用户名: 密码: 验证码:
强震区斜坡地质灾害遥感信息提取与评价关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震诱发地质灾害可能造成的破坏和影响是极为严重的,有时甚至超过地震直接造成的灾害损失。充分认识和防范地震诱发地质灾害可能造成的冲击和影响,对防御和减轻灾害具有举足轻重的作用;准确、快速地确定震后诱发地质灾害点,对可能发生的诱发地质灾害作出合理评价,并及时采取相应的防御措施,是尽可能避免和降低地震诱发地质灾害造成巨大损失的有效手段。
     遥感技术是当代非常重要的科技手段,在灾区信息获取工作方面具有实时、覆盖范围广、数据类型丰富、分辨率高等特点,能够及时快速获取与滑坡、崩塌、泥石流和堰塞湖等地震诱发地质灾害点发育分布特征信息,为救灾计划制定、灾情评估、灾后重建、减轻灾害的影响等提供科学决策依据。遥感技术用于地震诱发地质灾害评价及相关领域,虽然已经有相当多的成功案例和有益经验,但主要集中在灾害点信息提取和宏观区域评价等方面,对基于高精度遥感解译,进行地质灾害体的精细解译、地质灾害体内部结构信息的提取、地质灾害的产生过程的分析,以及对这些信息的综合应用和分析等方面还需要进一步深入研究。
     本文以汶川地震极重灾区潜在突发性地质灾害易发区为研究对象,结合野外现场调查资料,重点研究与探索遥感技术在突发性地质灾害应急处理工作中遥感图像处理、地质灾害快速信息提取与解读,以及灾害信息库的建立等关键技术。
     论文主要研究内容和取得的创新成果与认识有以下方面:
     (1)提出了一种改进的遥感图像增强方法
     Russo提出了一种模糊图像增强方法,该方法相比其它常用方法有一定的优越性,但是,由于该方法中参数是固定的,所以效果并不理想。有学者针对该方法的参数调节提出了一些自动化方法,使该方法有了一定的改进,但效果仍不理想。本文通过对该方法中两个参数对最终图像增强效果的影响规律进行总结和分析,提出了一种新的自适应参数调节方法。通过与各种传统方法进行仿真实验对比,结果显示,本文方法具有简单、快速、增强效果更好等特点;将改进方法用于本文研究区实际遥感图像的增强处理,其结果进一步表明了本文方法的有效性和实用性。
     (2)针对汶川地震诱发的崩滑流地质灾害类型多、分布广、内部结构复杂等特点,综合应用3S技术,在利用高精度遥感图像地质灾害影像特征分析及相关信息提取和野外调研基础上,探索、提出了利用3S技术进行地质灾害体精细解译及其内部结构分析的思路及方法,对研究区地质灾害体进行了详细解译,基本查明了其空间形态特征及其空间分布,为地质灾害体风险控制提供了科学依据。
     (3)考虑到目前灾后泥石流灾害正处于高发期,常规勘察手段很难获取泥石流评价的基础数据的难题,提出了采用3S技术对典型泥石流进行遥感动态调查、分析、评价与预测的方法,并以研究区重点地区即震中附近的牛眠沟为例,详细地剖析了利用遥感和GIS技术分析泥石流物源特征、统计灾害要素信息等具体方法。可有效查明泥石流形成的地形地貌条件和水源条件、泥石流运动特征和规模、灾情和险情。并结合GIS提取的泥石流沟相关参数,对该区泥石流总量与输沙量进行了计算,分析了泥石流易发程度、发展趋势和危险性。
     (4)设计并实现了基于分布式网络的地震诱发地质灾害信息库
     在深入分析地震诱发灾害信息库在用户、功能和数据使用等方面需求的基础上,对已取得的数据成果在空间坐标系与参数、地图投影与比例尺、地理空间信息的数据编码规则、要素划分等方面进行了研究,设计并实现了基于分布式网络的地质诱发灾害信息库。信息库主要提供对查询检索、数据输出、数据库管理等三大核心功能,信息库系统涵盖了基础地理空间数据、遥感影像数据、地质灾害专题数据和评价模型数据等综合地质诱发灾害信息。
     (5)设计了地震诱发灾害数据的元数据模型,并在实际的数据共享服务中得到了应用
     在数据共享方面,以元数据理论为指导,设计了地震诱发灾害数据的元数据模型,并在实际的数据共享服务中得到了应用。选择Windows2003服务器操作系统作为信息库系统的运行环境,运用Java EE加ArcSDE完成了信息库的开发工作。系统的应用表明:从共享完整性角度分析,信息库满足了对现有研究数据的管理、数据成果的可视化以及为数据使用者提供网络共享的需要;从功能的实现角度,实现了对数据的有效分类、组织与管理,提高了对地质灾害数据的统一、高效管理和科学利用,为相关研究和管理工作提供了决策依据,能够作为同类研究问题的建设示范。
The damages and influences caused by earthquake-induced geohazards are very severe, even outnumbering the direct losses from earthquakes sometimes. Therefore, a better understanding and prevention of impacts from earthquake-induced geohazards plays a very important role in mitigating geohazards. Some effective means to avoid or reduce geohazard losses may include accurate and quick determination of geohazard resource, reasonable evaluation of possible induction of geohazards and corresponding measurements.
