用户名: 密码: 验证码:
黄土滑坡触发机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为陕西省新兴经济区和重点水利项目的核心地带,泾河下游南岸黄土塬区滑坡频繁发生,曾造成严重的人员伤亡和经济财产损失,极大地制约着当地的经济发展和重点水利工程建设。本文以黄土滑坡的触发机理为主旨,通过现场实地调查,对区内黄土滑坡的发育类型、形成条件、分布规律进行了总结、分析;通过室内试验及数值技术,对不同触发条件下黄土力学行为和斜坡变形破坏规律进行了较系统的研究;并通过定量分析,刻画了造就区内滑坡发育特征的特殊控滑机理;最后以上述宏微观分析为基础,对黄土滑坡的触发机理进行了系统、深入的探讨。主要获得以下结论:
     ⑴研究区黄土滑坡可分为灌溉流滑型黄土滑坡、灌溉滑动型黄土滑坡、侧蚀滑动型黄土滑坡、侧蚀滑塌型黄土滑坡和开挖垮塌型黄土崩塌5个类型。其中灌溉触发型是研究区发生频次最高、致灾后果最为严重的滑坡类型;侧蚀滑塌型具有滑体厚、潜伏期长等特点,一但滑动,将堵塞河道,严重影响沿线水利项目的正常运营。
     ⑵研究区黄土滑坡在时间上具有数量逐年增长、春季高发的分布特征,在空间上具有群集性和分异性的分布特征。此外,灌溉触发型黄土滑坡还表现出多期性的时空特征。
     ⑶常规三轴剪切试验(CTC)结果表明:研究区Q2黄土试样表现为应变软化特征;随着试样含水量的增高,其抗剪强度会显著降低;试样在高偏应力水平下易因体缩效应产生较高的孔隙水压力;通过对p′-q′平面中稳态线和破坏面的拟合,确定了液化可能发生的潜在不稳定区。
     ⑷常剪应力三轴排水剪切试验(CSD)结果表明:该应力路径下土体的破坏机制为孔压激增造成的不完全排水剪切破坏;可按照应力应变特征将其破坏过程分为增压蠕动和液化剧动两个阶段;当孔压水平接近0.70时试样易发生液化。
     ⑸减围压三轴剪切试验(RTC)结果表明:该应力路径下土体的破坏机制为围压降低造成偏应力持续增大土体发生压制破坏;该应力路径下试样同样表现为应变软化特征,但其抗剪强度远低于CTC试验结果,说明应力路径对土体的本构关系影响显著;在不排水条件下围压水平接近0.55时试样易发生破坏。
     ⑹三轴固结不排水蠕变试验结果表明:偏应力越大、加载级数越多、含水量越高、试样蠕变变形越明显;试样在低应力水平下呈线性蠕变特性,随着应力的增大非线性蠕变特性逐渐显著;自建经验模型的适用性是一种具有公式简单、参数易获取优势的较为理想的蠕变经验模型;5元件广义Kelvin模型能够准确表现黄土衰减蠕变中线性粘弹性特点。
     ⑺FLAC3D数值模拟试验结果表明:①灌溉触发型黄土滑坡是一种滑体薄、剪出口近水平的牵引式滑坡。水位持续上升致使斜坡坡脚饱和黄土层增厚,坡脚土体抗剪强度不断降低,是该类滑坡发生的根本原因;②侧蚀触发型黄土滑坡是一种厚度大,后缘滑面陡直,前缘深层剪出的牵引式滑坡。河流侧蚀不断改变斜坡形态,致使斜坡坡脚应力集中且缺乏侧向支撑,是该类滑坡发生的根本原因;③自定义蠕变模型较M-C模型促滑效应显著,体现在蠕变时间越长、水位越高、侧蚀越深斜坡的变形破坏特征越显著。
     ⑻研究区黄土滑坡具有个性与共性共存的发育特征,受控滑因素影响显著,主要表现在滑动距离受液化程度控制、滑坡类型受地貌分异控制、群集发育受成生关系控制3个方面。
     ⑼结合力学试验和数值分析结果较为深入地探讨了黄土滑坡的触发机理并提出了灌溉触发黄土滑坡的静态液化失稳机制、侧蚀触发黄土滑坡的蠕滑拉裂失稳机制以及基于蠕变的强度损伤促滑机制。
Positioned in Shaanxi’s emerging economic zone and the heart of key water conservancyprojects, loess landslide at downstream of the Jing River in the south bank occurs frequently,leaving severe property loss and casualty and restriction of the local economic developmentand the key water conservancy projects construction. Under on-site inspection, the textsummaries and analyzes the development type, formation condition and distribution law ofloess landslide in this area. Loess mechanical behavior and slope deformation-failure lawunder different trigger condition were systematically studied in laboratory test, as well asnumerical analysis. In addition, by quantitative analysis, the specific landslide controlmechanism with landslide development features was described. On the basis ofmicro-and-macro analyses stated above, the text discussed the trigger mechanism of loesslandslide systematically and profoundly. Finally we arrive at the following review.
