用户名: 密码: 验证码:
围栏与放牧对三江源区高山嵩草草甸植物形态、群落特征及碳平衡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围栏封育作为有效的退化草地恢复措施,在我国草地管理中已得到广泛应用。自国家启动三江源生态工程以来,青海三江源地区已有2.92×104hm~2草原成功实现退牧还草,得到休养生息。深入分析围栏封育对高寒草甸植物、土壤及物质循环影响等问题,对该区域草地可持续利用和保护及退化草地恢复、重建具有十分重要意义。
     论文以三江源地区高山嵩草草甸为研究对象,结合国家宏观调控措施,采用野外调查法测定围栏封育和放牧草地植物、群落变化,分析植物/土壤碳、氮储量和分配,通过密闭气室法测定土壤呼吸动态,并估算三江源区碳平衡的状况,取得了以下主要结果:
     (1)长期放牧条件下高山嵩草草甸优良牧草个体矮小化特征明显,植物功能群生物量和种子繁殖重下降明显,毒杂草则不明显。繁殖体重和单株繁殖枝数量变异程度和可塑性小。
     (2)长期围栏封育增加了系统内群落生态优势度,而物种丰富度、均匀度和多样性下降,改变了植被群落结构,且呈现简单化趋势。
     (3)围栏封育主要功能群总碳浓度和碳氮比高于放牧草地;高山嵩草草甸土壤有机碳、氮储量最大,植物地上部分最小,植物根系居中。0~30cm深度土体单位面积有机碳储量由高到低依次为:围栏封育5a>围栏封育10a>自由放牧;围栏封育是高山嵩草草甸固碳减排的有效措施之一。氮储量出现相似变化,放牧促使土壤的氮储量的损失。
     (4)整个生长季,围栏与放牧植物群落生物量出现了“低-高-低”的变化趋势,基本呈现“S”形变化,且围栏封育自我恢复效应保持了较高的地上生物量,呈现“围栏封育5a>围栏封育10a>自由放牧”的趋势,同时也保持了较高的地上凋落物量和分解速率,出现返青期和枯黄期大,生长初期小的双峰趋势;封育10a、封育5a、自由放牧高寒草甸生态系统干物质净初级生产力分别为259.81g·m~2·a~(-1),292.84g·m~2·a~(-1),216.77g·m~2·a~(-1)。植物群落根系的贡献率最大,分解进入土壤的凋落物贡献率最小。
     (5)生长期内,围栏封育和自由放牧高山嵩草草甸土壤呼吸日变化和季节变化总体趋势表现为围栏封育草地高于自由放牧草地。土壤呼吸日变化动态呈现单峰曲线,高峰期出现在午后,主要受温度的影响;土壤呼吸速率、土壤含水量与温度(大气温度或土壤温度)的复合模型能够更好解释土壤呼吸速率变化;土壤呼吸Q10的变化范围为1.28~2.34,返青期和牧草生长后期对温度敏感,在生长旺期敏感程度下降,放牧增加了土壤呼吸对于土壤温度的敏感性。
     (6)围栏封育5a,围栏封育10a和自由放牧高山嵩草草甸净生态系统生产力分别为82.67gC·m~2·a~(-1),84.91gC·m~2·a~(-1),80.86gC·m~2·a~(-1),地下部分根系固碳量在整个碳输入组分中占的份额最大。三江源区围栏封育和中度放牧强度高山嵩草草甸均表现为碳汇,其固碳能力围栏封育大于自由放牧,围封年限大于5a对于固碳能力不明显。
As effective recovery measures, the enclosure has been widely applied in degraded grassland management in China. Since Ecological Engineering launched in three headwater river source,2.92×104hm2grassland have been get recuperate and built up strength due to the successful implementation of "Returning Grazing-Growing" Project in Qinghai. Analysis such as plant, soil and material recycling in fencing alpine meadows, are not only very important to the regional sustainable utilization of grassland and protection but also to the restoration and reconstruction of degraded grassland.
     Based on the national macro-control measures, filed investigation including individual and community'variation were compared between fencing and grazing Kobresia pygmaea meadow in the region.Plant and soil carbon/nitrogen storage and distribution were analyzed as well.Moreover, dynamics of soil respiration by enclosed chamber method (TRGA) and estimates of carbon balance were studied in the paper. The main results obtained as follows:
     (1) Fine herbages showed a tendency of undersizedness in long term grazing. Functional biomass and seed weight decreased significantly, poisonous plant were not obvious. The variability of reproductive weight and reproductive shoot number per plant was small and little plasticity.
     (2) The plant vegetation group changed with enclosure of grassland. The community structure exhibited simplification and species richness, evenness and diversity decreased in long term fencing, but ecological dominance increased.
     (3) Total carbon and C:N radio were significantly higher in fenced and ungrazing grassland than those in free grazing grassland.In addition,the storage of soil organic carbon per unit area varied in the order of FU5>FU10>FG, which the order of carbon and nitrogen'contribution was soil>roots>plants. Therefore fenced to exclude grazing by Tibetan sheep and yaks was an alternative approach to sequester C to the soil in Kobresia pygmaea meadow systems.The varieties of total nitrogen storage appeared corresponding tendency,which grazing lead to nitrogen loss.