     Remote sensing (RS) has shown some outstanding characteristics in information acquisition of geohazard areas such as real time, wide coverage, rich data types and high resolution. Thus, it can rapidly gain information related to landslides, avalanches, debris flows and dammed lakes after earthquakes, and provide scientific decision-making references for geohazard relief, geohazard evaluation and geohazard mitigation. There are many successful cases and valuable experiences of RS applications in geohazards and relevant fields, especially in information acquisition and macroscopic measurements of geohazard regions. However, there has been little studied in high-resolution RS interpretation, refined interpretation of geohazard units, information acquisition of inside structure, analysis of geohazard emerging procedure and integrated management of above-mentioned information.
     The research object in this thesis is5.12Wenchuan earthquake areas and its incident region. Based on field investigations, several key techniques such as RS image preprocessing, geohazard RS interpretation and geohazard database setting up are studied. Main research contents and contributions are as follows,
     (1) An improved RS image enhancement method is presented Russo proposed a fuzzy image enhancement method which shows more advantages than other traditional methods. A shortcoming of the method is that the parameters are fixed which leads to unsatisfied results sometimes. Some auto-adjust parameter methods are presented, but not always feasible. In this thesis, A new self-adaption parameter adjusting approach is presented. The simulation results have shown that the proposed approach has several characteristics such as simple, fast and better enhancement effects, compared to other traditional methods. This approach has been applied to image processing in this geohazard research region and has exhibited effectiveness and practical applicability.
     (2) According to characteristics of the geohazards induced by Wenchuan earthquake, e.g., multiple types, large-scale distributions and complex inside structures, based on the property analysis of geohazard images, relevant feature extraction and spot investigations, the author proposed a method to well explain geohazards and analyze its inside structures, interpreted geogazard bodies of the research zone in details, found out its spatial features and distributions roughly, and provided scientific references for risk controls of geohazards.
     (3) Considering that debris flows are very active after earthquakes and it is very different for traditional exploration means to obtain basic data for hazardous assessment of debris flows, the author presented a method to dynamically investigate, analyze, evaluate and predict typical debris flows by applying3S technology. Taking Niumiangou, near the quake center of Wenchuan, as an example, the author studied geohazard body features and statistical information of debris flows in details by applying RS and GIS. This method can help effectively ascertain the geological and water source conditions, dynamics and size, damage levels and dangerous situations of debris flows. Combining GIS technique, relevant parameters of debris flows are abstracted; computations of total fluxes and transporting sand fluxes are performed; occurrence degrees, developing trends and danger of debris flows are analyzed.
     (4) Designing and realizing information database of earthquake-induced geohazard based on WebGIS. In the aspect of quick searching and sharing geohazard data, an element data theory is used as a guide to design an element data model of earthquake-induced geohazards which is applied in practice. This information database mainly provides three core functions:data query, data output and database management. This information system covers comprehensive geology information including basic geographic spatial data, RS image data, special subject data and evaluation model data of geohazard. The practical applications have shown that (1) from the viewpoint of sharing integration, this information database can meet the demands of managing present data, visualizing results and providing network sharing services for users;(2) from the viewpoint of function realization, this system can complete data classification, organization and management, increasing integration and applicability of geohazard data. In general, this work can provide decision-making guidance for related research and management, and can be served as a paradigm for the similar research topics.
