用户名: 密码: 验证码:
热处理凹凸棒石结构、物性演化及其对磷的吸附作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凹凸棒石加工和应用常常经历高温过程,热处理也是凹凸棒石粘土活化改性的常用方法之一。前人虽然认识到随着温度升高凹凸棒石脱水、结构演化,表面性质发生了很明显的变化,但是对凹凸棒石表面性质发生变化的根源尚缺少深入的认识和理解,到目前为止学术界和产业界对凹凸棒石的认识还存在很多误区,特别是凹凸棒石热活化过程中结构和物性演化规律及其变化的本质缺少深入系统地理解。为此,本文系统采取明光市官山东风矿业采矿场剖面样品,在查明矿石矿物组成的基础上,选择不同类型的典型矿石样品,利用X射线衍射、扫描电镜、高分辨率透射电镜、27A1魔角旋转核磁共振、29Si魔角旋转核磁共振对不同温度煅烧凹凸棒石结构、形貌进行研究,结合比表面积和孔径分析、热重分析、红外光谱分析,尤其是利用在线小型质谱分析仪研究凹凸棒石程序升温控制过程中水、氨、二氧化硫的吸脱附,认识凹凸棒石结构演化和物理化学性质变化之间的内在联系。
     本论文取得如下主要认识和成果:
     1、综合热处理凹凸棒石的XRD分析、热重分析、水的脱附分析结果可以得到,在低于200℃热处理凹凸棒石脱出外表面吸附水和晶体结构孔道内吸附水,晶体结构不发生任何变化;200-300℃区间热处理凹凸棒石,脱出结构中一半的结晶水,晶体结构发生调整,晶体内部孔道出现折叠;在300-500℃左右热处理凹凸棒石的另外二分之一结晶水,同时脱出晶体内部结构水和外表面结构水,晶体结构周期性基本破坏。经500-700℃煅烧凹凸棒石进一步脱出结构水成为酸酐,但是c轴方向的部分有序性仍然存在,硅氧四面链尚没有解体。
     2、XRD和29Si核磁共振结果都表明凹凸棒石在500-700℃温度区间热处理后处于非晶化状态,800℃开始向方石英转化。
     3、凹凸棒石脱出一半结晶水后,经过水化后不仅可以恢复到原来的结构状态,而且晶体的衍射峰强度得到加强,认为是凹凸棒石经过热处理-水化循环后结构有序性提高。超过350℃热处理凹凸棒石结构水完全脱出后不能通过水化作用恢复到原来的结构状态。
     4、安徽明光凹凸棒石结构中铝主要以AIⅥ形态存在,存在少量A1Ⅳ形态。煅烧温度在500-C以下时,铝配位没有发生明显地变化。当加热温度达到500℃时,开始出现五次配位铝(AIV)的谱峰,四配位铝明显增加,并且存在两种不同的位置,表明虽然凹凸棒石结构在向非晶化转变,但是结构有序性并没有完全破坏。当煅烧温度达到800℃时AlVI峰和A1V峰全部消失,A1Ⅳ峰强度达到最大。
     5、TEM、SEM图像均表明热处理温度低于800℃,凹凸棒石保持棒状形态。超过800℃热处理的凹凸棒石,形态表现出收缩、弯曲变形似蚯蚓状,出现烧结现象,因此凹凸棒石作为载体材料保持其基本形貌使用的临界温度是800℃。
     6、热处理温度低于700℃时凹凸棒石比表面积不发生显著地变化,温度在800℃以上时凹凸棒石比表面积急剧降低。凹凸棒石在300℃开始因失去部分结晶水结构发生折叠,在500℃脱出结构水发生结构破坏,但是比表面积直到温度700℃没有显著变化,表明BET-N2吸附法测得比表面积是凹凸棒石的外比表面积,氮气分子因动力学半径大尚不能够进入凹凸棒石的孔道中。800℃以后凹凸棒石比表面积急剧降低是凹凸棒石晶体收缩成为球型、烧结作用降低孔隙率的结果。
     7、在水热体系中碱性镁化合物存在导致凹凸棒石晶体结构遭到破坏,促使棒状晶体转变为片状的蒙皂石或蛇纹石。在70-200℃水热体系中凹凸棒石与中性镁盐作用可以促使晶体生长,但是凹凸棒石晶体的生长十分缓慢。中性镁盐的添加量对凹凸棒石生长的影响比较明显,而反应温度和时间的影响不大。
     8、白云石凹凸棒石粘土中的白云石热分解起始温度500℃、峰值温度745℃、分解完全温度780℃。普通白云石分解起始温度600℃、峰值温度797.6℃、完全分解温度825℃。白云石分解分为两个步骤,且存在中间产物方解石。白云石凹凸棒石粘土中的白云石比普通白云石分解温度低大约50℃,显示出不寻常的热化学活性。该类粘土中白云石不寻常的热化学活性归结为两个原因:第一是白云石凹凸棒石粘土中矿物都属于纳米矿物,具有纳米结构,其异乎寻常的热化学活性是纳米效应的体现;第二是凹凸棒石作为纳米粘土矿物与白云石共存,在纳米尺度上形成相嵌微结构,具有较高热化学活性的凹凸棒石在高温下与白云石的化合反应促进了白云石的分解,降低了其分解温度。活性硅质组分在促进碳酸盐热分解方面对方解石的作用比对白云石的作用大,归因于具有较高热化学活性的硅质组分与碳酸盐中的钙化合作用促进了碳酸盐的热分解。
     9、不同类型的凹凸棒石粘土矿石在未煅烧前对磷的吸附去除率都不高,不同类型的矿石高温煅烧改性后对磷的吸附性能有很大差异,只有白云石凹凸棒石粘土煅烧活化后才具有较好的吸附除磷效果,从而证明并非所有类型的凹凸棒石粘土矿石都可以热活化制备除磷吸附剂。白云石凹凸棒石粘土煅烧活化超过500℃才体现出明显的改性效果,最佳活化温度是600℃左右。不同温度煅烧产物除磷作用机制有很大的不同,500℃、600℃热处理样品除磷机制归因于热活化后白云石表面对磷的吸附作用:700℃、800℃热处理样品除磷机制归因于白云石热分解形成方镁石、石灰以及白云石与凹凸棒石发生热化学反应形成低结晶度的斜硅钙石、灰硅钙石水解促进了磷酸镁、磷酸钙沉淀。
Usually the application of palygorskite needs pyroprocessing, so the heat-treatment is one of the most common modifications used for industrial and scientific purposes. Some concomitant changes in properties like dehydration, structure changes, surface properties changes occurred apparently with the increase of temperature, but the origin of these changes is still unclear in both scientific and industrial world. The sample is from Dongfeng mineral cooperation stope Mingguang City, Anhui Province, China. The present work investigated the structure and morphology changes of different typical types samples during calcinations using X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope,27Al and29Si magic angle spinning nuclear magnetic resonance, and also investigate the effect of heat treatment on the relationship between structure and surface, textural properties of palygorskite. The present work investigated the effect of heat treatment on the relationship between structure and surface, textural properties of palygorskite by using BET surface area and pore width analysis, thermogravimetric analysis, Fourier transform infrared spectroscopic analysis, especially the in-situ mass spectrometry for detecting the surface acid-alkali properties of palygorskite through the adsorption-desorption of water, NH3and SO2, The main conclusions of the present work are showed as follow:
     1. Compared the XRD, TGA analysis with the desorption analysis of water, it can be concluded that:the adsorbed water on the surface of palygorskite and in the channel of the crystal is eliminated,even the structure remained unchanged when the heat-treatment temperature is lower than200℃; half crystal water expelled from the crystal structure adjusted and channels in the crystal folded at the heat-treatment temperature range of200-300℃; the other half crystal water expelled, the structure water in the crystal and at out-surface began to be expelled, also the periodicity of the structure was destroyed at the heat-treatment temperature range of300-500℃; the sample after further dehydration formed anhydride, but the partly order in C axis and the chain of Si-O tetrahedral were still exist after heated at temperature range of500-700℃.