     ⑴In this area, the loess landslide can be divided into5types, namely irrigation flowslidetype,irrigation slide type, lateral erosion slide type, lateral erosion slump type and excavationsubslide type. Irrigation trigger type is the most modal and destructive one. Lateral erosionslide type, with the characteristics of thick sliding mass and long latency, once slides, willblock the river channel and greatly affect the running of the line side water conservancyprojects.
     ⑵Loess landslide in this area shows the temporal characteristics of a growing numberand high risk in spring, the spatial characteristics of clustering and variation. Plus, irrigationtrigger type also shows the spatial and temporal characteristic of multiphase.
     ⑶CTC (Conventional Triaxial Compression Test) suggests that in research area, Q2loesssample is characterized by strain softening. With the rising of moisture content, shear strengthof the sample obviously reduces. Under high deviatoric stress, sample tends to shrink volumeand produce high pore water pressure. By fitting steady state line and locus line of peak inplane p′-q′, the latent instability area with the possibility of liquefaction was determined.
     ⑷CSD (Triaxial Drained Test at Constant Shear Stress) suggests that under this stresspath, incomplete drained shear failure caused by pore pressure booming is the main loesssample failure mechanism. According to the stress-strain behavior, the failure process can bedivided into boost creep and liquefaction paroxysm. When pore pressure gets to0.70, it tendsto liquefy.
     ⑸RTC (Reduced Triaxial Compression Test) suggests that under this stress path, loessfailure mechanism works when the rising deviatoric stress resulting from the decrease ofconfining pressure damages the loess under stress. Under this stress path, sample also showsthe strain softening characteristic, but shear-resistant strength is much lower than the CTCresult, explaining that stress path greatly affects the soil’s constitutive relation. Underundrained shear, sample tends to be destroyed when confining pressure is close to0.55.
     ⑹Consolidated undrained triaxial creep test suggests that with larger deviatoric stress,more load steps, higher water content, there will be more evident creep deformation. Underthe low stress, sample is characterized by linear creep. With the increase of stress, non-linearcreep characteristic becomes obvious. Self-built empirical modeling is one kind of idealempirical creep model with simple formula and easy access to parameter. Generalized Kelvinmodel with5elements can precisely describe the linear viscoelasticity during the decayingand creep process of loess.
     ⑺What the text has got from FLAC3D numerical simulation experiment are as follows.Firstly, irrigation trigger type is retrogressive landslide with thin sliding mass andsubhorizontal shear opening. The basic reason for landsliding if this kind is that constantrising water level results in saturated slope toe and thicker loess layer and therefore soil shearstrength is gradually weakened. Secondly, lateral erosion trigger type is retrogressivelandslide with great thickness, straight sliding mass in posterior line and deep formation shearin the anterior line. The basic reason for landsliding if this kind is that lateral erosionconstantly changes the slope deformation, leaving the slope toe with concentrated stress andno lateral bracing. Thirdly, user-defined creep model owns better effect in promoting landslidedevelopment, compared with M-C (Mohr-Coulomb). With more creep time, higher water level and deeper lateral erosion, deformation failure characteristic will be more evident in theslope.
     ⑻Landslides in the research area is characterized by the coexistence of individuality andgenerality and largely affected by landslide control element. Their main manifestations are asfollows. It gets controlled by liquefaction degree in sliding distance, controlled bygeomorphic element in sliding types and by interaction among landslides groups.