引文
[1]A.A.Tronin. Remote Sensing and Earthquakes:a Review.Physics and Chemistry of the Earth,2006,31(4-9):138-142
    [2]B.Fu, A.Lin. Spatial Distribution of the Surface Rupture Zone Associated with the 2001 Ms 8.1 Central Kunlun Earthquake, Northern Tibet, Revealed by Satellite Remote Sensing Data. International Journal of Remote Sensing,2003,24(10):2191-2198
    [3]B.Pradhan, R.P.Singh, M.F.Buchroithner. Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Advances in Space Research,2006, 37:698-709.
    [4]Biswajeet Pradhan. Remote Sensing and GIS-based Landslide Hazard Analysis and Cross-validation Using Multivariate Logistic Regression Model on Three Test Areas in Malaysia. Advances in Space Research,2010,45(10):1244-1256.
    [5]Bulletin of Engineering Geology and the Environment,2001,60:81.
    [6]C.Aydoner, D.Maktav. The role of the integration of remote sensing and GIS in land use/land cover analysis after an earthquake. International Journal of Remote Sensing,2009,30(7):1697-1717
    [7]C.Domakinis,D.Oikonomidis,T.Astaras.Landslide Mapping in the Coastal Area between the Strymonic Gulf and Kavala (Macedonia, Greece) with the Aid of Remote Sensing and Geographical Information Systems. International Journal of Remote Sensing,2008,29(33):6893-6915.
    [8]C.Quantin, P.Allemand, C.Delacourt.Morphology and geometry of Valles Marineris landslides. Planetary and Space Science,2004,52:1011-1022.
    [9]Chen Jun, Han Gang, He Chaoying. Integrated Geographic Information Services for Wenchuan Earthquake.Ninth United Nations Regional Cartographic Conference for the Americas,New York,2009.
    [10]Chrisopher R.J.Kilburn, Alessandro Pasuto. Major Risk from Rapid, Large-volume Landslides in Europe(EU Project RUNOUT). Geomorphology,2003,54(1-2):3-9.
    [11]Claudio Parti,Fabio Rocca,Ander Monti Guarnieri,Elvio Damonti. Seismic migration for SARfocusing interferometrical applications,IEEE Transaction On Geoscience And Remote Sensing,1990,28(4):627-640.
    [12]D.Derauw, J.Moxhet. Preliminary results of Tandem SAR interferometry and differential interferometry over the Dead Sea area.1996. http://www.geo.unizh.ch/rsl/fringe96/papers/ derauw.
    [13]D.J.Quincey, S.D.Richardson, A. Luckman,等Early Recognition of Glacial Lake Hazards in the Himalaya Using Remote Sensing Datasets. Globla and Planetary Change,2007,56(1-2): 137-152.
    [14]D.Massonnet,M.Rossi,等.The Displacement Field of the Landers Earthquake Mapped by Radar Interfereometry. Nature,1993,364:138-142.
    [15]D.Ramakrishnan, K.K.Mohanty, S.R.Nayak, R.Vinu Chandran. Mapping the Liquefaction Induced Soil Moisture Changes Using Remote Sensing Technique:an Attempt to Map the Earthquake Induced Liquefaction Around Bhuj, Gujarat, India.Geotechnical and Geological Engineering,2006,24:1581-1602
    [16]D.Z.Seker, M.O.Altan, Z.Duran, M.B.Shrestha, A.Yuasa, K.Kawamura. Producing Landslide Risk Map of Sebinkarahisar by Means of Remote Sensing and GIS Techniques. http://www.isprs.org/proceedings/XXXV/congress/comm4/papers/393.pdf
    [17]Daniel J. Miller. Coupling GIS with Physical Models to Assess Deep-seated Landslide Hazards. Environmental and Engineering Geosicence,1995,1(3):263-176.
    [18]David M.Tralli, Ronald G Blom, Victor Zlotnicki, Andrea Donnellan, Diane L. Evans. Satellite Remote Sensing of Earthquake, Volcano, Flood, Landslide and Coastal Inundation Hazards. ISPRS Journal of Photogrammetry & Remote Sensing,2005,59:185-198.
    [19]Didier Massnnet, Thierry Rabaute. Radar Interferometry:Limits and Potential. IEEE Transaction on Geoscience and Remote Sensing,1993,31(2):455-464.
    [20]E.Borgogno Mondino, M.Giardino, L.Perotti. A Neural Network Method for Analysis of Hyperspectral Imagery with Application to the Cassas Landslide (Susa Valley, NW-Italy). Geomorphology,2009,110(1-2):20-27.