     (4) The seasonal dynamic of community above-biomass were not same in fencing and grazing in the whole growing season. The general trend was the "low-high low","S" shape change. Above-biomass showed a trend that FU5was greater than FU10and FG. The self-healing effect of fencing remained not only high above-biomass but also maintained high litter fall and decomposition rate, which appeared double peak curve maximum in green-up period and minimum in the brown-off period. Net Primary productivity of dry material were259.81g·m2·a-1,292.84g·m2·a-1,216.77g·m2·a-1respectively in FU10, FU5and FG. Contribution rate of root system of plant community was maximum and litter fall was minimum.
     (5) The soil respiration of diurnal and seasonal rate changed little in growing season, which showed soil respiration rate was higher in fencing than that in free grazing grassland. The daily soil respiration rate which was mainly affected by temperature appeared single peak curve that showed afternoon; Composite model which was set by soil respiration rate, soil moisture content and temperature (atmospheric temperature and soil temperature) could explain better the variations of soil respiration rate; The variation range of Q10ranged from1.28to2.34,which was sensitive to temperature in green-up period and late growth stage, and decreased in growth peak period, it was an important factor that grazing increased the sensitivity of soil respiration on soil temperature.
     (6) Net ecosystem productivities of FU5, FU10and FG was82.67g C·m2·a-1,84.91g C·m2·a-1,80.86g g C·m2·a-1respectively. Roots accounted for the largest share in carbon input components. Fencing or not, Kobresia pygmaea meadow was a carbon sink in three headwater river source regions. In addition, the capacity of carbon sequestration of FU was greater than FG; However, the capacity of carbon sequestration was not obvious when the enclosure was more than5years.
引文
[1]Altesor A.,Oesterheld M.,Leoni E.,et al.Effect of grazing on community structure and productivity of Uruguayan grassland[J].Plant ecology,2005,179(1):83-91
    [2]Andrews J A, Harrison K G, Matamala R, et al. Separation of root respiration from total soil respiration using carbon-13labeling during free-air carbon dioxide enrichment [J]. Soil Sci Soc Am J,1999,63:1429-1435
    [3]Atkin O K, Edwards E J, Loveys B R. Response of root respiration to changes in temperature and its relevance to global warming[J].New Phytologist,2000,147:141-154.
    [4]Atkin O K,Tjeolker M G. Thermal acclimation and the dynamic response of plant respiration to temperaion [J].Trends in Plants Science,2003,8:343-351.
    [5]Atkin O K, Zhang Q S, Wiskich J T. Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with redox poise of quinine pool[J].Plant Physiology,2002,128(1):212-222.
    [6]Augustine D J, McNaughton S J. Ungulate effects on the functional species composition of plant communities, herbivore selectivity and plant tolerance[J].Journal of Wildlife Management,1998,62:1165-1183.
    [7]Baldocchi D D, Verma S B, Matt D R, et al. Eddy correlation measurements of carbon dioxide efflux from the floor of a deciduous forest[J]. Journal of Applied Ecology,1986,23:967-975.
    [8]Bargdett R D, Wardle D A, Yeates G. Linking above-ground and below-ground interactions, how plant responses to foliar herbivory influence soil organism [J]. Soil Biology and Biochemistry,1998,14:1867-1878.
    [9]Bekku Y K, Koizumi H, Nakadai T, et al. Measurement of soil respiration using closed chamber method, an IRGA technique[J]. Ecological Research,1995,10:369-373.
    [10]Bekku Y K, Kimura M, Ikeda H, et al. Carbon input from plant to soil through root exudation in Digitaria adscendens and Ambrosia artemisiifolia[J].Ecological Research,1997a,12:305-312.
    [11]Bremer J D, Ham J M, Owensby C E, et al. Responses of soil respiration to clipping and grazing in a tallgrass prairie[J]. Journal of Environmental Quality,1998,27:1539-1548.
    [12]Bryant J P, Provenza F D, Pastor J, et al. Interactions between woody plants and browsing mammals mediated by secondary metabolism [J]. Annual Review of Ecology and Systematics,1991,22:431-446.
    [13]Bryant J P, Heijtkonig L, Kuropat P, et al. Effects of severe defoliation on the long-term resistance to insect attack and on leaf chemistry in six woody species of the Southern African savanna [J].American Naturalist,1991,137:50-63.
    [14]Burton A J,Pregizter K S,Zogg G P,et al.Latitudinal variation in sugar maple fine root respiration[J].Cananian Journal of Forest Research,1996,26:1761-1768
    [15]Cao G M, Tang Y H, Mo W H, et al.-Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau [J]. Soil Biology&Biochemistry.2004,36:237-243.
    [16]Craine F M, Wedin D A, Chapin F S. Predominance of ecophysiological controls on soil CO2and nitrogen[J]. Plant and Soil,1999,207:77-86.
    [17]Craine F M, Wedin D A. Determinants of growing season soil CO2flux in a Minnesota grassland[J]. Biogechemistry,2002,59:303-313.
    [18]Curiel Y J, Janssens I A, Carrara A, et al. Annual Q10of soil respiration reflects plant phonological patterns as well as temperature sensitivity [J]. Global Change Biology,2004,10:161-169.
    [19]Davidson E A, Savage K, Verchot L V, et al. Minimizing artifacts and biases in chamber-based measurements of soil respiration[J]. Agricultural and Forest Meteorology,2002,113(1-4):21-37.
    [20]DeLucia E H, Hamiton J G, Naidu S L, et al. Net primary production of a forest ecosystem with experiment CO2enrichment[J].Science,1999,284:1177-1179.
