的成因方式、沉积环境、物源方向等古环境信息,根据地球化学元素指标进一步探讨了罗山第四纪风尘堆积物的物质来源和沉积环境的变化规律。
     经磁性地层研究结果表明,罗山黄土古土壤剖面B/M界限出现在剖面1440cm处,且在B/M界限至剖面底部未出现松山负向期的贾拉米洛正向极性亚带事件,初步推测剖面底部所处的地质时代约为早更新世晚期或中更新世早期;分别以光释光测年结果及B/M界线年龄作为时间控制点,推测大别山北麓罗山剖面黄土古土壤开始堆积的起始年龄为870kaB.P左右。
     单一磁组构参数及其组合参数结果表明,研究剖面从成因上分为两阶段,其中第一阶段(1480~1600cm)样品的磁组构参数P、F、L平均值均高于第二阶段的相应值,但q平均值较第二阶段(0~1480cmm)大,上述标志特征揭示剖面第一阶段(0~1480cm)属于水成搬运沉积,而第二阶段属于典型风成沉积;磁组构参数组合关系图F-L、P-q、P-F显示,第一阶段水成的样品的数据点集中分布于远离坐标原点的区域,指示沉积动力较强,而第二阶段的风成样品的数据点集中分布于坐标原点附近的区域内,指示沉积动力弱而稳定;磁化率各向异性主轴Kl和K3方向的等面积赤平投影图显示第一阶段样品的椭球体轴向分布聚集,长轴的倾角一般小于10°,短轴的倾角大于80°,而第一阶段的分布分散,长轴的倾角大于60°,短轴的倾角小于150。磁化率最大主轴偏角指示第一阶段风成沉积的主导风向为NW-SE方向,第二阶段水成沉积的古流向为SW-NE方向。综合来看,磁组构特征指示了第一阶段为水成搬运沉积而第二阶段为风成沉积,整个剖面自老至新磁组构特征的变化暗示了研究区成因类型的递变,并记录了沉积环境由温湿向干冷逐渐转变的气候环境。
     利用粒度组成、粒度参数及粒度曲线和石英颗粒表面结构特征对罗山黄土古土壤进行古环境分析,结果表明,第一阶段(1480~1600cm)无明显富集风成的基本粒组即10~501μm,且标准偏差较大,分选相对较差,频率曲线表现为双峰至多峰正偏态为主,其环境判别参数(Y>0,平均值为1.13)显示其为水成搬运沉积;此阶段石英颗粒粒径较大,>200μm粒级含量多见,形状以棱角状、次棱角状为主,粗颗粒含量较高,说明沉积物可能是受较强动力水流搬运近源物质堆积而致,与冲积扇相中的泥石流相的沉积特征十分相似;剖面第二阶段(0~1480cm)粒度参数和粒度曲线特征显示,沉积物粒度以风成的基本粒组即10~50μm粒级为众数粒组,粘粒含量次之为次众粒组,属粘土质粉砂类型,且粒度组成非常均一,标准差较小、分选较好,在累积曲线上表现为双峰负偏态且细尾较重,因此属于风成成因,与北方黄土呈明显的延续关系,符合我国黄土从西北向东南粒度逐渐变细的基本特征;由环境判别函数Y<0(平均值为-9.85)再次印证为风成堆积物的特性;磨片显示石英粒径较小,形状以棱角状、次棱角状为主,沉积物镜下显示颜色较红,显示了风成沉积的特征且经受了较强的风化作用,与沉积物所具有较小的Kd值而反映的罗山沉积物受到较强的风化作用一致,侧面说明了大别山北麓自870kaB.P.以来整体较温湿的气候特征。
     黄土古土壤磁化率研究结果表明,研究区自870kaB.P.以来磁化率值总体水平较高,说明整体气候背景较温湿;磁化率曲线显示磁化率的峰值和谷值分别对应古土壤与黄土,由质量磁化率经四次回归方程计算出研究区年平均温度为0.91~13.88℃、年平均降水量126.46~789.14mm的特征。
     对地球化学元素特征研究表明,大别山北麓罗山黄土古土壤表现出明显地富硅铝铁的现象,表明了大别山北麓自约870kaB.P.以来,气候以湿热为主且由湿热向干冷发展的气候特点。化学风化指数(CIA)值及特征元素比值等的变化等特征显示罗山经受了中等强度的化学风化程度;采用常量元素的富集因子法、特征元素比值法及稳定的微量元素法进行物源判别,元素富集因子值及其分布模式、特征元素比值的分布模式和稳定微量元素的物源判别指数和图解方法分析表明,大别山北麓罗山剖面自870kaB.P.以来,罗山整个剖面的黄土古土壤物源均来自西北的风尘堆积,也进一步确定研究剖面第一阶段(1480~1600cm)的沉积物为原始的风尘堆积而后又经过水流的次生改造而成,也进而得出大别山北麓罗山风尘堆积的底界年龄约为870kaB.P,此年龄与地理位置相近的长江中下游皖南地区的风尘堆积时间一致,说明罗山第四纪沉积物黄土古土壤的堆积是在全球大环境下实现的是对全球气候变化的响应。
Dabie Mountain is seated in China's north-south boundary of geography and climate, therefore it is very sensitive to the regional and global changes. To research the palaeoenvironment evolution of the quaternary loess-paleosol deposits from Dabie Mountain aera, we select Luo Hill as research objective because it is by far the best preserved sections in this region, its complete layer record provides a good reliability to research area palaeoenvironment. By extracting the paleo environmental information of the loess-paleosol from Luo Hill, the genetic environment "and ancient environmental changes and provenance of the loess-paleosol are analyzed in detail. This will be an important basis for the study of the responding and feedback mechanism to global change for eastern China. Based on the magnetostratigraphy and optically stimulated luminescence (OSL) dating, the geological age of the Luo Hill section located at North Dabie is researched firstly, then, the genesis patterns and sedimentary environment and source direction of the loess-paleosol of Luo Hill are researched and analyzed by studying the grain-size,magnetic fabric, magnetic susceptibility, geoehemistry elements.
     According to the results of the magnetostratigraphic, the boundary between the Brunhes normal zone and the Matsuyama reversed zone occur in the depth of1440cm, and the bottom does not appear in the Jaramillo normal subzone, so we infer the geological age of the Luo Hill section could be developed between late Early Pleistocene or early Middle Pleistocene. Then the geological age of the Luo Hill section is presumed by using OSL dating results and B/M boundary age separately as time control point, the results of paleomagnetic research show that the geological age of loess-palaeosols located at North Dabie is about870kaB.P.