    [21]E.Garcia-MelCndez, I.Molina, M.Ferre-Julia, J. Aguimet. Multisensor data Integration and GIS Analysis for Natural Hazard Mapping in a Semiarid Area. Advances in Space Research, 1998,21(3):493-499.
    [22]E.M.Rathje, Kyu-Seok Woo. Earthquake Damage Identification Using Multitemporal High-Resolution Optical Satellite Imagery.IEEE International Geoscience and Remote Sensing Symposium,2005,7:5045-5048.
    [23]F.Russo. An Image Enhancement Technique Combining Sharpening and Noise Reduction. IEEE Transactions on Instrumentation and Measurement,2002,51(4):824-828.
    [24]Fausto Guzzetti, Alberto Carrara, Mauro Cardinali. Landslide Hazard Evaluation:a Review of Current Techniques and their Application in a Multi-scale Study, Central Italy. Geomorphology,1999,31(1-4):181-216.
    [25]Franco Mantovani, Robert Soeters, C. J. Van Westen. Remote Sensing Techniques for Landslide Studies and Hazard Zonation in Europe. Geomorphology,1996,15(3-4):213-225.
    [26]Fuk K. Li, M.Goldstein. Studies of multibaseline spaceborne interferometric synthetic apertureradars, IEEE Transaction On Geoscience And Remote Sensing, Vol.28,NO.l,pp88-97,January,1990.
    [27]Fundamental of digital image processing, Prentice hall, Inc, Englewood Cliffs, NJ,1989.
    [28]Guo Ziqi, Hu Guiwen, Qian Shuqing. Spatial Detect Technology Applied on Earthquake's Impending Forecast. The 22nd Asian Conference on Remote Sensing,5-9 November 2001, Singapore:295-299.
    [29]Guoqing Lin, Peter Shearer, Yuri Fialko. Obtaining Absolute Locations for Quarry Seismicity Using Remote Sensing Data. Bulletin of the Seismological Society of America,2006,96(2):722-728
    [30]H.S.KAM, W.H.Tan. Adaptive Parameter Selection for Improved Fuzzy Image Enhancement. International Conference on Computer Graphics, Imaging and Visualization,2004. 26-29,July,2004:131-136.
    [31]Hajime Mitomi, Masashi Matsuoka,等. Determination of the Areas with Building Damage due to the 1995 Kobe Earthquake Using Airborne MSS Images. International Geoscience and Remote Sensing Symposium. IEEE,2002.
    [32]Hirotada Hasegawa, Fumio Yamazaki, Masashi Matsuoka,等Determination of Building Damage due to Earthquakes Using Aerial Television Images. The 12th World Conference on Earthquake Engineering, CD-ROM:1722-1729.
    [33]I.Pitas, A.N. Venetsanopoulos. Nonlinear digital filters Principles and Applications. Kluwer,1990.
    [34]J. McKillop Robin, John J. Clague. Statistical, Remote Sensing based Approach for Estimating the Probability of Catastrophic Drainagefrom Moraine Dammed Lakes in Southwestern British Columbia. Global and Planetary Change,2007,56 (1-2):153-171.
    [35]J.Donnay, M. Barnsley, P.Longley. Application of Remote Sensing in Urban Studies, the Netherlands:Khwer Academic Publishers,2001:1.
    [36]Janet E.Nichol, Ahmed Shaker,Man-Sing Wong. Application of High-Resolution Stereo Satellite Images to Detailed Landslide Hazard Assessment. Geomorphology,2006,76(1-2): 68-75.
    [37]Kristof Ostir, Tatjana Veljanovski. Application of Satellite Remote Sensing in Natural Hazard Management:the Mount Mangart Landslide Case Study. International Journal of Remote Sensing,2003,24(20):3983-4002
    [38]M.Kohiyama, F.Yamazaki. Image Fluctuation Model for Damage Detection Using Middle-Resolution Satellite Imagery. International Journal of Remote Sensing,26(24): 56035-627.
    [39]M.Turker,B.T.San. Detection of Collapsed Buildings Caused by the 1999 Izmit, Turkey Earthquake through Digital Analysis of Post-event Aerial Photographs.International Journal of Remote Sensing,2004,25(21):4701-4714
    [40]Masashi Matsuoka, Fumio Yamazaki. Use of Satellite SAR Intensity Imagery for Detecting Building Areas Damaged Due to Earthquakes. Earthquake Spectra,2004,20(3):974-993.