    [21]Deker K L, Wang D, Waite C. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont[J].Soil Science Society of American Journal,2003,67:1234-1242.
    [22]Diza S, Cabido M. Vice la difference:plant function diversity matters to ecosystem processes[J]. Trends in Ecology&Evolution,2001,16:646-655.
    [23]Dugas W A. Micrometeorological and chamber measurements of CO2flux from bare soil[J]. Agricultural and Forest Meteorology,1993,67:115-128.
    [24]Dyer M L,Meentemeyer V, Berg B.Apparent controls of mass loss rate of leaf litter on a regional scale [J]. Scandinavian Journal of Forest Research,1990,5:311-323.
    [25]Edwards N T, Benham D G, Marland L A, et al. Root production is determined by radiation flux in a temperate grass land community [J]. Global Change Biology,2004,1:209-227.
    [26]Fahnestock J T, Jones M H, Brooks P D. Winter and early spring CO2efflux from tundra community of north Alaska[J].Research Atmosphere,1998,103:29023-29027.
    [27]Fang C, Moncrieff J B. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2efflux measurement[J].Functional Ecology,1998,12:319-325.
    [28]Frank A B, Dugas W A. Carbon dioxide fluxes over a northern semiarid mixed-grass prairei[J].Agricultural and Forest Meteorology,2001,108:317-326.
    [29]Friedlingstein P, Dufresne J L, Cox P M, et al. How positive is the feedback between climate change and the carbon cycle?[J].Tellus,2003,51:692-700.
    [30]Gilmanov T G, Tieszen L L, Wyile B K, et al. Interaction of CO2flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern GreatPlains potential for quantitative spatial extraolation[J]. Global Ecology and Biogeography,2004,14(3):271-292.
    [31]Greene R S B, Kinnell P I A, Wood J T. Role of plant cover and stock trampling on runoff and soil erosion from semi-arid wooded rangelands[J].Australian Journal of Soil Research,1994,32(5):953-973.
    [32]Goulden M L,Munger J V, Fan S M,et al.1996.Measurements of carbon sequestration by long-term eddy covariance:methos and a critical evaluation of accuracy [J]. Global Change Biology,2(3):169-182
    [33]Gulledge J, Schimel J P. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in interior Alaska[J]. Ecosystems,2000,3:269-282.
    [34]Heaney A, Proctor J. Chemical element in liter on Volcan Barvar, CostaRica[M]. England, Black Scientific,1989.
    [35]Henry H A, Cleland E E, Field C B. Interactive effects of domed CO2, N deposition and climate change on plant litter quality in a California annual grassland[J]. Oecologia,2005,142:465-473.
    [36]Hirsch A I, Trumbore S E, Goulden M L. Direct measurement of the deep soil respiration accompanying seasonal thawing of a boreal forest soil[J]. Journal of Geophysical Research-Atmosphere,2002,108(D23):8221.
    [37]Hirsch A I, Trumbore S E, Goulden M L. The surface CO2gradient and porespace storage flux in a high-porosity litter layer[J]. Tellus,2004,56B:312-321.
    [38]Hunt J E,Kelliher F M,Mcseveny T M,et al.Long-term carbon dioxide exchange in a sparse seasonally fry tussock grassland[J].Global Change Biology,2004,10:1785-1800
    [39]IPCC(Intergovemmental Panel on Climate change).Climate Change1991:Special report on renewable energy sources and climate change mitigation [R]. Cambridge:Cambridge University Press,1991:365-366.
    [40]Iritz Z, Lindroth A, Gardenas A. Open ventilated chamber system for measurements of H2O and CO2fluxes from the soil surface[J]. Soil Techniques,1997,10:169-184.
    [41]Janzen H H, Campbell C A, Brandt S A, et al. Light fraction organic matter in soils from long-term crop rotations [J]. Soil Science Society of America Journal,1992,56:1799-1806.
    [42]James M. Bullock, Joe Franklin, et al. A plant trait analysis of responses to grazing in a long2term experiment. Journal of Applied Ecology,2001,38:253-267.
    [43]Jenkinson D S, Adms D E. A model estimates of CO2emission from soil in response to global warming[J].Nature,1991,351:304-306.
    [44]Johnson L C, Matchett J R. Fire and grazing regulate belowground processes in tallgrass prairie[J]. Ecology,2001,82:3377-3389.
    [45]Kabwe L K, Hendry M J, Wilson G W, et al. Quantifying CO2fluxes from soil surface to the atmosphere [J]. Journal of Hygrology,2002,260:1-14.
    [46]Kasper T C, Bland W L. Soil respiration and root respiration[J].Soil Science,1992,154:290-299.
    [47]Kelting D L, Burger J A, Edwards G S. Estimating root respiration,microbial respiration in the rhzosphere, and root-free soil respiration in forest soils. Soil Biology and Biochemistry,1998,30(7):961-968
    [48]King J S, Pregitzer K S, Zak D R. Colonial variation in above and belowground growth responses of Populus tremuloides michaux, influence of soil warming and nutrient availability [J].Plant and Soil,1999,217:119-130.
    [49]Kusch L W, Staack A, Kappen L, et al. Field measurements of roots respiration and total soil respiration in an alder forest[J].New Phytologist,2000,150:157-168.
    [50]Laidler K J. Unconventional applications of Arrhenius law [J]. Journal of Chemical Education,1972,45(5):343-344.