     ⑼The text profoundly discussed the trigger mechanism of loess landslide and providedstatic liquefaction instability mechanism for irrigation trigger type of landslide, creep crackinstability mechanism for lateral erosion trigger type and strength damage slide promotionmechanism based on creep.
引文
[1]刘东生等.黄土与环境[M].北京:科学出版社,1985.
    [2]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [3]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    [4]林在贯,舒天开.西北黄土湿陷性之初步探讨[J].水文地质工程地质.1958(4):1-7.
    [5]高国瑞.兰州黄土显微结构和湿陷机理的探讨[J].兰州大学学报.1979(2):123-134.
    [6]高国瑞.中国黄土的微结构[J].科学通报.1980(20):945-948.
    [7]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报.1990(4):1-10.
    [8] Jin-Xing Z, Chun-Yun Z, Jing-Ming Z, et al. Landslide Disaster in the Loess of China[J]. Journal ofForestry Research.2002,13(2):157-161.
    [9]孙建中.黄土学(上篇)[M].香港:香港考古学会,2005:521.
    [10]王念秦.黄土滑坡发育规律及其防治措施研究[D].成都:成都理工大学,2004.
    [11]王家鼎,张倬元.典型高速黄土滑坡群的系统工程地质研究[M].成都:四川科学技术出版社,1999.
    [12]胡广韬,等.滑坡动力学[M].北京:地质出版社,1995.
    [13]王志荣,吴玮江,周自强.甘肃黄土台塬区农业过量灌溉引起的滑坡灾害[J].中国地质灾害与防治学报.2004(3):47-50.
    [14]吴玮江.甘肃省公路滑坡[J].中国地质灾害与防治学报.2005(3):170.
    [15]宋克强,崔中兴,袁继国,等.古刘滑坡的蠕变特征及其预报分析[J].岩土工程学报.1994(4):56-64.
    [16]黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [17]腾讯新闻.西安地质调查中心赴灞桥滑坡现场应急调查[EB/OL].http://news.qq.com/a/20110927/001075.htm,2011-09-27.
    [18]张茂省,校培喜,魏兴丽.延安市宝塔区崩滑地质灾害发育特征与分布规律初探[J].水文地质工程地质.2006(6):72-74.
    [19]徐张建,林在贯,张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报.2007(7):1297-1312.
    [20]黄润秋.第九届全国工程地质大会特邀报告—中国的强震滑坡及机理[R].青岛,2012.
    [21]雷祥义.陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J].工程地质学报.1995(1):56-64.
    [22]许领,戴福初,邝国麟,等.黑方台黄土滑坡类型与发育规律[J].山地学报.2008(3):364-371.
    [23]王念秦.黄土滑坡发育规律及其防治措施研究[D].成都:成都理工大学,2004.
    [24]杨为民,吴树仁,谭成轩,等.陕西宝鸡地区对滑式黄土滑坡的特征及其碰撞诱发机理[J].地质通报.2008(11):1854-1861.
    [25] Terzaghi K. Mechanism of Landslides[J]. In S. Paige(ed) Application of Geology to EngineeringPractice.Geological Sociery of America, Berkey.1950:83-123.
    [26] Hvorslev M J. Time Lag and Soil Permeability in Groundwater Observations[J]. U.S. Army EngineerWaterways Experiment Station, Vicksburg, Miss, Bulletin.1951,36:62-69.
    [27] Haefeli R. Creep and Progressive Failure in Snow, Rocl and Ice[C]. Montreal:1965.
    [28] Morgenstern N R. The Influence of Ground Water on Stability[J]. Proc.1st. Inter. Confer. StabilityOpen Pit Mng, Vancouver, Nov.23-5.1971:65-81.
    [29] Skempton A W. Residual Strength of Clays in Landslide, Foled Strata and the Laboratory[J].Geotechnique, London.1985,35(1):3-18.
    [30]弗雷德隆德,哈拉尔佐著,陈仲颐等译.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [31]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [32]卢肇均.土的破坏机理和土力学问题[C].北京:科学出版社,1983.
    [33]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报.2000(1):130-133.
    [34]汪发武.高速滑坡形成机制:土粒子破碎导致超孔隙水压力的产生[J].长春科技大学学报.2001(1):64-69.