     2. XRD and29Si MAS-NMR results showed that the palygorskite had became amorphous state after heated at temperature range of500-700℃, and then transformed into cristobalite at800℃
     3. After half crystal water expelled from the crystal structure, the original structure state could be not only recover to after rehydration, but also the diffraction peak intensity was strengthened, it can be concluded that the heat-treatment and rehydration cycle can improve the order of structure. But when the heat-treatment temperature is above350℃, the structure couldn't be recovered after rehydration
     4. The Al-coordination of sample from Mingguang Anhui is mainly AlⅥ, and a minor amount of Al IV can be found. No significant change appears when treated at the heat-treatment temperature lower than500℃. The peak of Al(Ⅳ) is strengthened and a signal of Al(Ⅴ) is detected when treatment temperature higher than500℃. There are two lattice positions existed at the same time, showing that the. orderly structure is not destroyed compeletly. The peak of Al(Ⅵ) decreases and Al appears as Al(IV) after treatment temperature higher than600℃, At800℃, Al(Ⅵ) and Al(V) disappear completely, and the peaks of Al(Ⅳ) turn to form one peak, indicating that all the Al(Ⅳ) exists in one chemical environment.
     5. TEM and SEM images showed that the fiber morphology when the heat-treatment temperature is lower than800℃, and it would become shrinked, bended like earthworm shape, even sintered when the heat-treatment temperature is higher than800℃, so that to palygorkit, the critical temperature for the use of carrier material is800℃.
     6. The specific surface area did not changed apparently when the the heat-treatment temperature is lower than800℃, but it decreased sharply when the heat-treatment temperature is higher than800℃. The structure of palygorskite was folded when partly crystal water expelled at300℃, and it was destroyed when structure water expelled at500℃, but the SSA was stable until700℃, we can concluded that the SSA measured by BET-N2adsorption-desorption method is the external SSA, the radius of N2molecule is too large to enter the channel of palygorskite. The reason of sharply decrease of SSA at800℃is that the palylygorskite fiber structure was shrink into a ball, and the sintering made the decrease of porosity.
     7. Under hydrothermal conditions, the existence of alkaline magnesium compound can destroyed the crystal structure of palygorskite, and promote the transformation of palygorskite into smectite or serpentine. Under hydrothermal conditions of70-200℃, the adding of neutral magnesium compound will benefit the growth of palygorskite crystal but the growth is slow. The adding amount of MgCl2affects the crystal growth apparently, while the acting temperature and time was slightly.
     8. The thermal decomposition temperature of dolomite-palygorskite started at500℃, the peak temperature is745℃, and completely decomposition temperature is780℃. While for ordinary dolomite the thermal decomposition temperaturest started at600℃, the peak temperature is797.6℃, and completely decomposition temperature is825℃. The decomposition of dolomite has two steps, and has calcite as intermediate products. The dolomite decomposition temperature in dolomint-palygorskite clay is50℃lower than ordinary dolomite, and exhibited an unusual thermal chemically active. There are two reasons of this unusual thermal chemically active:Firstly, the minerals in dolomite-palygorskite clay are nano scale with nanostructure, the nanometer effect causes the unusual thermal chemically active; secondly, palygorskite as a kind of nano mineral coexist with dolomite, and formed interdigitations microstructural in nano scale, while palygorskite as a kind of higher thermal chemically active reacted with dolomite which promote the decomposition of dolomite, and lower its decomposition temperature. Activated silica plays a greater part in carbonate thermal decomposition of calcite than dolomite, and this can be attributed to the siliceous component which has higher thermal chemically active reacted with the Ca ions in carbonate, and this will promote the thermal decomposition of carbonate.