    [51]LeCain D R, Morgan J A, Schuman G E, et al. Carbon exchange rates in grazed and ungrazed pastures of Wyoming[J]. Journal of Range Management,2000,53:199-206.
    [52]Liski J, Makela A, Ilevesniemi H. CO2emissions from soil in response to climate warming are overestimated:the decomposition on old soil organic matter is tolerant of temperature[J].Ambio,1999,28(2):171-174.
    [53]Liski J, Nissinen A, Erhard M, et al. Climatic effects on litter decomposition from arctic tundra to tropic rain forest [J]. Global Change Biology,2003,9(4):575-584.
    [54]Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J].Nature,2001,413:622-624.
    [55]Marilley L, Hartwig U A, Aragno M. Influence of an elevated atmospheric CO2content on soil and photosphere bacterial communities beneath Lolium perenne, Trifolium repens under field conditions [J]. Microbe Ecology,1999,38(1)39-49.
    [56]Mack M C, Schuur E A G, Bret-Harte M S, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization[J].Nature,2004,431:440-443.
    [57]Mcnaughton S L, Banyikwa F F, Mcnaughton M M. Root biomass and productivity in a grazing ecosystem[J].Ecology,1998,79(2):587-592.
    [58]Mekuria W, Veldkamp E, Haile M, et al. Effectiveness of enclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia[J]. Journal of Arid Environments,2007,69(2):270-284.
    [59]Mellio J M, Steudler P A, Aber J D, et al. Soil warming and carbon cycling feedbacks to climate system[J].Science,2002,298(56):2173-2176.
    [60]Mielnick P C,Dugas W A. Soil CO2flux in a tall grass prairie [J]. Soil biology and Biochemistry,2000,32:221-228
    [61]Middleton N J, Thomas D S G. Worid Atlas of Desertification (2nd edition)[M]. London: Edward Arnold,1998:5-12.
    [62]Murray B R, Brown A H D, Dickman C R, Crowther M S. Geographical gradients in seed mass in relation to climate. Journal of Biogegraphy,2004,31,379-388.
    [63]Nay S K, Mattson K G, Bormann B T. Biases of chamber methods for measureing soil CO2efflux demonstrated with a laboratory appratus[J]. Ecology,1994,75(8):2460-2463.
    [64]Noah F J M, Craine K M. Litter quality and the temperature sensitivity of decomposition[J]. Ecology,2005,86(2):320-326.
    [65]Norby R J, Cotrufo M F. A question of litter quality[J].Nature,1998,396:17-18.
    [66]Ohtonen R, Vare H. Vegetation comparison determines microbial activities in a boreal forest soil[J]. Microbial Ecology,1998,36(3):328-335.
    [67]Oesterheld M, Sala O E, McNaughton S J. Effect of animal husbandry on herbivore carrying capacity at a regional scale.Nature,1992,356:23-236
    [68]Osem Y.,Perevolotsky A.,Kigel J.Grazing effect on diversity of annal palant communities in a semi-arid rangeland:interactions with small-scale spatial and temporal variation in primary productivity[J].Journal of Ecology,2002:90(6):936-946
    [69]Ojima, D.S., Dirks, B.O.M., and Glenn, E.P., Assessment of C Budget for Grasslands and Drylands of the World [J], Water Air Soil Pollut,1993a,70:95-109.
    [70]Parton W J,Scheimel D S,Cole C V,et al.Analysis of factors controlling soil organic matter levels in Great Plant grasslands [J]. Soil science,1987,51:1173-1179.
    [71]Papatheodorou E M, George P S, Anna C. Response of soil chemical and biological variables to small and large scale changes in climatic factors[J].Pedobiologia,2004,48:329-338.
    [72]Peter A. Vesk M W. Predicting plant species'responses to grazing[J]. Journal of Applied Ecology,2001,38:897-909.
    [73]Pumpanen J, Kolari P, Ilvesniemi H, et al. Comparison of different chamber techniques for measuring CO2efflux[J]. Agricultural and Forest Meteology,2004,123(3-4):159-176.
    [74]Rinnan R, Michelsen A, Jonasson S, et al. Fifteen years of climate change manipulation alter soil microbial communities in subarctic health ecosystem[J]. Global Change Biology,2007,13(1):28-39.
    [75]Reich P B, Tilman D, Craine J, et al. Do species and functional groups differ in a acquisition and use of C, N and water under varying atmospheric CO2and N availability regimes? A field test with16grassland species. New Phytolodist,2001,150:435-448.
    [76]Renne I J,Tracy B F.Disturbance persistence in managed grasslands:shifts in aboveground community structure and the weed seed bank[J].Plant ecology,2007,170(1):71-80
    [77]Risk D, Kelllman L, Beltrami H. Soil CO2production and surface flux at four climate observation in eastern Canada[J]. Global Biogeochemical Cycles,2002a,16(4):1122.
    [78]Risk D, Kelllman L, Beltrami H. Carbon dioxide in soil profiles, production and temperature dependence [J]. Geophysical Research Letters,2002b,29(6).
    [79]Risser P G, Birney E C, Blocker H D, et al. The true prairie ecosystem [M].Stroudsburg, Pennsylvania:Hutchinson Ross Publishing Company,1981,244-246.
    [80]Roche P, Diaz-Burlinson N, Gachet S. Congruency analysis of species ranking based on leaf traits:which traits are the more reiable?[J]. Plant Eology,2004,174,37-48.