    [41]Mustafa Turker, Bulent Cetinkaya. Automatic Detection of Earthquake-damaged Buildings Using DEMs Created from Pre- and Post-earthquake Stereo Aerial Photographs. International Journal of Remote Sensing,2005,26(4):823-832
    [42]N.W.Park, K.H.Chi. Quantitative Assessment of Landslide Susceptibility Using High-Resolution Remote Sensing Data and a Generalized Additive Model. International Journal of Remote Sensing,2008,29(1):247-264.
    [43]R.Gens, J.L.Van Genderen. SAR Interferometry:Issues,Techniques,Applications. International Journal of Remote Sensing,1996,17(10):1803-1836.
    [44]R.Walker, J.Jackson. Active Tectonic and Late Cenozoic Strain Distribution in Central and Eastern Iran. Tectonics,2004,23:TC5010,10.1029/2003TC001529.
    [45]Robin J.McKillop, John J.Clague. Statistical, Remote Sensing-based Approach for Estimating the Probability of Catastrophic Drainage from Moraine-dammed Lakes in Southwestern British Columbia. Global and Planetary Change,2007,56(3):153-171.
    [46]S.B.Pavlides,G.Papadopoulos,A.Ganas. The Fault that Caused the Athens September 1999 Ms=5.9 Earthquake:Field Observations. Natural Hazards,2002,27:61-84
    [47]S.K.Mitra and G.Sicuranza(Eds.), Nonlinear Image Processing, Academic Press,2000.
    [48]S.Stramondo,C.Bignami,M.Chini,N.Pierdicca,A.Tertulliani.Satellite Radar and Optical Remote Sensing for Earthquake Damage Detection:Results from Different Case Studies.International Journal of Remote Sensing,2006,27(20):4433-4447
    [49]Shuichi Hasegaw, Ranjan Kumar Dahal, Toshiaki Nishimur, Atsuko Nonomura, Minoru Yamanaka. DEM-Based Analysis of Earthquake-Induced Shallow Landslide Susceptibility. Geotech Geol Eng,2009,27:419-430
    [50]Sigrid Roessner, Hans-ulrich Wetzel, Hermann Kaufmann, Aman Sarnagoev. Potential of Satellite Remote Sensing and GIS for Landslide Hazard Assessment in Southern Kyrgyzstan(Central Asia). Natural Hazards,2005,35:395-416
    [51]Thomas M.Lillesand,Ralph W.Kiefer.遥感与图像解译.彭望碌,余先川,周涛,李小英等.第1版.电子工业出版社,2003.
    [52]Wen-Tzu Lin,Wen-Chieh Chou,Chao-Yuan Lin. Earthquake-induced Landslide Hazard and Vegetation Recovery Assessment Using Remotely Sensed Data and a Neural Network-based Classifier:a Case Study in Central Taiwan.Nat Hazards,2008,47:331-347
    [53]Yvonne Kam, M.Hanmandlu. An Improved Fuzzy Image Enhancement by Adaptive Parameter Selection. IEEE International Conference on Systems, Man and Cybernetics, 2003,2:2001-2006.
    [54]曹代勇,施先忠,张景发.遥感图像中建筑物震害信息统计特征研究.国土资源遥感,2001,47(1):42-46.
    [55]曹烈.致密砂岩天然气成藏动力学研究.成都理工大学,工学博士.20010.
    [56]陈安清.鄂尔多斯地块早古生代盆地演化与物质聚集规律.成都理工大学,工学博士.2010.
    [57]陈成名.西南山区城镇地质灾害易损性评价理论与实践——以汶川县为例.成都理工大学,工学硕士.2010.
    [58]程学军,谭德宝,汪朝辉,宋丽.长江流域生态环境信息库总体方案设计与示范区建立.长江科学院院报,2009,26(2):48-52.
    [59]程学军,谭德宝,汪朝辉,宋丽.长江流域生态环境信息库总体方案设计与示范区建立.长江科学院院报,2009,26(2):48-52.
    [60]党安荣,王晓栋,陈晓峰,张建宝ERDAS IMAGINE遥感图像处理方法.第1版.清华大学出版社,2003.
    [61]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用.成都理工大学,工学博士.2007.
    [62]邓湘金.基于模式识别知识的遥感图像变化检测研究.中国科学院,工学博士.2003.
    [63]丁军,王丹.遥感图像上城市震害信息的获取及其应用.灾害学,1996,11(1):82-86.