     The single and combined magnetic fabric parameter are tested for the loess-palaeosols from Luo Hill, the results shows that Luo Hill section could be divided into two phases in genesis, the mean values (P, F, L) of the first phase (1480-1600cm) is more than that of the second phase(0-1480cm), but the q value of the first strata section is smaller. The characteristics of mean values reveal that the comparatively second phase is coincident with typical aeolian deposit, however, the first phase belongs to typical hydraulic deposit. In the figure of F-L and P-q and P-F relations of magnetic fabric, the data of eolian deposit are mostly concentrated in the vicinity of the coordinate origin, which indicates that sedimentary dynamic is relatively weaker. While the data of hydraulic deposit are mostly distant from the coordinate origin, which shows its sedimentary dynamic is relatively stronger and stable. Stereographic projection of anisotropy of aximum magnetic principal axis show that the direction of declination of the second phase section is relatively dispersing with inclination of the long axis smaller than15°nd short axis bigger than60°, however, the first phase is relatively concentrating with inclination of the long axis smaller than10°and short axis bigger than80°; The stereographic projection of the K1and K3demonstrate that the wind direction in the comparatively0-1480cm strata section is NW-SE, While the direction of water flowing in the1480-1600cm strata section is SW-NE. The Kmax optimal directions of AMS may be controlled by the uplift of the Luo Hill. Generally, magnetic fabric characters show that the0~1480cm strata section is eolian deposit and the bottom is hydraulic deposit. The change of magnetic fabric in the whole section from the bottom to top shows the variation of deposits genesis, and the sedimentary climate varied from warm humid to cool dry.
     The paleoenvironment is researched by the characteristic of grain-size composition, grain-size parameter, grain-size curve and the characteristics of quartz microstructure. The results show that the deposits are not enrichment of aeolian basic fraction (10~50um), and possessing larger standard deviation and poorer relative sorting, grain size freqency curve diagram, grain size frequency curves are double or multi-peak and right leaning, the environment discriminant parameters show that this phase is aqueous deposit, and quartz particles are mainly more than200μm, the shapes of quartz sands are mainly angular and subangular, there are high content of crude particles,these are formed under an a very strong dynamic hydraulic deposits and these are typical aeolian deposits and mainly composed of proximal materials transported by local very strong dynamic water flow in the first phase profile, it is very similar to debris flow facies feature in the alluvial fan facies; however, it is mainly made up10~50um that is basic grain-size of eolian deposit in the second phase, and clay content is the second mode group, this stage belongs to muddy silt sediment and possessing smaller standard deviation and better relative sorting, grain size frequency curves are double and left leaning, and these characteristics have a close relation to the loess in North China. The singleness of grain size composition hints the provenance is the common original sources in this stage, and the grain-size parameter and their curves and the environment discriminant parameters all show that this phase belong to eolian deposits. Moreover, quartz has the characteristics of smaller particle size and angular and subangular shapes, so it is typical eolian deposit, and the loess are subjected to strong weathering, on the other hand, these explain indirectly that Dabie Mountains behaves a warm and wet climate characteristics since870kaB.R.
     The higher value of the magnetic susceptibility of the loess paleosol shows that it is warmer and humid background in Luo Hill since870ka B.P., the curve of magnetic susceptibility displays that the peak and trough values of the magnetic susceptibility are respectively corresponding to the paleosol and loess.Another we conclude that the mean annual temperature is0.91~13.88℃, and the mean annual precipitation is126.46~789.14mm by the four times of the regression equation calculation of the mass susceptibility.
     The research of geochemical element of the loess-palaeosols from Luo Hill indicates that it is rich in SiO2, Al2O3, Fe2O3,this shows that Luo Hill is characterized with hot humid regional climate, and the climate changed with fluctuation from warm humid in the early stage into cool dry in the late stage since870kaB.P. By the analysis of CIA and Rb/Sr characteristics, we can conclude that the degree of chemical weathering in the aeolian-dust deposits of Dabie Mountain is middle intensity. Based on the enrichment factor, characteristic element and stable trace elements, the provenance of the loess-palaeosols from Luo Hill is analysed by their distribution patterns and correlations, the results of research show that the provenance of Luo Hill loess-palaeosols is the same as the loess of LuoChuan and Nanjing Xiashu, and they come from the northwest aeolian-dust deposit. By comprehensive analysis of the characteristics of magnetic fabric, grain-size and magnetic susceptibility, we conclusively establish the bottom of eolian deposit is originated in870kaB.P. These results are correspondent with area in the middle and lower reaches of Changjiang River, hinting the eolian deposits were the possible response to the Global Change.
引文
[1]An Z S. The history and variability of the East Asian paleomonsoon climate [J]. quateruary Science Reviews,2000,19 (1-5):171-187.
    [2]An Z S, Kukla S, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 13 000 years[J]. Quarter Res,1991,36: 29-36.
    [3]An Z S,Kukla G,PorterJ L,et al. Late Quaternary dust flow on the Chinese Loess Plateau[J]. Catena,1991,19:171-187.
    [4]An Z S. Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature,2001,411:62-66.
    [5]An Z S, Porter S C. Millennial-scale climatic oscillations during the last intergla-cialtion in central China[J]. Geology,1997,25 (7):603-606.
    [6]Bhatia M R. Plate tectonics and geochemical composition of sand stones[J]. Journal of Geology,1983,91:611-627.
    [7]Bhatia M R,Crook K A W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin[J]. Contributions to Mineralogy and Petrology,1986, 92:181-193.
    [8]Bronger A,Heinkele T. Mineralogical and clay mineralogical aspects of loess research[J]. Quaternary International,1990,7:37-53.
    [9]Chen F H,Bl mendall,Feng Z D, et al. East Asian monsoon variations during oxygen isotope stage5 evidence from the northwestern margin of the Chinese loess plateau[J]. Quaternary Science Review,1999,18:1127-1135.
    [10]Chen J, An Z S, Head J. Variation of Rb/Sr ratios in the loess-Paleosol sequences of central China during the last 130000 years and their implications for monsoon paleoclimatology[J].Quaternary Research,1999,51:215-219.
    [11]Chen T H, Xu H F, Xie Q Q, et al. Characteristics and genesis of mashemite in Chinese loess and paleosols:Mechanism for magnetic susceptibility enhancement in paleosols[J]. Earth and Planetary Science Letters,2005,240 (3-4):790-802.
    [12]Dasch E J. Strontium isotopes in weathering profiles, deep-sea sediments and sedimentary rocks[J]. Geochim. Cosmochim. Acta.1969,33:1521-1552.
    [13]Doglas D T. Grain-size indices, classifications and environment. Sedimentology,1968,10: 132-152.
    [14]Deng C L,Vidic N J,Vernsub K L, et al.Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability Journal of Geophysical Research,2005,110:B03103, doi:10.1029/2004JB003451.
    [15]Ding Z L.Derbyshire E,Yang S L,et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea 5180 record[J]. Paleoceanography,2002,17 (3):725-756.
    [16]Ding Z L,Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a 7.0 Ma eolian loess-red clay sequence at Lingtai,Loess Plateau,North-central China and the implications for paleomonsoon evolution [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1999,152 (1-2):49-66.
    [17]Ding Z L,Yu Z W,Ruter N W,et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Sciences Review,1994,13:39-70.
    [18]Evans M E, Heller F. Magnetic enhancement and paleoclimate:Study of a loess/paleosol couplet across the loess plateau of China[J]. Geophys. J. Int.,1994,117:257-264.
    [19]Evans M E, HeHer F. Magnetism of loess/palaeosel sequences:Recent developments[J]. Science Reviews,2001,54 (1-3):129-144.