    [81]Rochette P, Flanagan L B, Gregorich E G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of American Journal,1999,63:1207-1213
    [82]Ruhlmann J. A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments [J]. Plant and Soil,1999,213(1-2):149-160.
    [83]Sakai S. Optimal resource allocation to vegetative and sexual reproduction of a plant growing in a spatially varying environment[J].Theor Bilo,1995,175:271-282.
    [84]Schlesinger W H. Carbon balance in terrestrial detritus [J].Annual Review of Ecology and Systematics,1997,8:51-81.
    [85]Schlesinger, W.H., Evidence from Chromo-sequence Studies for Low Carbon Storage Potential of Soils [J].Nature,1990,348:232-234.
    [86]Schlesinger W H,Andrews J A..Soil respiration and the carbon cycling[J]. Biogeochemistry.2000,48:7-20
    [87]Schwendenmann L, Veldkkamp E, Brenes T, et al. Spatial and temporal variation in soil CO2efflux in an old-growth neotropical rain forest, La Selva, Costa Rica[J]. Biogeochemistry,2003,64:111-128.
    [88]Shaver G R, Canadel J, Chapin F S, et al. Global warming and terrestrial ecosystem a conceptual framework for analysis[J]. BioScience,2000,50:871-882.
    [89]Smith T M, Leemans R, Shugart H H. Sensitivity of terrestrial carbon storage to CO2induced climate change:comparison of four scenarios based on general circulation models[J]. Climatic Change,1992,21:367-384.
    [90]Sirotnak J M, Huntly N J. Direct and indirect effects of herbivores on nitrogen dynamics, voles in riparian areas[J]. Ecology,2000,81:78-87.
    [91]Stark S, Strommer R, Tuomi J. Reindeer grazing and soil microbial proceses in two suboceanic and two subcontinental tundra heaths[J]. Oikos,2002,97:69-78.
    [92]Svetlana K. Microbial production and oxidation of methane in deep subsurface [J]. Earth-Review,2002,24:367-395.
    [93]Tao Z, Shen Q D, Gao Q Z, et al. Soil organic carbon storage and soil CO2flux in the alpine meadow ecosy stem [J]. Science in China Ser. D:Earth Science,2007,50(7):1103-1114.
    [94]Tilman D. Resource Competition and Community Structure. New Haven:Princeton University Press.1982.
    [95]Tordan T E, Whigham D F, Correll D F. The role of litter in nutrient cycling in brackish tidal marsh[J].Ecology,1989,70,1906-1915.
    [96]Van Peer L, Nijs I, Bogaert J, et al. Survival gap formation,and recovery dynamics in grassland ecosystems exposed to heat extremes:the role of species richness [J]. Ecosystems,2001,4:797-806.
    [97]Vukicevic T, Bmswell B H, Schimel D S. A diagnostic Study of temperature controls on global terrestrial carbon exchange [J]. Tellus B.2001,53:150-170.
    [98]Wan S, Lou Y. Substrate regulation of soil respiration in a tallgrass prairie, Results of a clipping and shading experiment[J]. Global biogechemical cycles,2003,17:1054.
    [99]Wang G X, Qian J, Cheng G D, Lai YM. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan plateau and its global implication[J].The Science of the Total Environment.2002,291:207-217.
    [100]Wang Q J, Li S X, Wang W Y, et al.The respondents of carbon and nitrogen reserves in plants and soils to vegetations cover change on Kobresia pygmaea meadow of, Yellow, and Yangtze Rivers source region[J].Acta Ecologica Sinica.2008,28:885-893.
    [101]Weltzin J F, Pastor J, Dewey B, et al. Response of bog and fen plant communities to warming and water table manipulations [J]. Ecology,2000,81:3464-3478.
    [102]Wilson J B,Agnew A D Q.Positive-feedback switches in plant communities [J]. Advanced in Ecological Research,1992,23:263-336
    [103]Wilsey B J, Parent G, Roulet N T, et al. Tropical pasture carbon cycling, relationships between C source/sink strength, above-ground biomass and grazing[J].Ecology Letter,2002,5:367-376.
    [104]Witan H V. Contribution of roots to forest soil respiration[J].Plant science,1967,18:163-167.
    [105]Wohlfahrt G, Anfang C, Bahn M, et al. Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chamber and modeling[J]. Agricultural and forest Meteorology,2005,128:141-162.
    [106]Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China[J].Global Biogeochem Cycle.2003,17(2):1-11.
    [107]Wu N. Indigenous knowledge and sustainable approaches for biodiversity maintenance in nomadic society-experience from eastern Tibetan Plateau.Die Erde,1997,128:67-80
    [108]Wu N, Liu Q. Ecological environment and strategies for sustainable development on the upper reaches of the Yangtze River [J].World Sci. Rcs. Devel,1999,21(3):70-73
    [109]Yu H Y, Ludenglin E, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J].PANS,2011,107:22151-22156.
    [110]Zak D R, Pregitzer K S, Curtis P S, et al. Elevated atmospheric CO2and feedback between carbon and nitrogen cycles[J]. Plant and Soil,1993,151:105-117.
    [111]Zhang W, Parker K M, Luo Y Q. Soil microbial response to experimental warming and clipping in a tallgrass prairie [J]. Global Change Biology,2005,11:266-277.
    [112]Zhang X Z, Shi P L, Liu Y F, et al. Experimental study on soil CO2emission in the alpine grassland ecosystem on Tibet-an Plateau [J]. Science in China Ser. D:EarthScience,2005,48(Z1):218-244.