    [64]杜军,杨青华,严嘉,薛重生.基于GIS与信息量模型的汶川次生地质灾害危险性评价.地球科学-中国地质大学学报,2010,35(2):324-330.
    [65]范建容,张建强,田兵伟,严冬,陶和平.汶川地震次生灾害毁坏耕地的遥感快速评估方法—以北川县唐家山地区为例.遥感学报,2008,12(6):917-924.
    [66]范秀丽.城市与地震次生灾害.防灾博览,2002,3:30-31.
    [67]冯锐,班显秀,胡伟,张玉书,陈刚.东北地区气候资源与生态环境信息系统设计与建立.水土保持通报,2006,26(5):82-85.
    [68]古荣.地震次生灾害猛于虎.知识就是力量,2008,6:18-19.
    [69]韩玲,吴汉宁,杜子涛.多源遥感影像数据融合方法在地学中的应用.地球科学与环境学报,2005,27(03):78-81.
    [70]韩玲玲.遥感技术在长江三峡库区奉节县滑坡灾害调查中的应用.成都理工大学,工学硕士.2004.
    [71]韩用顺,崔鹏,朱颖彦,等.汶川地震危害道路交通及其遥感监测评估——以都汶公路为例.四川大学学报(工程科学版),2009,(3):1-8.
    [72]韩用顺,朱颖彦,孔亚平,韩军,薛蛟,曾思美.四川省汶川地震极重灾区诱发山地灾害分布规律与发育趋势,中国地质灾害与防治学报,2010,3(4):14-20.
    [73]胡国超.遥感技术在“5.12”地震重灾区汶川县地质灾害调查中的应用.成都理工大学,工学硕士.2009.
    [74]华德尊,李春艳,任佳.哈尔滨松北区城市湿地的生态安全分析.环境科学研究,2006,19(6):131-134.
    [75]华德尊,李春艳,任佳.哈尔滨松北区城市湿地的生态安全分析.环境科学研究,2006,19(6):131-134.
    [76]黄庭,张志,谷延群,周曼蒂,强建华.基于遥感和GIS技术的北川县地震次生地质灾害分布特征.遥感学报,2009,13(1):177-182.
    [77]黎小东.面向对象的高空间分辨率遥感影像城市建筑物震害信息提取.成都理工大学,工学硕士.2009.
    [78]李红霞.四川地震次生灾害考察纪行.中国摄影家,2008,11:64-65.
    [79]李晶冰,白世彪,王建.5.12汶川地震后陇南山区典型滑坡调查分析,防灾科技学院学报,2010,12(4):83-89.
    [80]李少达,杨佳,刘汉湖,杨容浩.一种改进的自适应模糊图像增强方法.中国图象图形学报,2007,12(8):1339-1343.
    [81]林良俊,方成,李小杰,徐建宇,刘传正.5.12汶川地震灾区地质灾害情况初步分析.水文地质工程地质,2008,35(4):129-132.
    [82]刘国民.多维空间量子密钥分配协议的研究.成都理工大学,工学硕士.2010.
    [83]刘汉湖.“3S”技术在冕宁—盐源矿带金矿床预测中的应用研究.成都理工大学,工学硕士.2004.
    [84]刘连中,刘洪江,朱怀方.汶川地震次生山地灾害危险性评价及震后减灾对策经济学分析,水土保持研究,2010,17(1):211-214.
    [85]刘润达,诸云强.科学数据共享关键问题探索——以地球系统科学数据共享网为例.地理科学进展,2007,26(5):118-125.
    [86]柳稼航,杨建峰,魏成阶,关泽群.震害信息遥感获取技术历史、现状和趋势.自然灾害学报,2004,13(06):46-52.
    [87]陆春海.防文物风化的材料设计与适用性研究.成都理工大学,工学博士.2009.
    [88]吕杰堂,王治华,周成虎.西藏易贡滑坡堰塞湖的卫星遥感监测方法初探.地球学报,2002,23(4):363-368.
    [89]罗真富.泥石流流域滑坡地质灾害遥感信息提取及危险性评价.成都理工大学,工学硕士.2010.
    [90]苗会强,刘会平,范九生,郑芷青.汶川地震次生灾害的成因、成灾与治理.地质灾害与环境保护,2008,19(4):1-5.
    [91]聂高众,高建国,邓砚.地震诱发的堰塞湖初步研究.第四纪研究,2004,24(3):293-301.
    [92]宁宝坤,曲国胜,张宁,等.IKONOS卫星影像在城市防震减灾及震害评价中的应用研究.地震地质,2004,26(1):162-168.