    [20]Eyre J K. Frequency dependence of magnetic susceptibility for populations of single-domain grains[J]. Geophys J. Int.,1997,129:209-211.
    [21]Feng Z D.Wan g H B,Olsen C, et al. Chronological discord between the last interglacial paleosol (S1) and its parent material in the Chinese Loess Plateau. Quaternary International,2004,117:17-26.
    [22]Folk R L. Petrology of sedimentary rocks.HemPhill Publishing Company Austin, Texas78703,1974,182P.
    [23]Folk R L.Ward W C. Brazos River bar.A study in significance of grain size Parameters[J]. Sediment Petrol,1957,27 (1):3-26
    [24]Forster T, Evans M E, Heller F. The frequency dependence of low field susceptibility in loess sediments[J]. Geophys. J.Int.,1994,118:636-642.
    [25]Forman S L. Pleistocene chronology of loess deposition near Luochuan[J]. China Quat Res, 1991,36:19-28.
    [26]Friedman G M, Sanders J E. PrineiPles of sedimentology. Newb York:John Wiley&Sons,1978:792.
    [27]Gallet S, Jahn B M, Lano B V L, et al. Loess geochemistry and its implications for particle origin and composition of the upper continental crust[J]. Earth and Planetary Science Letters,1998,156:157-172.
    [28]Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical. Geology,1996,133:67-78.
    [29]Gonl M A,Ruttenberg K C,Eglinton T I. Source and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico[J]. Nature,1997,389 (18):275-278.
    [30]Graham J W. Magnetic susceptibility anisotropy, an unexploited petrofabric element[J]. Bull.Geol.Soc.Am.,1954,65:1257-1258.
    [31]Gu Z Y, Lal D, Liu T S, et al. Weathering histories of Chinese loess deposits based on uraniμm and thoriμm series nuclides and cosmogenic 10Be[J]. Geochimica et Cosmochimica Acta,1997,61:5221-5231.
    [32]Guo Z T,LiuT S,Fedoroff N.etal. Shift of Monsoon Intensity on the Loess Plateau at ca.0.85Ma B P[J]. Chinese Seienee Bulletin,1993:38 (7):586-591.
    [33]Guo Z T, Peng S Z, Hao Q Z, et al. Origin of the Miocene-Pliocene Red-Earth Formation at Xifeng in Northern China and implications for paleoenviron- ments. Palaeogeography Palaeoclimatology Palaeoecology,2001,170:11-26.
    [34]Guo Z T,Ruddiman W F.Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002,416:159-163.
    [35]Hailwood,E.A.,et.al. Paleomagnetic reoientation of cores and the magnetic fabric of hydrocarbon reservoir sand[J]. Geol.Soc.Spec.Publication,1995,98,245-258.
    [36]Hao Q Z, Guo Z T. Magnetostratigraphy of a late Miocene-Pliocene loess-soil sequence in the western Loess Plateau in China.Geophysical Research Letters,2004,31, L09209, doi: 10.1029/2003GL019392.
    [37]Han J M. A premilinary study on the clay mineralogy of the loess at Luochuan section in Quaternary Geology and Environment of China[J]. China ocean press,1982,67-72,
    [38]Han J M, Lu H Y, Wu N Q, et al. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction[J]. Studia Geophysicaet Geodaetica,1996,40:262-275.
    [39]Heller F, Evans M E. Loess magnetism[J]. Reviews of Geophysics,1995,33:211-240.
    [40]Heller F, Liu T S. Palaeoclimate and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters,1986,13:1169-1172.
    [41]Heller F,Liu T S. Magnetostratigraphic dating of loess deposits in China[J]. Nature,1982, 300:431-433.
    [42]Heller F,Liu X M, Liu T S, et al. Magnetic susceptibility of loess in China[J]. Earth and Planetary Science Letters.1991,103 (1-4):301-310.
    [43]Heller F, Shen C D, Beer J, et al. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications[J]. Earth and Planetary Science Letters,1993,14:385-390.
    [44]Hoven S A, Rea D K, Pisias N G. Late Pleistocenecontinental climate and oceanic variability recorded in Northwest Pacific sediments Palecoeanography,1991,6 (3):349-370.
    [45]Hovan S A, Rea D K, Pisias N G,et al. A direct link betweenthe China loess and marine 8 O records:Aeolian flux to the north Pacific [J]. Nature,1989,340:296-298.
    [46]Hrouda F. Magnetic anisotropy of rocks and its application in geology and geophysics[J]. Geophysical Surveys,1982,5:37-82.
    [47]Huang C C, Zhao S C, Pang J L,et al. Climatic aridity and the relocations of the zhou culture in the southern loess plateau of china[J]. ClimaticChange,2003,61:361-378.
    [48]Huang Y S, Street-Perrott F A, Perrot t R A, et al. Glacial interglacial environmental changes inferred from molecular and compound-specific813C analyses of sediments f rom Sacred lake Mt. Kenya[J]. Geochimica et Cosmochimica Acta,1999,63:1383-1404.
    [49]Hus J J. The magnetic fabric of some loess/palaeosol deposits[J]. Physics and Chemistry of the Earth,2003,28:689-699.
    [50]Imbrie.J,Hays J G,Martinson D G,et al. The orbital theory of Pleistocene climate:Support from a revised chronology of the marine &18O record[J]. In:Imebrie J, Hays J et al. eds. milankovitch and Climate (Part1). Dordrecht:Reidel Publishing Company.1984,269-305.
    [51]Inman D L.Sorting of sediment in light of fluvial mechanics[J]. Journal of sedimentary Petrology,1949,19:51-70.
    [52]Jelinek V. Characterization of the magnetic fabrics of rocks[J]. Tectonophysics,1981,99: 63-67.
    [53]Jule Mao, Toshio Nakamura. Holocehe climate changes over the desert loesstransition of north-central China[J]. Earth and Planetary Science Letters,2002,197:11-18.
    [54]Kent D V. Apparent correlation of paleomagnetic intensity and climatic records in deep-sea sediments[J]. Nature,1982,299:538-539.
    [55]Krμmbein W C. Size frequency distributions and thenormal Phi curve[J]. Joμmal of Sedimentary Petrology,1938,9:84-90.
    [56]Kukla G, An Z S. Loess stratigraphy in central China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1989,72:203-225.
    [57]Kukla G, Heller F, Liu X M,et al. Pleistocene climates in China dated by magnetic susceptibmty[J]. Geology,1988,16 (9):811-814.
    [58]Kukla G. Loess stratigraphy in central China Quaternary Science Reviews,1987,6 (3-4):191-207.
    [59]Kohfeld K E,Harrison S P. Glacial 2 integlacial changes in dust deposition on the Chinese Loess Plateau [J]. Quaternary Science Reviews,2003,22 (3):1859-1878.
    [60]Lauci L, Kent D V, Biscaye P E, et al. Isothermal remnant magnetization of Greenland ice:preliminary results [J]. Geophysical Research Letters,2001,28 (8):1639-1642.