    [113]Zhou X, Sherry B, An Y, et al. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2efflux in a grassland ecosystem[J]. Global Biogeochemistry Cycle,2006,20.
    [114]宝音陶格涛,陈敏.退化草原封育改良过程中植物种的多样性变化的研究[J].内蒙古大学学报(自然科学版),1997,28(1)87-91.
    [115]曹广民,李英年,张金霞,等.高寒草甸不同土地利用格局土壤CO2的释放量[J].环境科学,2001,22(6):14-19.
    [116]陈素华,宫春宁.气候对内蒙古草原生态系统的影响[J].华北农学报,2004,19(S1):69-73.
    [117]陈全功.江河源区草地退化与生态环境的综合治理[J].草业学报,2007,16(1):10-15.
    [118]陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000.
    [119]程积民,邹厚远,Akio H.封育刈割放牧对草地植被的影响[J].水土保持研究,1998,5(1):36-54.
    [120]程晓鹏,尚占环.中国草地生态系统碳循环研究进展[J].中国草地学报,2011,33(3):99-103.
    [121]池宏康,周广胜,许振柱,等.草地植被盖度的近距离遥感测定[J].草业学报,2005,16(2):105-110.
    [122]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):314-325.
    [123]董全明,马玉寿,李青云,等.牦牛放牧率对小嵩草高寒草甸植物群落的影响[J].中国草地,2004,26(3):24-32.
    [124]董全民,李青云,马玉寿.牦牛放牧率对小嵩草高寒草甸地上、地下生物量的影响初析[J].四川草原,2004,2:12-18.
    [125]董全民,赵新全,马玉寿,等.不同牦牛放牧强度对高山嵩草高寒草甸草场生产力的影响研究[J].家畜生态学报,2006,27(4):73-77.
    [126]方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相关关系[J].植物生态学报,2001,25(4):414-419.
    [127]方精云,王娓.作为地下过程的土壤呼吸:我们理解多少?[J].植物生态学报,2007,31(3):345-347.
    [128]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报,2004,24(4):790-797
    [129]高素华,郭建平,周广胜,等.高CO2条件下贝加尔针毛对土壤干旱胁迫响应的试验研究[J].应用气象学报,2003,14:253-256.
    [130]郭然,王效科,逯非,等.中国草地土壤生态系统固碳现状和潜力[J].生态学报,2008,28(2):862-867.
    [131]耿元波,董云社,齐玉春.草地生态系统碳循环评述[J].地理科学进展,2004,23(3):74-76.
    [132]韩大勇,杨允菲,李建东.1981-2005年松嫩平原羊草草地植被生态对比分析[J].草业学报,2007,16(3):9-14.
    [133]韩天虎,赵忠,王安禄,等.青藏高原东缘异针茅草地群落组成及生产力研究[J].草业学报,2007,16(6):62-66.
    [134]韩友吉,陈桂琛,周国英,等.青海湖地区高寒草原植物个体特征对放牧的响应[J].中国科学院研究生院学报,2006,23(1):116-121.
    [135]何勇,董文杰,季劲均,等.基于AVIM的中国陆地生态系统净初级生产力模拟[J].地球科学,2005,3:53-72.
    [136]何玉斐,赵明旭,王金祥,等.内蒙古农牧交错带草地生产力对气候要素的响应[J].干旱气象,2008,26(2):84-89.
    [137]黄玫,季劲钧,彭莉莉.青藏高原1981-2000年植被净初级生产力对气候变化的响应[J].气象与环境研究,2008,13(5):608-616.
    [138]金晓明,韩国栋.生产层放牧对草甸草原植物群落结构及多样性的影响[J].草业科学,2010,27(04):7-10.
    [139]贾炳瑞,周广胜,王凤玉,等.放牧与围栏羊草草原土壤呼吸作用及其影响因子[J].环境科学,2005,26(6):1-6.
    [140]贾宏涛,蒋平安,赵成义,等.围封年限对草地生态系统碳分配的影响[J].干旱地区农业研究,2009,27(1):33-3.
    [141]焦树英.短花针茅草原生态系统对不同载畜率水平绵羊放牧的响应[D].内蒙古农业大学,2006.
    [142]康兴成.青藏高原地区近40年来气候变化的特征[J].冰川冻土,1996,18(增刊):281-288
    [143]雷虹,王文成.围封对沙化草地植物群落变化的影响[J].辽宁畜牧兽医,2002,2:36-37.
    [144]李博.中国的草原[M].北京:科学出版社,1990.
    [145]李斌,长期围封对亚高山草地土壤和植被的影响[D].新疆农业大学,2009
    [146]李军保,马存平,鲁为华,等.围栏封育对昭苏马场春秋草地地上植物量的影响[J].草原与草坪,2009,133(2):46-56
    [147]李凌浩,陈佐忠.草地群落土壤呼吸[J].生态学杂志,1998a,17(4):45-51
    [148]李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680-686.
    [149]李凌浩,刘先华,陈佐忠.锡林河流域羊草草原生态系统碳素碳循环的研究[J].植物学报,1998,40(10):955-961.
    [150]龙瑞军,董世魁,胡自治.西部草地退化的原因分析与生态恢复措施探讨[J].草原与草坪,2005,6:1-5.
    [151]李政海,王炜,刘钟龄.退化草原围封恢复过程中草场质量动态的研究[J].内蒙古大学学报,1995,26(3):334-338.