    [35] Poulos S J, Castro G, France J W. Liquefaction Evaluation Procedure[J]. Journal of GeotechnicalEngineering, ASCE.1985,11(6):772-791.
    [36] Sladen J A, D'Hollander R D, Krahn J. The Liquefaction of Sands, A Collapse Surface Approach[J].Can.Geotech.1985:564-578.
    [37] Sasitharan S, Robertson P K, Sego D C, et al. Collapse Behavior of sand[J]. Canadian GeotechnicalJournal.1993,30:569-577.
    [38] Lade P V. Static Instability and Liquefaction of Loose Fine Sandy Slopes[J]. Journal of GeotechnicalEngineering,ASCE.1992,118(1):51-71.
    [39] Yamamuro J A, Lade P V. Steady-State Concepts and Static Liquefaction of Silty Sands[J]. Journal OfGeotechnical And Geoenvironmental Engineering.1998,124(9):868-877.
    [40] Hutchinson J N. General Report: Morphological and Geotechnical Parameters of Landslides inRelation to Geology and Hydrogeology[Z]. Switzerland Lausanne:1988.
    [41] Sassa K. The Mechanism Starting Liquefied Landslides and Debris Flows[Z]. Toronto:1984.
    [42] Sassa K. The Mechanism of Debris Flows[Z]. Rotterdam,Netherlands:1985.
    [43] Fernadez, Merodo J A, Pastor M, et al. Modelling of Diffuse Failure Mechanisms of CatastrophicLandslides[J]. Comp. Meth. Appl. Mech. Engrg.2004,193:2911-2939.
    [44]王家鼎,张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报.1999(6):670-674.
    [45]王家鼎.高速黄土滑坡的一种机理——饱和黄土蠕动液化[J].地质论评.1992(6):532-539.
    [46]王家鼎,惠泱河.黄土地区灌溉水诱发滑坡群的研究[J].地理科学.2002(3):305-310.
    [47] Zhang De-xuan, Wang G. Study of the1920Haiyuan Earthquake-induced Landslides in Loess[J].Engineering Geology.2007,94:76-88.
    [48]袁丽侠.宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J].防灾减灾工程学报.2006(2):219-223.
    [49]谷天峰,王家鼎,任权,等.循环荷载作用下黄土边坡变形研究[J].岩石力学与工程学报.2009:3156-3162.
    [50]杨喆,袁金辉,任权,等.循环荷载诱发黄土滑坡的机理研究[J].水文地质工程地质.2010(5):67-71.
    [51] Lambe T. Stress path method[J]. Journal of the Soil Mechanics and Foundations Division, ASCE.1967:309-331.
    [52] Brand E W. Some Thoughts on Rain-Induced Slope Failures[C]. Brookfield,Vt.Vol.1,1981,373-376.
    [53] Anderson S A, Riemer M F. Collapse of Saturated Soil Due to Reduction in Confinement[J]. Geotech.Engng. Div.1995,121(2):216-220.
    [54] Ng. C W W. Stress Paths in Relation to Deep Excavations[J]. Journal Of Geotechnical AndGeoenvironmental Engineering.1999,125(5):357-363.
    [55] Charles W W N. Stress Path in Relation to Deep Excavation[J]. Journal Of Geotechnical AndGeoenvironmental Engineering.1999,125(5):357-363.
    [56] Stefano D, Massimo R, Nicola C. Failure Mechanisms and Pore Water Pressure Conditions:Analysisof A Riverbank Along the Arno River(Central Italy)[J]. Engineering Geology.2001,61:221-242.
    [57]陈守义.试论土的应力应变模式与滑坡发育过程的关系[J].岩土力学.1996(3):21-26.
    [58]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报.2000(1):130-133.
    [59]金艳丽,戴福初.饱和黄土的静态液化特性试验研究[J].岩土力学.2008(12):3293-3298.
    [60] Xu L, Fu-Chu D, Tham L G, et al. Landslides In The Transitional Slopes Between A Loess PlatformAnd River Terrace, Northwest China[J]. Environmental&Engineering Geoscience.2011,Vol. ⅩⅤⅡ(No.3):267-279.