    [61]Li H M, An Z S, Wang J D. Preliminary paleomagnetic study of loess from the Wucheng Section, Northern China[J]. Geochemistry,1974,2,93-104.
    [62]Liu B Z,Yoshiki Saito,Toshitsugu Yamazaki. Paleocurrent analysis for the Late Pleistocene-Holocene incised valley fill of the Yangtze delta, China by using anisotropy of magnetic susceptibility data[J]. Marine Geology,2001,176:175-189.
    [63]Liu Q S. A satellite image study on the dust storm at Beijing on April 17-21,1880[A]. In:Quaternary Environment of China[C]. China Ocean Press,1982,49-52.
    [64]Liu Q S, Banerjee S K, Jackson M J, et al. New insights into partial oxidation model of magn etites and thermal alteration of magnetic mineralogy of the Chinese loess in air[J]. Geophysical Journal International,2004,158 (2):506-514.
    [65]Liu Q S.Banerjee S K,Jackson M J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. Journal of Geophysical Research,2004,109:B03101,doi:10.1029/2003 JB002747.
    [66]Liu Q S,Deng C L,Torrent J, et al. Reviews on recent developments of mineral magnetism of the Chinese loess[J]. Quaternary Science Review,2007,26, (3-4),368-385.
    [67]Liu Q S.Deng C L,Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment:Implications for pedogenesis of Chinese loess/palaeosels[J]. Geophysical Journal International,2005,161 (1):102-112.
    [68]Liu Q S,Jackson M J,Banerjee S K,et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess.Journal of Geophysical Research, 2004,110:B12107,doi:10.1029/2004JB003249.
    [69]Liu Q S,Jackson M J,Yu Y, et al. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophysical Research Letters,2004,31:L22603,doi:10.1029/ 2004GL021090.
    [70]Liu Q S,Torrent J,Maher B A, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research,2005,110:B11102, doi:10.1029/2005JB003726.
    [71]Liu T S,Guo Z T, Liu J Q,et al. Variation of eastern Asian monsoon over the last 140000 years[J]. Bulletin Societ geologique France,1995,166:221-229.
    [72]Lu H Y, Li L, An Z S, et al. East Asia winter monsoon oscillation and its correlation with the North Atlantic Heinrich events during the last glaciation[J]. Progress in Natural Science, 1996,6 (6):711-717.
    [73]Lu H Y, Vandenberghe, An Z S. Aeolian origin and paleoclimatic implications of the "Red Clay" (north China) as evidenced bygrain-size distribution. J Quat Sci,2001,16(1): 89-97
    [74]Lyell,C. Observation on the Loamy deposit called loess of the Basin of the Rhjne Edinurgh New PhiIosophy[J].1834,17:110-112.
    [75]Maher B A. Characterisation of soils by mineral magnetic measurements[J]. Physics Earth Planetary International,1986 (42):76-92.
    [76]Maher B A. Magnetic properties of modern soils and Quaternary loessic paleosol: Paleoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1998, 137:25-54;
    [77]Maher B A, Thompson R. Mineral magnetic record of the Chinese loess and paleosols. Geology,1991,19:3-6
    [78]Marshall E.W. Stratigraphic use of particulate in polar ice caps. Bull. Geol.Soc.1959, 70:1643.
    [79]Meng X,Derbyshire E,Kemp R A. Origin of the magnetic susceptibility signal in Chinese loess[J]. Quaternary Science Reviews,1997,16 (8):833-839.
    [80]Nesbitt H W,Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299:715-717.
    [81]Pan Y X, Zhu R X,Liu Q S, et al. Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess.Geophysical Research Letters,2002,29 (8):doi:10.1029/2001GL014024.
    [82]Passega R. Grain size representation by CM pattern as a geologictool [J]. Journal of Sedimentary Petrology,1964,34:830-847.
    [83]Petit J R, Jouzel J, Raynaud D,et al.Climate and atmospheric history of the past 420000 years from the Vostok ice core,Antarctica[J]. Nature,1999,399:429-436.
    [84]Rob A, KEMP, EDWARD DERBYSHIRE, et al. Pedoseduriemary Reconstruction of a Thick Loess-Paleosol Sequencenear Lanzbou in North-Central[J].China Quaternary research,1995,41:30-48.
    [85]Porter S C, An Z.S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature,1995,375:305-308.
    [86]Porter S. C, An Z. S, Zheng H. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of Qinlingshan, Central China[J]. Quaternary Research,1992,38:157-169.
    [87]Porter S C, Hallet B, Wu X H, et al. Dependence of near-surface magnetic susceptibility on dust accμmulation rate and precipitation on the Chinese Loess Plateau[J]. Quaternary Research,2001,55 (3):271-283.
    [88]Rollinson H R. Using geochemical data:evaluation, presentation, interpretation. London:Longman Scientific[M], Technical Press,1993,1-352.
    [89]Rolph T C, Shaw J, Derbyshire E, et al. The magnetic mineralogy of a loess section near Lanzhou,China. In:Pye K. The Dynamics and Environmental Context of Aeolian Sedimentary Systems (72). London:Geological Society Special Publication,1993,311-323.
    [90]Prins M A, Postma G, Weltje G. Controls on the terrigenous sediment supply to the Arabian Sea during the late Quaternary:The Markran continental slope[J]. Marine Geology,2000, 169:351-371.
    [91]Prins A, Vandenberghe J, Weltje G J. Palaeoclimate signals in loess size distributions[C]. Int.Workshop HWK Delmenhorst April 15-18,2004. From Particle Size to Sediment Dynamics,2004,123-125.
    [92]Pye K. Aeolian Dust And Dust Deposits[M]. London:Academic Press,1987.1-165
    [93]Pye K, Sperling C H B. Experimental investigation of silt formation by static breakage processes:the effect of temperature, moisture and salt on quartz dune sand and granitic regolith[J]. Sedimentology,1983,30:49-62
    [94]Sahu B K. Depositional mechanism from the size analysis of clastic sediments[J]. J Sediment Petrol,1964,34:337-343.
    [95]Sawyer E W. The influence of source rock type, sorting on the geochemical weathering of clastic sediments from the Quatico matasedimentary belt, Superior Province,GANADA[J]. Chemical Geol,1986,55:77-95.
    [96]Shackleton N, Opdyke N. Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere Glaciation [J]. Nature,1977,270:216-219.
    [97]Smith B J, Wright J S, Walley W B. Sources of non-glacial loess size quartz silt and the origins of "desert loess" [J]. Earth-Science Reviws,2002,59:1-26.
    [98]Sun D H, An Z S, Su R X, et al. Eolian sedimentary records for the evolution of monsoon and westerly circulations of northern China in the last 2.6Ma[J]. Science in China (SeriesD), 2003,46 (10):1049-1059.
    [99]Sun J M, Liu T S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind2blown sediments[J]. Earth and Planetary Science Letters,2000, 180:287-296.
    [100]Sun J M, Liu T S. The age of the Taklamakan Desert[J]. Science,2006,312:1621.
    [101]Sun W W, Banerjee S K, Hunt C P. The role of magnetite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence:An extensive rock magnetic study combined with citrate-bicarbonate-dithionite treatment. Earth Planet[J]. Sci. Lett.,1995, 133:493-505.