    [152]李希来,黄葆宁.青海黑土滩草地成因及治理途径[J].中国草地,1995,4:64-67.
    [153]李轶冰,杨改河,王得祥.江河源区的生态环境地位初探.西北农林科技大学学报(自然科学版),2006,34(9):109-114.
    [154]李永宏,汪诗平.放牧对草原植物的影响[J].中国草地,1999,3:11-19.
    [155]李玉强,赵哈林,赵学勇,等.不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡与碳储量[J].草业学报,2006,15(5):25-31.
    [156]李政海,王炜,刘钟龄.退化草原围封恢复过程中草地质量动态的研究[J].内蒙古大学学报(自然科学版),1995,7(3):15-20.
    [157]刘雪明,聂学敏.围栏封育对高寒草地植被数量特征的影响[J].草业科学,2012,1(29),112-116.
    [158]刘允芬.中国农业系统碳汇功能[J].农业环境保护,1998,17(5),197-202.
    [159]罗亦其,周旭辉.土壤呼吸与环境[M].北京:高等教育出版社,2006.
    [160]马玉寿,王启基,郎百宁.“黑土型”退化草地研究工作的回顾与展望[J].草业科学,1999,16(2):5-9.
    [161]马玉寿,施建军,董全民,等.人工调控控措施对“黑土型”退化草地垂穗披碱草人工植被的影响[J].青海畜牧兽医杂志,2006,36(2):1-3
    [162]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007,31(2):150-165.
    [163]潘竟虎.近15年来长江源区土地利用变化及其生态环境效应[J].长江流域资源与环境,2005,14(3):310-315.
    [164]彭少麟,刘强.森林凋落物动态及其全球变暖的响应[J].生态学报,2002,22(9):1134-1143.
    [165]彭少麟,周后诚,陈天杏,等.广东森林群落的组成结构数量特征[J].植物生态学与地植物学学报,1989,13(1):10-17.
    [166]乔有民,王振群,段中华.青海湖北岸土地利用方式对土壤碳氮含量的影响[J].草业学报,2009,18(6):105-112
    [167]戎郁萍,赵萌莉,韩国栋.草地资源可持续利用原理和技术[M].北京:化学工业出版社,2004.
    [168]施建军,马玉寿,王柳英,等.“黑土型”退化草地优良牧草筛选试验]J[.草地学报,2007,15(6):543-549
    [169]孙晓燕,黄建辉,王猛,等.内蒙古草原凋落物分解对生物多样性变化的响应]J[.生物多样性,2009,17(4):397-405.
    [170]孙海群,朱志红,乔有民,等.不同海拔梯度小嵩草植物群落性比较研究]J[.中国草地,2000,5:18-22.
    [171]邰继承,杨恒山,范富,等.播种方式对紫花苜蓿+无芒雀麦人工草地浅剖面土壤植物C、N分布及储量的影响]J[.草业学报,2010,19(6):41-45.
    [172]陶贞,沈德承,高全洲,等.高寒草甸土壤有机碳储量C02通量]J[.中国科学,2007,37(4):553-563.
    [173]陶贞,沈承德,高全洲,等.高寒草甸土壤有机碳储量及其垂直分布特征]J[.地理学报,2006,61(7):720-728.
    [174]王长庭,龙瑞军,曹广民,等.三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素]J[.植物生态学报,2006,30:441-449.
    [175]王长庭,龙瑞军,王启基,等,高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系]J[.草业学报,2005,14:15-20.
    [176]王金龙,高玉葆,白宇,等.大针茅和克氏针茅对PEG渗透胁迫适应性反应的比较研究]J[.南开大学学报,2005,38(4):127-131.
    [177]汪诗平,李永宏.内蒙古典型草原退化机理研究]J[.应用生态学报,1998,10(4):437-441.
    [178]王绍强,周成虎.中国陆地土壤有机碳库的估算地理研究]J[.1999,18(4):349-356.
    [179]王明玖,李青丰,青秀玲.贝加尔针茅草原围栏封育和自由放牧条件下植物结实数量的研究]J[.中国草地2001,11(6):21-26.
    [180]王其兵,李凌浩,白永飞,等.模拟气候变化对3种草原植物群落混合凋落物分解的影响[J].植物生态学报,2000,24(6):674-679.
    [181]王发刚,王启基,王文颖,等.土壤有机碳研究进展[J].草业科学,2008,25(2):48-52.
    [182]王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义[Jl.冰川冻土,2002,24(6):693-700.
    [183]王根绪,李琪,程国栋,等.40a来江河源区的气候变化特征及其生态环境效应[J].冰川冻土,2001,3(4):346-352.
    [184]王洪博,丁学智,郎侠,等.甘南玛曲夏季牧场欧拉型藏羊牧食行为研究[J].草业学报,2012,20(3):583-585.
    [185]王俊峰,王根绪,吴青柏.青藏高原腹地不同退化程度高寒沼泽草甸生长季节C02排放通量及其主要环境控制因子研究[J[.冰川冻土,2003,30(3):408-414.
    [186]王启基,来德珍,景增春等.三江源区资源与生态环境现状可持续发展[J].兰州大学学报(自然科学版),2005,41(4):50-55.
    [187]王启基,周兴民,沈振西,等.不同调控策略下退化草地植物群落结构及其多样性分析[A].高寒草甸生态系统[C].北京:科学出版社,2001.
    [188]王启基,李世雄,王文颖,等.江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应[J].生态学报,2008,28(3):885-894.