     9. All types of palygorskite had no effect on the removal of phosphate before calcination, and there is a very different adsorptive property after calcinations, only calcined dolomite-palygorskite clay has good effect for phosphate adsorption, and it can be concluded that not all types of palygorskite can be made into phosphate adsorbent. The modification effect can be found only when the thermal modification temperature is higher than500℃, the best activation temperature is nearly600℃. Dolomite-palygorskite clay has an unique adsorptive property for phosphate, The phosphate removal mechanisms are so different by the samples calcined at different temperature, the phosphate removal mechanism of samples calcined at500℃and600℃can be attributed to the adsorption at the surface of modified dolomite, while the phosphate removal mechanism of samples calcined at700℃and800℃can be attributed to the precipitation of magnesium phosphate and calcium phosphate which caused by the low crystalline larnite and spurrite formed from thermal reaction of the dolomite and palygorskie.
引文
陈兰瑞.甘肃天水白土[J].建材地质,1985,02:49.
    陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究[J].硅酸盐学报,2003,31(10):959-964.
    陈天虎,徐惠芳,鲁安怀等.蒙脱石向凹凸棒石转化的直接证据:透射电镜观察[J].中国科学D辑,2004a,34(3):248-255
    陈天虎,彭书传,黄川徽,等.从苏皖凹凸棒石粘土制备纯凹凸棒石[J].硅酸盐学报,2004b,32(8):965-969
    陈天虎,徐惠芳,彭书传,等.凹凸棒石与酸反应纳米尺度研究——反应机理和表面积变化[J].高校地质学报,2004c,10(1):98-105.
    陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].科学出版社,2004d:65-181
    陈天虎,徐惠芳,鲁安怀,等.蒙脱石和凹凸棒石纳米复合材料制备、表征和潜在应用[J].硅酸盐通报,2004e,23(1):40-44.
    陈天虎,徐晓春,徐惠芳.苏皖凹凸棒石粘土中蛋白石特征及其成因意义[J].矿物学报,2005,25(1):81-88
    陈天虎,王健,庆承松,等.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报,2006,34(11):1406-1410.
    陈天虎,汪嘉源,束松林,等.改性凹凸棒石黏土对低浓度磷的吸附热力学[J].硅酸盐学报,2010,38(9):1816-1819
    格雷格辛,高敬琮.吸附、比表面与孔隙率[M].化学工业出版社,1989:158-161
    国家标准委员会(2008).压汞法和气体吸附法测定固体材料孔径分布和孔隙度第2部分:气体吸附法分析介孔和大孔.GBT 21650.1-2008.
    何宏平,胡澄,郭九皋,等.高岭石及其热处理产物的29Si,27Al魔角旋转核磁共振研究[J].科学通报,1993,38(6):570-572.
    金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:1-12
    孔德军,陈天虎,刘海波,等.煅烧凹凸棒石的水化处理对其结构演化和吸附NH3的影响[J].硅酸盐学报,2011,39(11):1867-1871.
    李东,李登好,冯良东.纳米Cu2O/凹凸棒石黏土复合物的制备及其在自然光下对模拟染料废水的脱色作用[J].工业水处理,2010,30(1):53-56
    李金虎,张先龙,陈天虎,等.凹凸棒石负载锰氧化物低温选择性催化还原催化剂的表征及对氨的吸脱附[J].催化学报,2010,31(4).
    林极峰,黎文辉,金才生.贵州西部坡缕石产出特征的研究[J].贵州地质,1986,03:223-231.
    刘海波,陈天虎,石莹,等.凹凸棒石黏土负载Ni催化裂解生物质焦油[J].硅酸盐学报,2011,39(4):590-595.
    刘海波,陈天虎,谢晶晶,等.凹凸棒石粘土催化裂解生物质气化炉焦油初探[J].太阳能学报,2011,32(11):1687-1691.
    刘海波,陈天虎,张先龙,等.热处理凹凸棒石粘土对NH3的吸脱附[J].矿物学报(增刊),2010,229-230
    潘敏,陈天虎,黄晓鸣,等.凹凸棒石/氢氧化物纳米复合材料对磷的吸附热力学[J].硅酸盐学报,2009,37(10):1673-1677.
    彭书传,谢晶晶,庆承松.负载Ti02凹凸棒石光催化氧化法处理酸性品红染料废水[J].硅酸盐学报,2006,34(10):1208-1212.
    庆承松,宋浩,陈天虎,等.凹凸棒石/γ-Fe2O3/C纳米材料的制备与表征[J].硅酸盐学报,2009,37(4):548-553.
    丘翠薇.四川洛表坡缕石的初步研究[J].矿物学报,1983,02:143-147
    施培超,陈天虎,张先龙,等.生物质焦油组分甲苯在镍/凹凸棒石上的二氧化碳催化重整[J].催化学报,2010,31(10):1281-1285
    宋磊,陈天虎,李云霞,等.凹凸棒石负载的Cu-Mn-Ce催化剂上甲苯氧化反应性能[J].催化学报,2011,32(4):652-656
    宋宁宁.利用改性凹凸棒石处理含油工业废水[J].资源开发与市场,2010,26(9):775-778
    王彤.湖北随州凹凸棒石的发现和初步研究[J].湖北地质,1987,01:116-120.