    [102]Tang Y J, Jia J Y, Xie X D. Records of magnetic properties in Quaternary loess and its paleoclimatic significance:A brief review[J]. Quaternary International,2003,108 (1):33-50.
    [103]Tarling D H, Hrouda F. TheMagnetic Anisotropy of Rocks[M]. Chapman & Hall, New York,1993.217.
    [104]Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M].Oxford London:Black well scientific Publication,1985,1-301.
    [105]Thompson L.G. Varitions in microparticle concentrations, size distribution and elemental composition found in CampCentury, Greenland and ByrStation Antarctica deep ice core. Proc. Sympos. on Isotopes and Impurities in Snow and Ice Grenoble IAHS_AISHPubl; 1977,63-67.
    [106]Vernsub K L,Fine P,Singer M J, et al. Pedogenesis and paleoclimate:Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences[J]. Geology,1993,21 (11):1011-1014.
    [107]Vernsub K L, Roberts A P. Environmental magnetism:Past,present,and future[J]. Journal of Geophysical Research,1995,100:2175-2192.
    [108]Visher G S. Grain size distribution and depositional process. J Sediment Petrol,1969,39: 1074-1106
    [109]Whalley W B, Marshall J R, Smith B J. Origin of desert loess from some experimental observations[J]. Nature,1982,300:433-435.
    [110]Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 year[J]. Quaternary Research,1995,43:22-29.
    [111]Zhao, H., Li, S.H. Lμminescence isochron dating:a new approach using different grain sizes. Radiation Protection Dosimetry 101,2002,333-338.
    [112]Zheng H B, An Z S, Shaw J. New contributions to Chinese PlioPleistocene agnetostratigraphy[J]. Physics of the Earth and Planetary Interiors,1992,70 (3-4):146-153.
    [113]Zhou L.P. et al., P artly pedogenic origin of magnetic variations in Chinese loess. Nature, 1990,346:737-739
    [114]Zhu R X, Laj C,Mazaud A. The Matuyama-Brunhes and Upper Jaramillo transitions recorded in a loess section at Weinan,Northcentral China[J]. Earth and Planetary Science Letters,1994,125 (1-4):143-158.
    [115]Zhu R X, Liu Q S, Jackson Michael J. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (< 130 ka) [J]. Earth and Planetary Science Letters,2004,221:55-69.
    [116]安芷生,符涂斌.全球变化科学的进展[J].地球科学进展.2001,16(5):671-680.
    [117]安芷生,孙东怀,陈明扬,等.黄土高原红粘土序列与晚第三纪的气候事件[J].第四 纪研究,2000,20(5):435-446.
    [118]安芷生,王俊达,李华梅.洛川黄土剖面的古地磁研究[J].地球化学,1977, (4):239-247.
    [119]安芷生,魏兰英.淀积铁质粘粒胶膜及其成因意义[J].科学通报,1979,24:358-359.
    [120]安芷生,魏兰英.离石黄土中的第五层古土壤及其古气候的意义[J].土壤学报,1980,17,1-10.
    [121]安芷生,张培震,王-七,等,中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究,2006,26(5):678-693.
    [122]奥勃鲁切夫,B.A.黄土成因问题、砂与黄土问题(乐铸、刘东生译)[M].北京:科学出版牡,1985.
    [123]曹军骥,张小曳,程燕,等.晚新生代红粘土的粒度分布及其指示的冬季风演变[J].海洋地质与第四纪地质,2001,21(3):99-106.
    [124]曹继秀,张宇田,王建民,等.塬堡黄土剖面15万年以来磁化率气候记录及黄土磁化率时空特征[J].兰州大学学报(自然科学版),1997,33(1):124-132.
    [125]操应长,王艳忠,徐涛玉,等.特征元素比值在沉积物物源分析中的应用-以东营凹陷王58井区沙四上亚段研究为例[J].沉积学报,2007,25(2):230-238.
    [126]陈柏林,李中坚,谢艳霞.北京怀柔崎峰茶一琉璃庙地区岩石磁组构特征及其构造意义[J].地球学报,1997,18(2):134-141.
    [127]陈翠华,何彬彬,顾雪祥,等.右江盆地中三叠统浊积岩系的物源和沉积构造背景分析[J].大地构造与成矿学,2003,27(1):77-82.
    [128]陈骏,安芷生,汪永进,等.最近800ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J].中国科学(D辑),1998,28(6):498-504.
    [129]陈骏,李峻峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑),1997,27(5):531-536.
    [130]陈骏,汪永进, 陈旸,等.中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J].地质学报,2001,75(2):259-266.
    [131]陈骏,汪永进,季峻峰,等.陕西洛川黄土剖面的Rb/sr及其气候地层学意义[J].第四纪研究,1999,(4):350-356.
    [132]陈骏,王洪涛,鹿化煜.陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J].地质学报,1996,70:61-72.
    [133]陈明扬.中国风尘堆积与全球干旱化[J].第四纪研究,1991,(4):361-372.
    [134]陈庆强,李从先,丛友滋.沉积物磁组构与其动力沉积特征对应关系研究[J].科学通报,1998,43(10):1106-1109.
    [135]陈诗越,王苏民.青藏高原2.5Ma来的环境演化及其对构造事件响应[J].地质力学学报,2002,8(4):333-34.
    [136]陈旸,陈骏,刘连文.甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J].地质力学学报,2001,7(2):167-175.
    [137]陈宜瑜,陈浮勤,葛全胜,等.全球变化研究进展与展望[J].地学前缘(中国地质大学,北京).2002,9(1):11-18.
    [138]丛友滋,藏启运,李培英,等.用磁组构研究底流流向的初步探讨[J].海洋学报,1990,12(3):347-350.
    [139]丁仲礼,刘东生,刘秀铭,等.250万年以来的37个气候旋回[J].科学通报,1989,(19):1494-1496.
    [140]丁仲礼,任剑璋,刘东生,等,晚更新世季风-沙漠系统千年尺度不规则变化及其机制问题[J].中国科学(D辑),1996,26(5):386-391.
    [141]丁仲礼,孙继敏,刘东生.联系沙漠一黄土演变过程中耦合关系的沉积学指标[J].中国科学,1999,29(1):82-87.
    [142]丁仲礼,杨石岭,孙继敏,等.2.6Ma前后大气环流重构的黄土-红粘土沉积证据[J].第四纪研究,1999,(3):277-281.
    [143]丁仲礼,余志伟,刘东生.中国黄土研究新进展(三)-时间标尺[J].第四纪研究,1991,(4):336-348.
    [144]冯金良,朱立平.白云岩之上红色粘土的磁组构特征及其成因指示意义探讨[J].中国岩溶,2005,24(4):270-275.
    [145]冯连君,储雪蕾,张启锐,等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘,2003,10(4):539-544.
    [146]冯文科.大别山地区构造地貌特征[J].《地质科学》1976,3:266-276.
    [147]贾蓉芬,刑福建,赵林,等.从渭南剖面有机质类型的差异探讨黄土地区湿度的演变趋势[J].地球化学,1995,(24):66-71.