    [61]杨雪强,朱志政,韩高升,等.不同应力路径下土体的变形特性与破坏特性[J].岩土力学.2006(12):2181-2185.
    [62]黄强兵,刘悦,彭建兵.黄土路堑边坡变形破坏机理的三轴试验研究[J].工程地质学报.2007(6):806-811.
    [63] Geuze E C A., Tan T K. The Mechanical Behavior of Clays[C].1953.
    [64] Ter-Stepanian G. Creep of Clay During Shear and Its Theological Model[J]. Geotechnique.1975,25(2):229-320.
    [65] Saito M, Uezawa H. Failre of Soil Due to Creep[C].1961.
    [66] Saito M. Forecasting the Time of Occurrence of A Slope Failure[C].1965.
    [67]林斌.考虑损伤效应的黄土流变模型研究[D].西安:长安大学,2005.
    [68]谢星.西安地区Q2黄土损伤特性及非线性流变模型研究[D].西安:长安大学,2007.
    [69]何青峰.延安Q2黄土的力学及流变特性研究[D].西安:长安大学,2008.
    [70]陈晶晶,刘德富,王世梅.清江古树包滑坡滑带土的Mesri蠕变模型[J].三峡大学学报(自然科学版).2005(1):16-19.
    [71]许强.滑坡的变形破坏行为与内在机理[J].工程地质学报.2012(2):145-151.
    [72]王德耀,杜忠潮,张满社.陕西省泾阳南塬崩塌、滑坡地质灾害及成因分析[J].水土保持通报.2004(4):34-37.
    [73]范立民,岳明,冉广庆.泾河南岸崩岸型滑坡的发育规律[J].中国煤田地质.2004(5):37-39.
    [74]黄玉华,雷祥义.模糊信息优化处理方法在陕西泾阳南塬塬边斜坡稳定性区划中的应用[J].灾害学.2005(4):47-50.
    [75]金艳丽,戴福初.灌溉诱发黄土滑坡机理研究[J].岩土工程学报.2007(10):1493-1499.
    [76]龙建辉,李同录,雷晓锋,等.黄土滑坡滑带土的物理特性研究[J].岩土工程学报.2007(2):289-293.
    [77]龙建辉,郭文斌,李萍,等.黄土滑坡滑带土的蠕变特性[J].岩土工程学报.2010(7):1023-1028.
    [78]许领,李宏杰,吴多贤.黄土台缘滑坡地表水入渗问题分析[J].中国地质灾害与防治学报.2008(2):32-35.
    [79]许领,戴福初.泾阳南塬黄土滑坡特征参数统计分析[J].水文地质工程地质.2008(5):28-32.
    [80]许领,戴福初,邝国麟,等.黄土滑坡典型工程地质问题分析[J].岩土工程学报.2009(2):287-293.
    [81]许领,戴福初,邝国麟,等.台缘裂缝发育特征、成因机制及其对黄土滑坡的意义[J].地质论评.2009(1):85-90.
    [82]许领,戴福初,闵弘,等.泾阳南塬黄土滑坡类型与发育特征[J].地球科学(中国地质大学学报).2010(1):155-160.
    [83]何小亮,谢婉丽,丁勇.径阳南源黄土剪切强度的三轴试验研究[J].工程地质学报.2010,18(suppl.):76-80.
    [84]廖红建,李涛,彭建兵.高陡边坡滑坡体黄土的强度特性研究[J].岩土力学.2011(7):1939-1944.
    [85]泾阳县县志编纂委员会.泾阳县志[M].西安:陕西人民出版社,2001.
    [86]陕西煤田地质局.陕西省泾阳县地质灾害调查与区划报告[R],2002.
    [87]核工业二零三所.陕西省礼泉县地质灾害调查与区划报告[R],2005.
    [88]陕西省地质矿产局.陕西省区域地质志[M].北京:地质出版社,1989.
    [89]彭建兵,苏生瑞,张俊,等.渭河盆地活动断裂与地质灾害[M].西安:西北大学出版社,1992.
    [90] Iugs. A Suggested Method for Describing the Rate of Movement of A Landslide[J]. Bulletin of theInternational Association of Engineering Geology.1995,52:75-78.
    [91]泾阳县人民政府网.投资动态[EB/OL]. http://www.snjingyang.gov.cn/tzjy/355/p1/,2011-10-31.