    谢先德,郑绵平,刘来保.硼酸盐矿物[M].科学出版社,1965.
    许冀泉,方邺森,李立文.江苏六合小盘山凹凸棒石黏土的发现及其意义[J].科学通报,1980,25(11):513-515
    颜文昌,袁鹏,谭道永,等.富镁与贫镁坡缕石的红外光谱[J].硅酸盐学报,2013,41(1):89-95.
    杨雅秀.湖南浏阳海泡石矿床中发现坡缕石粘土[J].建材地质,1985,04:17-22.
    姚超,曾永斌,曹燕媛,等.聚苯胺/凹凸棒石纳米复合材料对甲基橙的吸附性能[J].硅酸盐学报,2010,38(4):671-676
    易发成,田煦,李虎杰,等.苏皖沉积型凹凸棒石黏土矿床沉积环境探讨[J].沉积学报,1996,14(4):141-147.
    于建华,袁红艳,徐绍平,等.NiFe/坡缕石催化水蒸气重整杏核热解焦汕制氢[J].西安交通大学学报,2008,42(8):1049-1053
    郑自立,田煦.苏皖凹凸棒石矿物红外光谱特征研究[J].岩石学报,1990,6(2):3-12
    郑自立,吴延之,彭省临.苏皖黄泥山坡缕石黏土矿含矿层微量元素地球化学[J].中南工业大学学报,1998,29(2):107-110.
    Abdul-Latif N, Weaver C E. Kinetics of acid dissolution of palygorskite (attapulgite) and sepiolite[J]. Clays Clay Miner,1969,17(1):169-178.
    Aglietti E F. The effect of dry grinding on the structure of talc[J]. Applied Clay Science,1994,9(2): 139-147.
    Akyuz S, Akyuz T, Akalin E. Adsorption of isoniazid onto sepiolite-palygorskite group of clays:An IR study[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010(75): 1304-1307
    Akyuz S, Akyuz T. Study on the interaction of nicotinamide with sepiolite, loughlinite and palygorskite by IR spectroscopy[J]. Journal of Molecular Structure,2005,744-747:47-52
    Albadarin AB, Mangwandi C, Al-Muhtaseb AH, et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent[J]. Chemical Engineering Journal,2012,179: 193-202.
    Alemany LB, Callender RL, Barron AR, et al. Single-pulse MAS, selective Hahn echo MAS, and 3QMAS NMR studies of the mineral zoisite at 400,500,600, and 800 MHz. Exploring the limits of Al NMR detectability [J]. The Journal of Physical Chemistry B,2000,104(49): 11612-11616.
    Al-Futaisi A, Jamrah A, Al-Rawas A, et al. Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman)[J]. Environmental Geology,2007,51(8):1317-1327.
    Annabi-Bergaya F, Cruz MI, Gatineau L, Fripiat JJ. Adsorption of alcohols by smectites:I. Distinction between internal and external surfaces[J]. Clay Minerals,1979,14(4),249-258.
    Araujo Melo DM, Ruiz JA, Melo MA, et al. Preparation and characterization of lanthanum palygorskite clays as acid catalysts[J]. Journal of Alloys and Compounds,2002,344(1): 352-355.
    Artioli G, Galli E. The crystal structures of orthorhombic and monoclinic palygorskite[C]//Materials Science Forum.1994,166:647-652.
    Augsburger MS, Strasser E, Perino E, et al. FTIR and Mossbauer investigation of a substituted palygorskite:silicate with a channel structure[J]. Journal of Physics and Chemistry of Solids, 1998,59(2):175-180.
    Bache B W. The measurement of cation exchange capacity of soils[J]. Journal of the Science of Food and Agriculture,1976,27(3):273-280.
    Bailey S W. Structures of layer silicates [J]. Crystal structures of clay minerals and their X-ray identification,1980,5:1-123.
    Bala P, Samantaraya B K, Srivastava S K. Synthesis and characterization of Na-montmorillonitc-alkylammonium intercalation compounds [J]. Materials Research Bulletin,2000,35(10): 1717-1724.
    Bannor PF., Frost RL. Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepi olite and palygorskite [J]. American Mineralogist,1985,70:758-766
    Barr M, Arnista E S. Adsorption studies on clays I. The adsorption of two alkaloids by activated attapulgite, halloysite, and kaolin[J]. Journal of the American Pharmaceutical Association, 1957a,46(8):486-489.
    Barr M. Adsorption studies on clays II. The adsorption of bacteria by activated attapulgite, halloysite, and kaolin[J]. Journal of the American Pharmaceutical Association,1957b,46(8):490-492.
    Barrer RM, Mackenzie N. Sorption by attapulgite. I. Availability of intracrystalline channels [J]. The Journal of Physical Chemistry,1954a,58(7):560-568.
    Barrer RM, Mackenzie N, MacLeod DM. Sorption by attapulgite. II. Selectivity shown by attapulgite, sepiolite and montmorillonite for n-paraffins [J]. The Journal of Physical Chemistry, 1954b,58(7):568-572.
    Barrios MS, Gonzalez LV, Rodriguez MA, et al. Acid activation of a palygorskite with HC1: development of physico-chemical, textural and surface properties [J]. Applied Clay Science, 1995,10(3):247-258.
    Bartell P, Pierzchala W, Tint H. The adsorption of enteroviruses by activated attapulgite [J]. Journal of the American Pharmaceutical Association,1960,49(1):1-4.