    [189]王炜,梁存柱,刘仲龄,等.草原退化与恢复演替中植物个体行为分析[J].植物生态学报,2000,24(3):268-274.
    [190]王炜,刘钟龄,郝敦元,等.内蒙古典型草原退化群落恢复演替的研究Ⅱ:恢复演替时间进程的分析[J].植物生态学报,1996,20(5):460-471.
    [191]王文颖,王启基.青海海北地区高山嵩草草甸植物群落的结构特征及其分布格局[J].植物生态学报,1998,4:336-343.
    [192]王绍强,周成虎.中国陆地土壤有机碳库的估算[J[.地理研究,1999,18(4):349-356.
    [193]王绍刚.基于SPA模型的森林生态系统净初级生产力空间分布[D].2010.
    [194]王淑平,周广胜,吕育财,等.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报,2002,26(5):513-517.
    [195]文都日乐,李刚,张静妮,等.呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究[J].草业学报,2010,19(5):94-102.
    [196]文海燕,傅华,赵哈林.退化沙质草地开垦和围封过程中的土壤颗粒分形特征[J].应用生态,2006,17(1):55-59.
    [197]吴宁,罗鹏.长江上游高寒草地生态建设和管理中生态理论问题的若干质疑[J].应用与环境生物学报,2004,10(4):537-542.
    [198]肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应[J].植物学报,1996,38(1):45-52.
    [199]夏武平.高寒草甸生态系统[M].兰州:甘肃人民出版社,1982:9-18.
    [200]徐海红.不同放牧制度对短花针茅荒漠草原碳平衡的影响[D].中国农业科学院,2010.
    [201]徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188.
    [202]杨继.植物种内形态变异的机制及其研究方法[J].武汉植物学研究,1991,20(4):429-434.
    [203]杨晓晖,张克斌,侯瑞萍.封育措施对半干旱草场植被群落特征及地上生物量的影响[J].生态环境,2005,14(5):730-734.
    [204]杨永辉,王智平,佐仓保夫,等.全球变暖对太行山植被生产力及土壤水分的影响[J].应用生态学报,2002,13(6):667-671.
    [205]闫虎,沈浩.围栏封育在伊犁昭苏盆地退化草地生态恢复中的应用[J].干旱环境监测,2005,6(2):21-22.
    [206]俞斌华,侯扶江,林慧龙.牧草种群生长对家畜践踏的短期响应[J].草业学报,2005,14(4):119-124.
    [207]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2008
    [208]张国胜,李林,汪青春,等.青南高原气候变化及其对高寒草甸牧草生长影响的研究[J].草业学报,1999,8(3):1-10.
    [209]张金霞,曹广民,周党卫,等.高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环[J].生态学报,2003,23(4):627-634.
    [210]张宪洲,石培礼,刘允芬,等.青藏高原草原生态系统土壤CO2排放及其碳平衡[J].中国科学(D辑),2004,34(增刊):193-199.
    [211]赵景学,祁彪,多吉顿珠,等,短期围栏对藏北3类退化高寒草地群落特征的影响[J].草业科学,2011,28(1):59-62.
    [212]赵军,王雪萍,金蓉ArcGIS在草地资源规划中的应用[J].草业科学,2006,23(3):1-4.
    [213]赵新全.三江源区退化草地生态系统恢复与可持续发展[M].北京:科学出版社,2011.
    [214]赵新全.高寒草甸生态系统与全球变化[M].北京:科学出版社,2009.
    [215]姚广华,刘锦玲.草地围栏封育及其优越性[J].饲料与种植,2010,6:91
    [216]于贵瑞,王绍强.中国陆地生态系统碳通量技术及时空变化特征[M].北京:科学出版社,2008
    [217]郑翠玲,曹子龙,赵廷宁,等.围封沙化草地土壤种子库动态研究[J].水土保持研究,2005,(6)169-171.
    [218]周国英,陈桂琛,赵以莲,等.施肥和围栏封育对青海湖地区高寒草原影响的比较研究.Ⅰ群落结构及其物种多样性[J[.草业学报,2004,13(1):26-31.
    [219]周国英,陈桂琛,徐文华,等.围栏封育对青海湖地区芨芨草草原生物量的影响[J].干旱区地理,2010,33(3):434-441.
    [220]周华坤,周立,赵新全,等.放牧干扰对高寒草地的影响[J].中国草地,2002,09(5):53-57.
    [221]周华坤,刘玄德,师燕,等.封育措施对不同类型草地影响的初步观察[J[.青海草业,2001,6(4):1-4.
    [222]周华坤,周立,赵新全,等.围栏封育对轻牧与重牧金露梅灌丛的影响[J].草地学报,2004,12(2):140-144.
    [223]周刊社,杜军,袁雷,等.西藏怒江流域高寒草甸生产潜力对气候变化的响应[J].草业学报,2010,19(5):17-24.
    [224]周萍,刘国彬,薛蓵.草地生态系统土壤呼吸及其影响因素研究进展[J].草业学报,2009,18(2):184-193.
    [225]周涛,石培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(9):727-734.
    [226]周兴民,张松林.矮嵩草草甸在封育条件下群落结构和生物量变化的初步观察[J].高原生物学集刊,1986,13(5):1-6.
    [227]左万庆,王玉辉,王风玉,等.围栏封育措施对退化羊草草原植物群落特征影响研究[J].草业学报,2009,18(3):12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700