    [92]礼泉县人民政府网.投资动态[EB/OL]. http://www.liquan.gov.cn/zsyz_list.aspx?oid=6&id=65,2011-12.
    [93]戴鸿麟,等.中华人民共和国地质矿产部土工试验规程(DT-9)[M].北京:地质出版社,1993.
    [94]王芸生.从甘肃东部黄土的矿物成分和组织结构试论我国西北黄土的成因[J].地质学报.1960(1):41-53.
    [95]谢德列茨基,阿纳涅夫,许冀泉.华北黄土的矿物成分和风成沉积[J].地质学报.1954(3):335-338.
    [96]严春杰,唐辉明,孙云志.利用扫描电镜和X射线衍射仪对滑坡滑带土的研究[J].地质科技情报.2001(4):89-92.
    [97]许强,黄润秋,程谦恭,等.三峡库区泄滩滑坡滑带土特征研究[J].工程地质学报.2003(4):354-359.
    [98]李生林,王正宏.我国细粒土在塑性图上的分布特征[J].岩土工程学报.1985(3):84-89.
    [99]马桂芝.应用塑性图对陕西特殊土的判别[J].西安工程学院学报.1995(2):87-89.
    [100]谢定义.黄土力学特性与应用研究的过去、现在与未来[J].地下空间.1999(4):273-284.
    [101]石兆吉,王兰民.土壤动力特性·液化势及危害性评价[M].1999.
    [102] Roscoe K H, Schofield A N, Wroth C P. On the Yielding of Soils[J]. Geotechnique.1958,8(1):22-52.
    [103] Poulos S J. The Steady State of Deformation[J]. ASCE.Journal of the Geotechnical EngineeringDivision.1981,107(GT5):553-562.
    [104] Been K, Jefferies M G, Hachey J. A State Parameter for Sands[J]. Geotechnique.1985,35(2):99-112.
    [105] Castro G, Enos J L, France J W, et al. Liquefaction Induced by Cyclic Loading[J]. Report to NationalScience Foundation.1982, Washington D.C.(No.NSF/CEE):82018.
    [106] Lupini J F, Skinner A E, Vaughan P R. The Drained Residual Strength of Cohesvie Soils[J].Geotechnique.1981,31(2):181-213.
    [107] Skempton A W. Slope Stability of cCuttings in Brown London Clay[C]. Tokyo,Japan:1977.
    [108] Schofield A N, Wroth C P. Critical State Soil Mechanics[Z]. London,England:1968.
    [109] Wood D M. Soil Behaviour and Critical State Soil Mechanics[M]. Cambridge University Press,1990.
    [110] Castro G. Liquefaction and Cyclic Mobility of Saturated Sands[J]. American Society of CivilEngineers, Journal of the Geotechnical Engineering Division.1975,101(6):551-569.
    [111] Lade P V, Pradel D. Instability and Plastic Flow of Soils. I Experimental Observations[J]. Journal ofEngineering Mechanics.1990,116(11):2532-2550.
    [112] Pradel D. Instability and Plastic Flow of Soils[C]. Columbus, OH, USA: Publ by ASCE,1991.
    [113] Kay J N., Chen T. Rainfall-Landslide Relationship for Hong Kong[J]. Proceedings of the Institutionof Civil Engineers: Geotechnical Engineering.1995,113(2):117-118.
    [114] Wang F W, Sassa K, Wang G. Mechanism of A Long-Runout Landslide Triggered by the August1998Heavy Rainfall in Fukushima Prefecture, Japan[J]. Engineering Geology.2002,63(1-2):169-185.
    [115] Eckerslay J D. Instrumented laboratory flowslides[J]. Geotechnique.1990,40(3):489-502.
    [116]武彩霞,许领,戴福初,等.黑方台黄土泥流滑坡及发生机制研究[J].岩土力学.2011(6):1767-1773.
    [117] Lambe T. Stress Path Method[C].1979.
    [118] Burland J B. On the Compressibility and Shear Strength of Natural Clays[J]. Geotechnique.1990,40(3):329-378.
    [119] Callisto L., Calabresi G. Mechanical Behaviour of a Natural Soft Clay[J]. Geotechnique.1998,48(4):495-513.