    [148]姜在兴.《沉积学》[M],石油工业出版社,2003,5月
    [149]弓虎军,张云翔,岳乐平,等.甘肃灵台新近纪红粘土磁组构特征的沉积学意义[J].沉积学报,2007,25(3):437-444.
    [150]顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展[J].第四纪研究,2000,20(1):41-55.
    [151]郭见扬.关于黄土湿陷原因研究[J].水文地质工程地质,1958, (4):7-11.
    [152]韩德亮.莱州湾E孔中更新世末期以来的地球化学特征.海洋学报,2001,23(2):79-85.
    [153]韩家愗,J.J.Hus,刘东生等.马兰黄土和离石黄土的磁学性质,第四纪研究,1991,4:310-324
    [154]韩家懋,姜文英,褚骏.黄土和古土壤中磁性矿物的粒度分布[J].第四纪研究,1997,(3):281-287.
    [155]郝青振,郭正堂,彭淑贞.陇西第三纪红土磁学性质初步研究[J].第四纪研究,2000, 20(5):447-456.
    [156]郝青振,郭正堂.1.2 Ma以来黄土古土壤序列风化成壤的定量化研究与东亚夏季风演化[J].中国科学D辑,2001,31(6):520-528.
    [157]河南省地质矿产局.河南省区域地质志[M].北京:地质出版社,1989.
    [158]胡蒙育,Maher B.中国黄土堆积的磁性记录与古降雨量重建[J].地球科学进展,2002,17(3):320-325.
    [159]胡雪峰.黄土古土壤序列中氧化铁和有机质对磁化率的影响[J].土壤学报,2004,41(1):7-12.
    [160]胡雪峰,沈铭能,方圣琼.皖南网纹红土的粒度分布特征及古环境意义[J].第四纪研究,2004,24(2):160-166.
    [161]黄孝刚,孙继敏.末次间冰期以来黄土古土壤序列的磁组构特征及其指示的古风向[J].第四纪研究,2005,25(4):516-522.
    [162]黄秉维,郑度,赵名茶,等.现代自然地理[M].北京,科学出版社,2000:1-183.
    [163]黄春长.环境变迁[M].北京,科学出版社,2000:1-191.
    [164]黄润,朱诚,王升堂.天堂寨泥炭地层的磁化率、Rb/Sr值及其反映的古气候意义[J].地理科学,2007,27(3):385-389.
    [165]贾蓉芬,备战,李荣森.陕西段家坡黄土剖面中趋磁细菌特征与环境意义[J].中国科学(D),1996,26(5):411-416.
    [166]蒋复初,吴锡浩,肖华国,等.九江地区网纹红土的时代[J].地质力学学报,1997,3(4):27-32.
    [167]蒋富清,李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J].沉积学报,2002,20(4):680-686.
    [168]姜月华,殷鸿福,王润华,等.湖州市土壤磁化率与重金属元素分布规律及其相关性研究[J].吉林大学学报,2005,35(5):653-660.
    [169]靳鹤龄,董光荣,苏志珠,等.全新世沙漠-黄土边界带空间格局的重建[J].科学通报,2001,46(7):538-543.
    [170]李长安,顾延生.江西修水第四系网纹红土的地层学研究[J].地层学杂志,1997,21(3):226-232.
    [171]李福春,谢昌仁,金章东,等.南京老虎山黄土剖面中铷锶地球化学和磁化率与古气候变化的关系[J].中国地质,2003,30(1):93-98.
    [172]李力,安芷生.过去600万年黄土高原夏季风周期的阶段性演化及其强迫因子初探[J].第四纪研究,2001,21(2):134-146.
    [173]李徐生,韩志勇,杨守业,等.镇江下蜀土剖面的化学风化强度与元素迁移特征[J].地理学报,2007,62(11):1174-1184
    [174]李徐生,杨达源,鹿化煜,等.皖南第四纪风尘堆积序列粒度特征及其意义[J].海洋 地质与第四纪地质,1997,(4):73-80
    [175]李徐生,杨达源,鹿化煜.皖南风尘堆积序列氧化物地球化学特征与古气候记录[J].海洋地质与第四纪地质,1999,19(4):75-82.
    [176]李徐生,杨达源,鹿化煜.镇江下蜀黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,2001,21(1):25-32.
    [177]林海.中国全球变化研究的回顾与展望[J].地学前缘(中国地质大学,北京).2002,9(1):19-26.
    [178]刘宝柱,李从先,业治铮,等.沉积磁组构特征在长江三角洲地区晚第四纪古土壤研究中的应用[J].海洋地质与第四纪地质,1994,14(2):55-62.
    [179]刘东生,等.黄土与环境[M].北京科学出版社,1985.
    [180]刘东生.第四纪科学发展展望[J].第四纪研究.2003,23(2):165-176.
    [181]刘东生等.中国黄土堆积[M].北京:科学出版社,1965.141-227
    [182]刘东生,丁仲礼.中国黄土研究新进展(二)古气候与全球变化[J].第四纪研究,1990,(1):1-9.
    [183]刘东生,丁仲礼.二百五十万年来季风环流与大陆冰量变化的阶段性耦合过程[J].第四纪研究,1992,(1):12-23.
    [184]刘飞,郑祥民,许健,等.东海浪岗山岛屿黄土的粒度与磁性特征及其环境意义[J].海洋地质与第四纪地质,2005,25(4):93-98.
    [185]刘进峰,郭正堂,郝青振,等.甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究[J].第四纪研究,2005,25(4):503-509.
    [186]刘乐军,李培英,王永吉.鲁中黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,2000,20(1):81-86.
    [187]刘连文,陈骏,陈旸,等.黄土的连续提取实验及Rb/Sr值意义[J].土壤学报,2002,39(1):65-70.
    [188]刘连文,陈骏,季峻峰,等.陕西洛川黄土的粒度分维值及其意义[J].高校地质学报,1999,5(4):412-417.
    [189]刘庆生.古地磁学与古气候学[J].国外地质,1986, (8):1-7.
    [190]刘晓东,李力,安芷生.青藏高原隆升与欧亚内陆及北非的干旱化[J].第四纪研究,2001,21(2):114-121.
    [191]刘秀铭, 刘东生.中国黄土磁性矿物特征及其古气候意义[J].第四纪研究1993,3:281-287.
    [192]刘秀铭,刘东生,F Heller,等.黄土频率磁化率与古气候冷暖变化[J].第四纪研究,1990,(1):42-49.
    [193]刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J].中国科学D辑,2002,32(10):830-836.
    [194]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42(1):66-69.
    [195]鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究[J].科学通报,1997,42:2535-2538.
    [196]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学D辑,1998,28(3):278-283.
    [197]鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比-红粘土风成成因的新证据[J].沉积学报,1999,17(2):226-232.
    [198]鹿化煜,安芷生,王晓勇,等.最近14Ma青藏高原东北缘阶段性隆升的地貌证据[J].中国科学D辑,2004,34(9):855-864.