    Bedoui K., Bekri-Abbes I, Srasra E. Removal of cadmium (II) from aqueous solution using pure smectite and Lewatite S 100:the effect of time and metal concentration [J]. Desalination,2008, 223(1):269-273.
    Berg U, Ehbrecht A, Rohm E, et al. Impact of calcite on phosphorus removal and recovery from wastewater using CSH-filled fixed bed filters [J]. Journal Residuals Science Technology,2007, 4(2):73-81.
    Bergaya F, Vayer M. CEC of clays:measurement by adsorption of a copper ethylenediamine complex [J]. Applied Clay Science,1997,12(3):275-280.
    Bhattacharyya KG, Gupta SS. Influence of acid activation on adsorption of Ni (Ⅱ) and Cu (Ⅱ) on kaolinite and montmorillonite:kinetic and thermodynamic study [J]. Chemical Engineering Journal,2008,136(1):1-13.
    Birsoy R. Formation of sepiolite-palygorskite and related minerals from solution [J]. Clays and Clay Minerals,2002,50(6):736-745.
    Blanco C, Herrero J, Mendioroz S, et al. Infrared studies of surface acidity and reversible folding in palygorskite [J]. Clays and Clay Minerals,1988,36(4):364-368.
    Botha GA, Hughes JC. Pedogenic palygorskite and dolomite in a late Neogene sedimentary succession, northwestern Transvaal, South Africa [J]. Geoderma,1992,53(1):139-154.
    Boucif F, Marouf-Khelifa K, Batonneau-Gener I, et al. Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption [J]. Powder Technology,2010,201(3):277-282.
    Bowles F A, Angino E A, Hosterman J W, et al. Precipitation of deep-sea palygorskite and sepiolite[J]. Earth and Planetary Science Letters,1971,11(1):324-332.
    Bradley WF. The structural scheme of attapulgite [J]. American Mineralogist,1940,25(6):405-410.
    Caillere S., Henin S. The X-Ray Identification and Crystal Structure of Clay Minerals (G. Brown, 6diteur), Chap. IX [M], Mineralogical Society,1961:343-353.
    Carrado K A, Komadel P. Acid activation of bentonites and polymer-clay nanocomposites [J]. Elements,2009,5(2):111-116.
    Cases JM, Grillet Y, Francois M, et al. Evolution of the porous structure and surface area of palygorskite under vacuum thermal treatment [J]. Clays and Clay Minerals,1991,39(2): 191-201.
    Chahi A, Petit S, Decarreau A. Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite [J]. Clays and Clay Minerals,2002,50(3):306-313.
    Chen H, Zhao YG, Wang AQ. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite [J]. Journal of Hazardous Materials,2007,149:346-354
    Chen TH, Liu HB, Li JH, et al. Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on palygorskite:Change of surface acid-alkali properties [J]. Chemical Engineering Journal,2011,166(3):1017-1021.
    Cheng H, Yang J, Frost R L, et al. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,83(1):518-524.
    Cheng HF, Yang J, Frost RL. Thermogravimetric analysis-mass spectrometry (TG-MS) of selected Chinese palygorskites—Implications for structural water [J]. Thermochimica Acta,2011, 512(1):202-207.
    Chiari G, Giustetto R, Ricchiardi G. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction [J]. European Journal of Mineralogy,2003,15(1):21-33.
    Chisholm JE. An X-ray powder-diffraction study of palygorskite [J]. The Canadian Mineralogist, 1990,28(2):329-339.
    Chisholm JE. Powder-diffraction patterns and structural models for palygorskite [J]. The Canadian Mineralogist,1992,30(1):61-73.
    Choi M, Matsunaga K, Oba F, et al. 27Al NMR chemical shifts in oxide crystals:A first-principles study [J]. The Journal of Physical Chemistry C,2009,113(9):3869-3873.
    Christ CL, Hathaway JC, Hostetler P B, et al. Palygorskite:new X-ray data [J]. American Mineralogist,1969,54:198-205.
    Chryssikos GD, Gionis V, Kacandes GH, et al. Octahedral cation distribution in palygorskite [J]. American Mineralogist,2009,94(1):200-203.
    Clark T, Stephenson T, Pearce PA. Phosphorus removal by chemical precipitation in a biological aerated filter [J]. Water research,1997,31(10):2557-2563.
    Corma A, Mifsud A, Sanz E. Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations [J]. Clay Minerals,1987,22(2): 225-232.
    Cultrone G, Rodriguez-Navarro C, Sebastian E, et al. Carbonate and silicate phase reactions during ceramic firing [J]. European Journal of Mineralogy,2001,13(3):621-634.
    De Andres JM, Narros A, Rodriguez ME. Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge [J]. Fuel,2011,90(2):521-527.
    De Lapparent J. Sur un constituant essentiel des terres a foulon[C]//Acad Sci.1935,201:481-483.
    Dellisanti F, Valdre G, Mondonico M. Changes of the main physical and technological properties of talc due to mechanical strain [J]. Applied Clay Science,2009,42(3):398-404.
    Dhannoun HY, Al-Dabbagh SMA. Origin and chemistry of palygorskite-bearing rocks (middle Eocene) from northeast Iraq [J]. Chemical Geology,1988,69:95-101.
    Dowty E. Atoms for windows, Version 3.1 [J]. Shape Software, Hidden Valley Road, Kingsport, USA,1995.
    Drits VA, Sokolova GV. Structure of palygorskite [M]. American Institute of Physics, Sokolova, Kristallografiya,1971(16):228-248.