    [120] Malanraki V., Toll D G. Triaxial Tests on Weakly Bonded Soil with Changes in Stress Path[J].Journal of Geotechnical and Geoenvironmental Engineering.2001,127(3):282-291.
    [121]刘恩龙,沈珠江.不同应力路径下结构性土的力学特性[J].岩石力学与工程学报.2006(10):2058-2064.
    [122]周葆春,王靖涛.减围压三轴压缩路径下重塑黏土本构关系的数值建模研究[J].岩石力学与工程学报.2007:3190-3195.
    [123]王四海.对正常固结饱和粘性土孔隙水压力性状的研究[J].河南科技.2004(7):30-31.
    [124]印文东.三轴剪切试验中孔隙水压力的特性探讨[J].城市道桥与防洪.2005(3):96-98.
    [125]陈存礼,杨鹏,郭娟.等应力比应力路径下饱和原状黄土的孔压特性[J].水利学报.2007(8):907-913.
    [126]陈存礼,曹程明,褚峰,等.固结应力比对不同应力路径下饱和原状黄土孔压特性的影响[J].西安理工大学学报.2009(3):328-332.
    [127]曾玲玲,陈晓平.软土在不同应力路径下的力学特性分析[J].岩土力学.2009(5):1264-1270.
    [128]贾可,陈斌.不同应力路径下宁波粘土K0固结三轴试验研究[J].交通科技.2011(6):39-42.
    [129]江美英,骆亚生,王瑞瑞,等.应力路径对饱和黄土孔压的影响研究[J].地下空间与工程学报.2010(3):498-502.
    [130]杨鹏.应力路径对饱和原状黄土的变形强度特性的影响[D].西安:西安理工大学,2007.
    [131]江美英.应力路径对饱和原状黄土的变形强度特性的影响[D].西安:西北农林科技大学,2010.
    [132]黄文熙.土的工程性质[M].北京:水利水电出版社,1984.
    [133]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学.2004(2):178-182.
    [134]王松鹤,骆亚生.复杂应力下黄土蠕变特性试验研究[J].岩土力学.2009:43-47.
    [135]范广勤.岩土工程流变力学[M].北京市:煤炭工业出版社,1993.
    [136]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [137]张先伟.结构性软土蠕变特性及扰动状态模型[D].长春:吉林大学,2010.
    [138]陈晶晶,王世梅.清江古树包滑坡滑带土的Mesri蠕变模型[J].灾害与防治工程.2004(2):45-50.
    [139]李丽华,王钊,唐建设.时温叠加法确定土工合成材料蠕变折减系数[J].岩土力学.2005(1):113-116.
    [140]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报.1994(2):1-10.
    [141]李军世,林咏梅.上海淤泥质粉质粘土的Singh-Mitchell蠕变模型[J].岩土力学.2000(4):363-366.
    [142]王琛,张永丽,刘浩吾.三峡泄滩滑坡滑动带土的改进Singh-Mitchell蠕变方程[J].岩土力学.2005(3):415-418.
    [143]刘业科,邓志斌,曹平,等.软黏土的三轴蠕变试验与修正的Singh-Mitchell蠕变模型[J].中南大学学报(自然科学版).2012(4):1440-1446.
    [144] Singh A., Singh J K. Mitchell. General Stress-Strain-Time Function for Soils[J]. Journal of SoilMechanics and Foundation Division.1968,94(1):21-46.
    [145]李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型[J].土木工程学报.:74-79.
    [146]王琛,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报.2004(1):15-19.
    [147] Mesri G., Febres E., Cordero, R. Sheilds D. Shear Stress-Strain-Time Behaviour of Clays[J].Geotechnique.1981,4(31):537-552.
    [148] L. Kondner R. Hyperbolic Stress-Strain Response: Cohesive Soils[J]. Soil Mech. Fdns.1963,89(1):115-143.
    [149] Itasca Consulting Group I. Fast Lagrangian Analysis of Continua in3Dimensions, Version3.0,User's Manual[M]. Itasca Counsulting Group,Inc.,2005.
    [150]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [151]胡斌,张倬元,黄润秋,等. FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报.2002(9):1387-1391.