    [93]彭文甫.基于RS&GIS的城市土地利用变化及其生态环境效应研究.成都理工大学,工学博士.2009.
    [94]彭晓川.校园计算网格分布式中间件的研究与实现.成都理工大学,工学硕士.2008.
    [95]彭瑛,刘文婷,张志,毛伟,彭丹.基于遥感调查的汶川地震极重灾区次生地质灾害分布特征.长江流域资源与环境,2010,19(1):107-112.
    [96]蒲达成.汶川震区典型崩塌、滑坡、泥石流分析及防治措施探讨.成都理工大学,工学硕士.2010.
    [97]齐信.基于3S技术强震区地质灾害解译与危险性评价研究.成都理工大学,工学硕士.2010.
    [98]秦军.铁路泥石流多时相遥感技术及动态信息提取.西南交通大学,工学博士.2005.
    [99]秦绪文,张志,杨军杰,黄庭.5.12汶川地震四川省平武县次生地质灾害遥感分析.地质科技情报,2009,28(2):12-15.
    [100]邵虹波.遥感技术在滇西某铁路选线地质灾害调查研究中的应用.成都理工大学,工学硕士.2009.
    [101]申旭辉,吴云,单新建.地震遥感应用趋势与中国地震卫星发展框架.国际地震动态,2007,8:38-45.
    [102]司清华.锦屏一级水电站右岸坝顶以上边坡施工期稳定性评价.成都理工大学,工学硕士.2009.
    [103]苏华友.北川县城地震次生灾害考察分析报告,汉川大地震工程震害调查分析与研究,2010,31(3):360-362.
    [104]孙瑜.锦屏一级水电站左岸拱肩槽边坡施工期稳定性分析与评价.成都理工大学,工学硕士.2009.
    [105]覃秀玲.岩溶土洞稳定性分析及TDR监测预警研究.成都理工大学,工学硕士.2010.
    [106]谭德宝,申邵洪,陈蓓青.空间信息技术在地震次生灾害防治中的应用.人民长江,2008,39(22):99-102.
    [107]王丹,丁军.航空遥感影像上震害解译的结构模型与几何特征的获取.灾害学,1997,12(1):1-6.
    [108]王景来.地震灾害损失快速评估新方法研究.地震研究,2000,23(03):356-360.
    [109]王卷乐,诸云强,谢传节.地球系统科学数据共享网络平台的设计和开发.地学前缘,2006,13(3):54-59.
    [110]王卷乐,诸云强,谢传节.地球系统科学数据共享网络平台的设计和开发.地学前缘,2006,13(3):54-59.
    [111]王龙,王晓青,丁香,窦爱霞.基于遥感和GIS的建筑物震害损失评估方法研究与实现.地震,2007,27(04):77-83.
    [112]王汝雕.陕西华县大地震引发世界罕见的地震次生灾害链——从山西荣河蒲州陕西朝邑三城的工程场地条件谈起.山西地震,2006,2:4-7.
    [113]王小亭.“3S”技术在土地利用中的综合应用研究.成都理工大学,工学硕士.2005.
    [114]王晓青,丁香.GIS和RS技术在城市防震减灾中的应用研究.城市勘测,2008,(01):17-20.
    [115]王晓青,丁香.基于GIS的地震现场灾害损失评估系统.自然灾害学报,2004,13(01):118-125.
    [116]王晓青,傅征祥,丁香,许永江.地震灾害损失预测系统计算原理与主要功能.地震,2000,(S1):222-226.
    [117]王晓青.航空影像灾害自动识别的初步研究.庄逢甘.中国地方遥感应用进展.北京:宇航出版社,1997.
    [118]王治华,周英杰,徐斌,贾斌.“5.12”汶川大地震震中区映秀镇地震灾情及次生地质灾害遥感初步调查.国土资源遥感,2008,(02):1-4.
    [119]王治华,徐起德,杨日红,等.中印边界附近帕里河上的滑坡灾害遥感调查.科技导报,2007,25(6):27-31.
    [120]王作勇.遥感技术在汶川地震抗震救灾中的应用及存在问题分析.测绘通报,2008,(08):40-42.
    [121]危福泉,姚新,陈琳,等QuickBird数据在防震减灾管理信息系统中的应用.大地测量与地球动力学,2003,23(4):115-119.