    Escudero A, Delevoye L, Langenhorst F. Aluminum incorporation in TiO2 rutile at high pressure: An XRD and high-resolution 27Al NMR study [J]. The Journal of Physical Chemistry C,2011, 115(24):12196-12201.
    Fan QH, Li Z, Zhao HG, et al. Adsorption of Pb(Ⅱ) on palygorskite from aqueous solution:Effects of pH, ionic strength and temperature [J]. Applied Clay Science,2009,45:111-116.
    Forst RL, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites [J]. Thermochim Acta,2003,397:119-128.
    Frini-Srasra N, Srasra E. Effect of heating on palygorskite and acid treated palygorskite properties [J]. Surface Engineering and Applied Electrochemistry,2008,44(1):43-49
    Frost R L, Cash G A, Kloprogge J T. Rocky Mountain leather1, sepiolite and attapulgite—an infrared emission spectroscopic study[J]. Vibrational Spectroscopy,1998,16(2):173-184.
    Frost R L, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite [J]. Journal of Thermal Analysis and Calorimetry,2008,91(1):267-274.
    Frost R L, Xi Y, He H. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption [J]. Journal of Colloid and Interface Science,2010, 341(1):153-161
    Frost RL, Cash GA, Kloprogge JT. Rocky Mountain leather', sepiolite and attapulgite-an infrared emission spectroscopic study [J]. Vibrational Spectroscopy,1998,16(2):173-184.
    Frost RL, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites [J]. Thermochimica Acta,2003,397(1):119-128.
    Frost RL, Locos OB, Ruan H, et al. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites [J]. Vibrational Spectroscopy,2001,27(1):1-13.
    Fytianos K, Voudrias E, Raikos N. Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron [J]. Environmental Pollution,1998,101(1):123-130.
    Galan E, Carretero MI. A new approach to compositional limits for sepiolite and palygorskite[J]. Clays and Clay Minerals,1999,47(4):399-409.
    Galan E, Mesa JM, Sanchez C. Properties and applications of palygorskite clays from Ciudad Real, Central Spain [J]. Applied Clay Science,1994,9(4):293-302.
    Galan E, Singer A. Developments in Plygorskite-Sepiolite Research [M]. Elsevier B.V.2011. PP: 239-277
    Galan E. Properties and applications of palygorskite-sepiolite clays [J]. Clay Minerals,1996,31(4): 443-454.
    Galan, E., Castillo, A., Sepiolite-palygorskite in Spanish Tertiary Basins:genetical patterns in continental environments [M]//Singer, A., Galan, E. Developments in Sedimentology, vol.37. Amsterdam, The Netherlands, Elsevier,1984:87-124.
    Gan FG, Zhou JM, Wang HY, et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite [J]. Water Research,2009,43(11):2907-2915.
    Garcia-Romero E, Suarez M, Santar^n J, et al. Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal [J]. Clays and Clay Minerals,2007,55(6): 606-617.
    Ghosh A, Tripathi H S. Sintering behaviour and hydration resistance of reactive dolomite [J]. Ceramics International,2012,38(2):1315-1318.
    Ghosh D, Bhattacharyya KG. Adsorption of methylene blue on kaolinite [J]. Applied Clay Science, 2002,20(6):295-300.
    Gionis V, Kacandes GH, Kastritis ID, et al. On the structure of palygorskite by mid-and near-infrared spectroscopy [J]. American Mineralogist,2006,91(7):1125-1133.
    Gionis V, Kacandes GH, Kastritis ID, et al. Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite [J]. Clays and Clay Minerals, 2007,55(6):543-553.
    Giustetto R, Chiari G. Crystal structure refinement of palygorskite from neutron powder diffraction [J]. European Journal of Mineralogy,2004,16(3):521-532.
    Gladysz-Plaska A, Majdan M, Pikus S, et al. Simultaneous adsorption of chromium (VI) and phenol on natural red clay modified by HDTMA [J]. Chemical Engineering Journal,2012,179: 140-150.
    Golden DC, Dixon JB, Shadfan H, et al. Palygorskite and sepiolite alteration to smectite under alkaline conditions [J]. Clays and Clay minerals,1985,33(1):44-50.
    Golden DC, Dixon JB. Low temperature alteration of palygorskite to smectite [J]. Clays and Clay Minerals,1990,38(4):401-408.
    Gonzalez F, Pesquera C, Benito I, et al. Mechanism of acid activation of magnesic palygorskite [J]. Clays and Clay Minerals,1989,37(3):258-62.
    Gonzalez F, Pesquera C, Benito I. Effect of thermal treatment of the support of platinum/palygorskite catalysts on hydrogen chemisorptions [J]. Applied Catalysis A:General, 1992,87(2):231-239.
    Gonzalez JF, Roman S, Engo G, et al. Reduction of tars by dolomite cracking during two-stage gasification of olive cake [J]. Biomass and Bioenergy,2011,35(10):4324-4330.
    Granquist WT, Amero RC. Low Temperature Nitrogen Adsorption Studies on Attapulgite (Floridin) [J]. Journal of the American Chemical Society,1948,70(10):3265-3270.
    Grim, RE. Structure of clay minerals. Chapter 4. In:Clay Miner, second ed. McGraw-Hill, New york. 1968
    Guggenheim S, Van Groos AF. Baseline studies of the clay minerals society source clays:thermal analysis [J]. Clays and Clay Minerals,2001,49(5):433-443.
    Guven N. The coordination of aluminum ions in the palygorskite structure [J]. Clays and Clay Minerals,1992,40(4):457-461.