    [152] Ling H J, Whittle J. Discussion: Three-Dimensional Finite Element Analysis of Deep Excavations[J].Journal Of Geotechnical And Geoenvironmental Engineering, ASCE.1998,123(5):458-459.
    [153] Griffiths D V, Lane P A. Slope Stability Analysis by Finite Elements[J]. Geotechnique.1999,49(3):387-403.
    [154]邓建辉,魏进兵,闵弘.基于强度折减概念的滑坡稳定性三维分析方法(I):滑带土抗剪强度参数反演分析[J].岩土力学.2003(6):896-900.
    [155] Tien Y M, Kuo M C, Juang C H. An Experimental Investigation of the Failure Mechanism ofSimulated Transersely Isotropic Rocks[J]. Int. J. Rock Mech. Min. Sci.2006,43(8):1163-1181.
    [156]孙书伟,林杭,任连伟. FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011.
    [157]徐平,李云鹏,丁秀丽,等. FLAC3D粘弹性模型的二次开发及其应用[J].长江科学院院报.2004(2):10-13.
    [158]杨文东,张强勇,张建国,等.基于FLAC3D的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学.2010(6):1956-1964.
    [159]何利军,吴文军,孔令伟.基于FLAC3D含SMP强度准则黏弹塑性模型的二次开发[J].岩土力学.2012(5):1549-1556.
    [160]左双英,肖明,陈俊涛.基于Zienkiewicz-Pande屈服准则的弹塑性本构模型在FLAC3D中的二次开发及应用[J].岩土力学.2011(11):3515-3520.
    [161]赵奎,何文,熊良宵,等.尾砂胶结充填体蠕变模型及在FLAC3D二次开发中的实验研究[J].岩土力学.2012:112-116.
    [162]刘姗姗,赵同彬.粘弹性广义Kelvin模型的FLAC3D二次开发[J].山东科技大学学报(自然科学版).2010(4):20-23.
    [163] Sassa K. Geotechnical Model for the Motion of Landslides[C].1988.
    [164] Hsu K J. Albert Heim's Observations on Landslides and Relevance to Modern Interpretations[M]. BVoight Editor, Rockslide and Avalanches:1. Natural Phenomena, Elsevier, Amsterdam,1978.
    [165] Corominas J. The Angle of Reach as A Mobility Index for Small and Large Landslides[J]. CanadianGeotechnical Journal.1996,33:260-271.
    [166]李佩成.黄土含水层给水度合理取值的研究[J].水利学报.1999(11):38-41.
    [167]赵治海.某场地湿陷性黄土渗透系数测定方法比较[J].工程勘察.2006:53-56.
    [168]刘俊民,杨平,陈艳霞.黄土新含水层释水过程和给水度试验研究[J].人民黄河.2007(3):18-20.
    [169]刘俊民,姜传隆,向友珍.黄土新含水层渗透系数演化规律[J].人民黄河.2007(4):17-18.
    [170]赵景波,阴雷鹏,刘护军.陕西长武黄土剖面S1—L4土层入渗率与成因[J].海洋地质与第四纪地质.2009(5):123-130.
    [171]麻土华,孙乐玲,李炜,等.浙江滑坡类型、成因和环境控制因素与影响因素[J].中国地质灾害与防治学报.2010(3):17-23.
    [172]段钊,赵法锁,陈新建.陕北黄土高原区滑坡发育类型与时空分布特征——以吴起县为例[J].灾害学.2011(4):52-56.
    [173]张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报.2011(4):530-540.
    [174]王家鼎,张倬元,李保雄.黄土自重湿陷变形的脉动液化机理[J].地理科学.1999(3):80-85.
    [175]王家鼎,刘悦.高速黄土滑坡蠕、滑动液化机理的进一步研究[J].西北大学学报(自然科学版).:83-86.
    [176]谢定义.土动力学[M].西安:西安交通大学出版社,1988:77-89.
    [177]胡仲有,杨仕升,李航.地脉动测试及其在场地评价中的应用[J].世界地震工程.2011(2):211-218.
    [178]和胜利.地脉动观测及应用[J].甘肃科技.2006(1):107-108.
    [179]王雁林,郝俊卿.地质灾害防治绩效考核评价体系探讨[J].灾害学,2012,27(4):47~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700