    [199]鹿化煜,苗晓东,孙有斌.前处理方法与步骤对风成红粘土粒度测量的影响[J].海洋地质与第四纪地质,2002,22(3):129-135.
    [200]鹿化煜,Stevens T,弋双文,等.高密度光释光测年揭示的距今约15~10ka黄土高原侵蚀事件[J].科学通报,2006,51(23):2767-2772.
    [201]鹿化煜,张红艳,王社江,等.东秦岭南洛河上游黄土地层年代的初步研究及其在旧石器考古中的意义[J].第四纪研究,2007,27(4):559-567.
    [202]卢高升.土壤频率磁化率与矿物颗粒的关系极其环境意义[J].应用基础与工程科学学报,2000,28(4):334-337.
    [203]卢演俦,文启忠,黄伯均,等.中国黄土物质来源的初步探讨——石英粉砂颗粒表面结构的电子显微镜研究[J].地球化学,1976,(1):47-53
    [204]罗运利,孙湘君.南海深海沉积物划分记录的快速气候波动事件[J].第四纪研究,1999,(6):536-540.
    [205]吕厚远.中国现代土壤磁化率分析及其古气候意义[J].中国科学(D)辑:1994,24(16):120-129.
    [206]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B)辑,1994,24(12):1291-1297.
    [207]潘永信,朱日祥.磁组构研究现状[J].地球物理学进展.1998,13(1):52-59.
    [208]庞奖励,黄春长,刘安娜,等.黄土高原南部全新世黄土古土壤序列若干元素分布特征及意义[J].土壤学报,2003,40(4):490-496.
    [209]庞奖励,黄春长,张占平.陕西岐山黄土剖面Rb、Sr组成与高分辩率气候变化[J].沉积学报,2001,19(4):637-641.
    [210]裴军令,孙知明,李海兵,等.青藏高原西北缘晚新生代沉积岩古流向的磁化率各向异性确定及其构造意义[J].岩石学报,2008,24(7):1613-1620.
    [211]彭先芝,贾蓉芬.西峰与段家坡黄土剖面中有机质的特征及古环境信息[J].地理科学,2001,21(1):36-40.
    [212]齐文,郑绵平.西藏扎布耶湖ZK91-2钻孔沉积特征与气候环境演化[J].湖泊科学,1995, 7(2):133-140.
    [213]乔彦松,郭正堂,郝青振,等.安徽宣城黄土堆积的磁性地层学与古环境意义[J].地质力学学报,2002,8(4):369-375.
    [214]乔彦松,赵志中,李增悦,等.成都平原红土堆积的风成成因证据[J].第四纪研究,2007,27(2):286-294.
    [215]乔彦松,赵志中,王燕,等.川西甘孜黄土磁性地层学研究及其古气候意义[J].第四纪研究,2006,26(2):250-256.
    [216]邱新法,曾燕,缭启龙.我国沙尘暴的时空分布规律及其源地和移动路径[J].地理学报,2001,56(3):316-322.
    [217]沈吉,吕厚远,王苏民,等.错鄂孔深钻揭示的青藏高原中部2.5MaBP以来环境演化及其对构造事件响应[J].中国科学(D辑),2004,34(4):359-366.
    [218]施雅风.第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系[J].冰川冻土,1998,20(3):197-208.
    [219]史正涛,张世强,周尚哲,等.祁连山第四纪冰碛物的ESR测年研究[J].冰川冻土,2000,22(4):353-357.
    [220]宋春晖,高东林,方小敏,等.青藏高原昆仑山垭口盆地晚新生代高精度磁性地层及其意义[J].科学通报,2005,50(19).
    [221]孙东怀,鹿化煜,David Rea,等.中国黄土粒度双峰分布及古气候意义[J].沉积学报,2000, 18(3):327-335.
    [222]孙东怀,苏瑞侠,陈发虎,等.黄土高原现代天然降尘的组成、通量和磁化率[J].地理学报,2001,56(2):171-180.
    [223]孙继敏.中国黄土的物质来源及其粉尘产生的机制与搬运过程[J].第四纪研究,2004,24(2):175-183.
    [224]孙继敏,丁仲礼,等.黄土与古土壤磁组构测定在重建冬季风向上的初步应用[J],科学通讯,1995,40(21),1976-1978.
    [225]孙继敏,刘东生,丁仲礼,等.五十万年来毛乌素沙漠的变迁[J].第四纪研究,1996,(4):359-365.
    [226]孙建中等.黄土还要更老些.海洋地质与第四纪地质,1987,7(1):105-112.
    [227]孙建中,赵景波,等.黄土高原第四纪[M].北京:科学出版社,1991.
    [228]孙千里,肖举乐.岱海沉积记录的季风/干旱过渡区全新世适宜期特征[J].第四纪研究,2006,26(5):781-790.
    [229]孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质,2001,21(1):93-95.
    [230]孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步分析[J].科学通报,2003,48(1):83-86.
    [231]孙有斌,鹿化煜,安芷生.黄土古土壤中石英颗粒的粒度分布[J].科学通报,2000,45(19):35-42.
    [232]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,22(1):21-26.
    [233]汪品先,田军,成鑫荣.第四纪冰期旋回转型在南沙深海的记录[J].中国科学(D辑),2001,31(10):793-799.
    [234]汪勇,沈吉,羊向东,等.陕北红碱淖沉积物粒度特征所揭示的环境变化[J].沉积学报,2006,24(3):349-355.
    [235]王爱萍,杨守业,李从先.南京地区下蜀土元素地球化学特征及物源判别[J].同济大学学报,2001,29(6):657-661.
    [236]王勇,潘保田,高红山,等.祁连山东北缘黄土磁组构记录的古风向重建[J].地球物理学报,2007,50(4):1161-1166.
    [237]王永焱.中国黄土区第四纪气候变化[J].中国科学(B),1987,(10):1100-1106.
    [238]王永焱,等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社.1990.
    [239]王永焱,吴在宝,岳乐平.兰州黄土的生成时代及结构特征[J].西北大学学报,1978,(2): 1-27.
    [240]文启忠等.中国黄土地球化学[M].北京:科学出版社,1989.
    [241]文启忠,刁桂仪,贾蓉芬,等.黄土剖面中古气候变化的地球化学记录[J].第四纪研究,1995, (3):223-231.
    [242]吴海斌,陈发虎,王建民.黄土高原第四纪粉尘沉积速率的时空变化及其意义[J].沉积学报,1998,16(1):147-151.
    [243]吴海斌,陈发虎,王建民,等.现代风成沉积物磁化率各向异性与风向关系的研究[J].地球物理学报,1998,41(6):811-817.
    [244]吴汉宁,岳乐平.风成沉积物磁组构与中国黄土区第四纪风向变化[J].地球物理学报,1997,40(4):487-494.
    [245]吴汉宁,岳乐平.古地磁在油气勘探中的应用,In:地磁、大气、空间研究及应用[M].地震出版社,北京,1996,91-95.
    [246]吴中海,赵希涛,江万.念青唐古拉山东南麓更新世冰川积物年龄测定[J].冰川冻土,2003,25(3):272-27.