    [122]吴彬,邓湘雯,田大伦,康文星,项文化,闫文德.元数据理论在会同森林生态系统信息共享中的应用.中南林业科技大学学报,2008,28(3):28-48.
    [123]吴剑.基于面向对象技术的遥感震害信息提取与评价方法研究.武汉大学,工学博士.2010.
    [124]徐广伟.RFID在煤矿系统中的应用.成都理工大学,工学硕士.2010.
    [125]徐言岗.中国南方古生界典型古油气藏解剖及勘探启示.成都理工大学,工学博士.2010.
    [126]许国艳,李晓芳,王志坚.数字流域环境下信息共享服务研究.河海大学学报,2009,37(5):573-576.
    [127]许捍卫,刘海旺,刘志辉,张志强,任家勇.数字流域信息共享模式构建.河海大学学报,2009,37(5):511-514.
    [128]许强,李为乐.汶川地震诱发大型滑坡分布规律研究,工程地质学报,2010,18(6):819-826.
    [129]杨健,赵忠明,黄铁青,龚建华,王忠武.汶川地震遥感图像处理与灾难分析.中国体视学与图像分析,2008,13(3):151-157
    [130]杨武年,等.长江三峡库区地质灾害遥感图像信息处理及其监测和评估.地质学报,2005,79(3):423-430.
    [131]杨志法,赵汝斌,王靖等.安县西部地震次生地质灾害及工程地质力学问题思考.岩石力学与工程学报,2008,27(9):1807-1813.
    [132]尹京苑,柳稼航,单新建.基于图像结构信息的城市房屋震害特征自动提取技术.遥感信息,2004,(1):27-30.
    [133]于贵.宝成铁路5.12地震次生地质灾害特点及工程防灾.防灾科技学院学报,2009,11(1):28-32.
    [134]余斌,马煜,吴雨夫.汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究,工程地质学报,2010,18(6):827-836.
    [135]袁中夏,王兰民.利用高分辨率卫星影像进行地震损失评价所需的城市特征识别.世界地震工程,2004,20(03):135-140.
    [136]杨武年,濮国梁.长江三峡库去地质灾害遥感图像信息处理及其监测和评估.地质学报,2005,79(3),423-430.
    [137]杨武年,濮国梁.应用多种数据融合方法对多时相SPOT图像处理提取三峡工程大坝区地面动态变化信息.物探化探计算技术2005,27(03),267-273.
    [138]杨武年,濮国梁.数字区调新技术新方法—遥感图像地质解译三维可视化及影像动态分析.地质通报,2003,22(1),60-64.
    [139]杨武年,濮国梁.长江三峡库区多类型、多时相遥感图像数字处理和地质构造信息提取.成都理工大学学报,2003,.30(4),378-387.
    [140]张景发,谢礼立,陶夏新.典型震害遥感图像的模型分析.自然灾害学报,2001,10(2):89-95.
    [141]张景发,谢礼立,陶夏新.建筑物震害遥感图像的变化检测与震害评估.自然灾害学报,2002,11(2):59-64.
    [142]张文君.滑坡灾害遥感动态特征监测及其预测分析研究.西南交通大学,工学博士.2004.
    [143]张瑛.“5.12”汶川大地震震裂山体灾害勘查评价与治理设计方法研究.成都理工大 学,工学硕士.2009.
    [144]赵路子.碳酸盐岩隐蔽滩相储层特征及预测模型.成都理工大学,工学博士.2008.
    [145]赵振东,王桂萱,赵杰.地震次生灾害及其研究现状,防灾减灾学报,2010,26(2):9-14.
    [146]钟家强.基于多时相遥感图像的变化检测.国防科技大学,工学博士.2005.
    [147]周斌.胜利油田防御地震次生灾害能力研究.内陆地震,2005,19(2):129-135.
    [148]朱捌.地幔流体与铀成矿作用研究.成都理工大学,工学博士.2010.
    [149]朱博勤,魏成阶,张渊智.航空遥感地震灾害信息的快速提取.自然灾害学报,1998,7(1):34-38.
    [150]诸云强,冯敏,宋佳,刘润达.基于SOA的地球系统科学数据共享平台架构设计与实现,2009,11(1):1-8.
    [151]诸云强,刘润达,冯敏,宋佳.分布式地球系统科学数据共享平台研究.计算机工程与应用,2009,45(1):245-248.
    [152]诸云强,孙九林.面向e-GeoScience的地学数据共享研究进展.地球科学进展,2006,21(3):286-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700