    Haden Jr,1963. Attapulgite:properties and uses[C]. In:10th National Conference on Clays and Clay Minerals, NRC-NAS Monograph No.12,1963:284-290
    Haghseresht F, Wang S, Do DD. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters [J]. Applied Clay Science,2009,46(4):369-375.
    Hamdi N, Srasra E. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite [J]. Journal of Environmental Sciences,2012,24(4):617-623.
    Hayashi H, Otsuka R, Imai N. Infrared Stuady of sepiolite and palygorskite on heating [J]. The American Mineralogist,1969,53:1613-1624
    Heller-Kallai L, Rozenson I. Mdssbauer studies of palygorskite and some aspects of palygorskite mineralogy [J]. Clays and clay Minerals,1981,29(3):226-232.
    Henn F, Durand C, Cerepi A, et al. DC conductivity, cationic exchange capacity, and specific surface area related to chemical composition of pore lining chlorites [J]. Journal of Colloid and Interface Science,2007,311(2):571-578.
    Herrero J, Fernandez-Ferreras J, Renedo J, et al. Catalytic behaviour of rhodium supported on palygorskite, silica and titania in oil hydrogenation [J]. Applied Catalysis A:General,1992, 86(1):37-43.
    Hodge T, Turchenek LW, Oades JM. Occurrence of palygorskite in ground-water rendzinas (Petrocalcic Calciaquolls) in south-east South Australia[M]//Singer, A., Galan, E. Developments in Sedimentology, vol.37. Amsterdam, The Netherlands, Elsevier,1984: 199-210.
    Howard JJ, Roy DM. Development of layer charge and kinetics of experimental smectite alteration [J]. Clays Clay Miner,1985,33(2):81-88.
    Huang YJ, Li Z, Li SZ, et al. M6ssbauer investigations of palygorskite from Xuyi, China[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,260(2):657-662.
    Hudson Resources Limited, News letter.2009. Company Announcement Office, Australian Stock Exchange Limited, Sydney.
    Huo CL, Yang HM. Synthesis and characterization of ZnO/palygorskite [J]. Applied Clay Science, 2010,50:362-366
    Ilgen O. Reaction kinetics of dolomite catalyzed transesterification of canola oil and methanol [J]. Fuel Processing Technology,2012,95:62-66.
    Jasmund K. Tonminerale und Tone:Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt [M]. Darmstadt, Germany:Steinkopff Verlag,1993.
    Jones BF, Galan E. Sepiolite and palygorskite [J]. Reviews in Mineralogy and Geochemistry,1988, 19(1):631-674.
    Karageorgiou K, Paschalis M, Anastassakis GN. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent [J]. Journal of hazardous materials,2007, 139(3):447-452.
    Kerber RN, Kermagoret A, Callens E, et al. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations [J]. Journal of the American Chemical Society,2012,134(15): 6767-6775.
    Khorami J, Lemieux A. Comparison of attapulgites from different sources using TG/DTG and FTIR [J]. Thermochimica acta,1989,138(1):97-105.
    Khormali F, Abtahi F. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran [J]. Clay Minerals,2003,38,511-527.
    Kirkpatrick RJ, Smith KA, Schramm S, Turner G, Yang WH. Solid-State Nuclear Magnetic Resonance Spectroscopy of Minerals [J]. Annual Review of Earth and Planetary Sciences, 1985,13:29-47
    Komadel P. Chemically modified smectites [J]. Clay Minerals,2003,38(1):127-138.
    Komarneni S. Mechanisms of Polygorskite and Sepiolite Alteration as Deduced from Solid-State 27A1 and 29Si Nuclear Magnetic Resonance Spectroscopy [J]. Clays Clay Miner,1989,37(3): 469-473
    Kong Y, Chen XH, Ni JH, et al. Palygorskite-expanded graphite electrodes for catalytic electro-oxidation of phenol [J]. Applied Clay Science,2010,49:64-68
    Krekeler MP, Guggenheim S, Rakovan J, A microtexture study of palygorskite-rich sediments from the Hawthorne Formation, southern Georgia, by transmission electron microscopy and atomic force microscopy [J]. Clays and Clay Minerals,2004,52(3):263-274.
    Krekeler MP, Hammerly E, Rakovan J, et al. Microscopy studies of the palygorskite-to-smectite transformation [J]. Clays and Clay Minerals,2005,53(1):92-99.
    Krekeler MPS, Guggenheim S, Rakovan J. A microtexture study of palygorskite-rich sediments from the Hawthorne Formation, southern Georgia, by transmission electron microscopy and atomic force microscopy [J]. Clays and Clay Minerals,2004a,52(3):263-274
    Krekeler MPS. Improved constraints on sedimentary environments of palygorskite deposits of the Hawthorne Formation, southern Georgia, from a detailed study of a core [J]. Clays and Clay Minerals,2004b,52(3):253-262
    Krekeler MPS, Hammerly E, Rakovan J, et al. Microscopy studies of the palygorskite-to-smectite transformation [J]. Clays and Clay Minerals,2005,53(1):92-99
    Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    Kuang W, Detellier C. Structuration of organo-minerals:nanohybrid materials resulting from the incorporation of alcohols in the tunnels of palygorskite [J]. Studies in Surface Science and Catalysis,2005,156:451-456.
    Lagaly G, Ogawa M, Dekany I. Clay Mineral Organic Interactions [J]. Developments in Clay Science,2006(1):309-377.
    Lei Z, Zhang Q, Wang R, et al. Clean and selective Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite [J]. Journal of Organometallic Chemistry, 2006,691(26):5767-5773.