    [247]肖尚斌,李安春,蒋富清,等.近2ka闽浙沿岸泥质沉积物物源分析[J].沉积学报,2005,23(2):268-274.
    [248]谢昌仁,李福春,王力波,等.南京老虎山黄土古土壤剖面不同粒级组分的磁化率及其古气候意义[J].土壤通报,2004,35(2):159-162.
    [249]谢久兵,朱照宇,周厚云,等.陕西蓝田公王岭黄土古土壤序列的磁组构特征及其古环境意义[J].地球化学,2007,36(2):185-192.
    [250]徐树建,潘保田,李琼,等.陇西盆地末次冰期黄土粒度特征及其环境意义[J].沉积学报,2005,23(14):702-708.
    [251]许顺山,陈柏林.应用岩石磁性组构研究动力变形作用[J].地球学报,1998,19(1):19-24.
    [252]薛祥煦,岳乐平,周杰,等.陕西旬邑晚新生代红土-黄土序列磁化率特征与环境变迁[J].第四纪研究,2003,22(1):103-108.
    [253]阎桂林.岩石磁化率各向异性在地学中的应用[M].武汉中国地质大学出版社,1996.
    [254]杨怀仁.第四纪中国自然环境变迁的原因机制[J].第四纪研究,1989,2,39-110
    [255]杨石岭,侯圣山,王旭,等.泾川晚第三纪红粘土的磁性地层及其与灵台剖面的对比[J].第四纪研究,2000,20(5):423-434.
    [256]杨守业,李从先,李徐生,等.长江下游下蜀黄土化学风化的地球化学研究[J].地球化学,2001,30(4):402-406
    [257]杨守业,李从先,张家强.苏北滨海平原冰后期古地理演化与沉积物物源研究[J].古地理学报,2000,2(2):65-72.
    [258]叶玮.新疆西风区黄土与古土壤磁化率变化特点[J].中国沙漠,2001,21(4):380-385.
    [259]余钦范,郑敏.岩石磁组构分析及其在地学中的应用[M].北京地质出版社,1992.
    [260]尹秋珍,肖国桥,郭正堂,等.风尘堆积常见的同沉积和沉积后改造特征及其环境意义.第四纪研究,2007,27(2):295-302.
    [261]于学峰,周卫健,刘晓清,等.青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义[J].沉积学报,2006,24(6):864-869.
    [262]殷志强,秦小光,吴金水,等.湖泊沉积物粒度多组分特征及其成因机制研究.第四纪研究,2008,28(2):345-353.
    [263]余志伟,丁仲礼,刘东生.2.5Ma以来地球轨道参数变化对黄土粒度变化的线性驱动[J].第四纪研究,1992, (2):118-127.
    [264]余志伟,丁仲礼,刘东生.第四纪古气候变化非线形动力学初步研究——黄土粒度曲线的奇异谱分析[J].第四纪研究,1993, (3):214-230.
    [265]岳乐平,薛祥煦.中国黄土古地磁学.北京:地质出版社,1996.
    [266]张虎才,李吉均,马玉贞,等.腾格里沙漠南缘武威黄土沉积元素地球化学特征[J].沉积学报,1997,15(4):152-158.
    [267]张家强,李从先,丛友滋.水成沉积与风成沉积及古土壤的磁组构特征[J].海洋地质与第四纪地质,1999,19(2):85-94.
    [268]张家强,李从先,丛友滋.山东长山列岛黄土沉积磁组构特征及意义[J].沉积学报,1997,15(3):141-144.
    [269]张西营,马海州,谭红兵.青藏高原东北部黄土沉积化学风化程度及古环境[J].海洋地质与第四纪地质,2004,24(2):43-47.
    [270]张晓晖,李铁胜,胡能高,等.新疆东准噶尔喀姆斯特晚古生代沉积记录物源和沉积作用研究[J].地质科学.2002,37(1):13-26.
    [271]张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J].第四纪研究,2001,21(1):29-40.
    [272]张玉芬,李长安,陈亮,等.长江中游砂山沉积物磁组构特征及其指示的古风场[J].地球物理学报,2009,52(1):150-156.
    [273]张玉芬,李长安,阎桂林,等.长江中游地区洪泛沉积物与正常河流沉积物磁组构特征对比研究[J].地球物理学报,2004b,47(4):639-645.
    [274]张玉芬,李长安,陈亮,等.长江中游砂山沉积物磁组构特征及其指示的古风场[J].地球物理学报,2009,52(1):150-156.
    [275]张兰生,方修琦,任国玉.全球变化[M].北京,高等教育出版社,2000:1-320.
    [276]张玉兰.南海深海柱状沉积物中孢粉和藻类研究及古环境意义[J].海洋地质和第四纪地质,2003,23(1):73-76.
    [277]张宗祜.中国黄土湿陷性及渗透性基本特征[J].中国地质,1962(12):1-8.
    [278]张宗祜等.中国黄土[M].北京:地质出版社,1989.
    [279]赵景波.西北黄土区第四纪土壤与环境[M].西安:陕西科学技术出版社,1994.
    [280]赵景波.黄土研究的历史和展望[J].地学工程进展,1998,15(1):17-22.
    [281]赵井东,周尚哲,崔建新,等.乌鲁木齐河源冰碛物的ESR测年研究[J].冰川冻土,2002,24(6):737-743
    [282]赵泉鸿,汪品先.南海第四纪古海洋学研究进展[J].第四纪研究,1999,6:481-501.
    [283]郑浚茂,等.黄骅拗陷几种砂岩体的粒度分布特征及其水动力条件的初步分析[J].石油实验地质,1980,1(2):9-20.
    [284]周群英,黄春长,庞奖励,等.黄土高原南部全新世黄土古土壤序列若干元素分布特征及意义[J].土壤学报,2003,40(4):490-496.
    [285]周尚哲,李吉均,张世强,等.祁连山摆浪河谷地的冰川地貌与冰期[J].冰川冻土,2001,23(2):131-138.
    [286]周延兴.论沧州沿海地区第四纪沉积物的Fe3+/Fe2+垂直变化周期性及其应用[J].海洋地质与第四纪地质,1984,4(2):103-110.
    [287]朱诚.对于Fe3+/Fe2+探讨庐山地区第四纪古温度的讨论[J].地质论评,1994,40(3):216-22.
    [288]朱岗昆.古地磁学-基础、原理、方法、成果与应用[M].北京:科学出版,2005.
    [289]朱立平,王君波,林晓,等.西藏纳木错深水湖芯反映的8.4ka以来气候环境变化[J].第四纪研究,2007,27(4):588-597
    [290]朱日祥,丁仲礼.红粘土的磁学性质研究第四纪研究[J].1993,3:232-238.
    [291]朱日祥,岳乐平,白立新.中国第四纪古地磁学研究进展[J].第四纪研究,1995, (2):162-173.
    [292]朱照宇,丁仲礼.中国黄土高原第四纪古气候与新构造演化[M].北京:地质出版社,1994.
    [293]朱宗敏,杨文强,林文姣,等.安徽宣城第四纪网纹红土的磁组构特征及其意义[J].海洋地质与第四纪地质,2006,26(4):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700