    Li W, Adams A, Wang J D, et al. Polyethylene/palygorskite nanocomposites:Preparation by in situ polymerization and their characterization [J]. Polymer,2010,51:4686-4697
    Li Z, He K, Yin L, et al. Crystallochemistry of Fe-rich palygorskite from eastern China[J]. Clay Minerals,2007,42(4):453-461.
    Lippmaa E, Magi M, Samoson A, et al. Structural studies of silicates by solid-state high-resolution silicon-29 NMR [J]. Journal of the American Chemical Society,1980,102(15):4889-4893.
    Liu CJ, Li YZ, Luan ZY, et al. Adsorption removal of phosphate from aqueous solution by active red mud [J]. Journal of Environmental Sciences,2007,19(10):1166-1170.
    Liu HB, Chen TH, Zhang XL, et al. Effect of additives on catalytic cracking of biomass gasification tar over a nickel-based catalyst [J]. Chinese Journal of Catalysis,2010,31:409-414
    Liu HB, Chen TH, Chang DY, et al. The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite [J]. Journal of Thermal Analysis and Calorimetry,2013, 111(1):409-415.
    Liu Y, Wang W, Wang A. Effect of dry grinding on the microstructure of palygorskite and adsorption efficiency for methylene blue [J]. Powder Technology,2012,225:124-129.
    Ma JF, Zhu LZ. Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water [J]. Journal of hazardous materials,2006,136(3):982-988.
    Marouf R, Marouf-Khelifa K, Schott J, et al. Zeta potential study of thermally treated dolomite samples in electrolyte solutions [J]. Microporous and Mesoporous Materials,2009,122(1): 99-104.
    Marshall CE, Caldwell OG. The colloid chemistry of the clay mineral attapulgite [J]. The Journal of Physical Chemistry,1947,51(1):311-320.
    McKeown DA, Post JE, Etz ES. Vibrational analysis of palygorskite and sepiolite [J]. Clays and Clay Minerals,2002,50(5):667-680.
    Melo DM, Ruiz JA, Melo MA, et al. Preparation and characterization of terbium palygorskite clay as acid catalyst [J]. Microporous and Mesoporous Materials,2000,38(2):345-349.
    Melo DM, Ruiz JA, Melo MA, et al. Preparation and characterization of lanthanum palygorskite clays as acid catalysts [J]. Journal of Alloys and Compounds,2002,344:352-355
    Mendelovici E. Infrared study of attapulgite and HCl treated attapulgitc [J]. Clays and Clay Minerals, 1973,21(2):115-119.
    Merkl RS. A Sedimentological, Mineralogical and Geochemical Study of the Fuller's Earth Deposits of the Miocene Hawthorne Group of South Georgia-North Florida [D]. Indiana University, 1989:182
    Miao Y, Xue J, Xia F, et al. Utilization of porous dolomite pellets for the catalytic decomposition of acetic acid [J]. Biomass and Bioenergy,2010,34(12):1855-1860.
    Mikutta R, Mikutta C, Kalbitz K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms [J]. Geochimica et Cosmochimica Acta,2007, 71(10):2569-2590.
    Moutin T, Gal JY, El Halouani H, et al. Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate:theoretical and experimental results [J]. Water Research, 1992,26(11):1445-1450.
    Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview [J]. Applied Clay Science,2000,17(5):207-221.
    Neaman A, Singer A. Kinetics of hydrolysis of some palygorskite-containing soil clays in dilute salt solutions [J]. Clays and clay minerals,2000,48(6):708-712.
    Neaman A, Singer A. The effects of palygorskite on chemical and physico-chemical properties of soils:a review [J]. Geoderma,2004,123(3):297-303.
    Neter E, Gorzynski EA. The adsorption of enterobacterial endotoxins by activated attapulgite [J]. Journal of the American Pharmaceutical Association,1958,47(9):651-653.
    Newman AC, Brown G. The chemical constitution of clays[J]. Monograph, Mineralogical Society, 1987(6):1-128.
    Newman DK, Banfield JF. Geomicrobiology:how molecular-scale interactions underpin biogeochemical systems [J]. Science,2002,296(5570):1071-1077.
    Ngamcharussrivichai C, Wiwatnimit W, Wangnoi S. Modified dolomites as catalysts for palm kernel oil transesterification [J]. Journal of Molecular Catalysis A:Chemical,2007,276(1):24-33.
    Nolan RP, Langer AM, Herson G B. Characterisation of palygorskite specimens from different geological locales for health hazard evaluation [J]. British Journal of Industrial Medicine,1991, 48(7):463-475.
    Ovcharenko FD, Kukovsky YG. Palygorskite and sepiolite deposits in the USSR and their uses[M]// Singer, A., Galan, E. Developments in Sedimentology, vol.37. Amsterdam, The Netherlands, Elsevier,1984:233-241.
    Pehlivan E, Ozkan AM, Dinc S, et al. Adsorption of Cu2+ and Pb2+ ion on dolomite powder [J]. Journal of hazardous materials,2009,167(1):1044-1049
    Pierotti RA, Rouquerol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Applied Chemistry,1985,57(4): 603-619.
    Post JE, Heaney PJ. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite [J]. American Mineralogist,2008,93(4):667-675.
    Poulsen SL, Jakobsen HJ, Skibsted J. Incorporation of Phosphorus Guest Ions in the Calcium Silicate Phases of Portland Cement from 31P MAS NMR Spectroscopy [J]. Inorganic chemistry, 2010,49(12):5522-5529.
    Preisinger A. Sepiolite and related compounds:its stability and application [J]. Clays and Clay Minerals,1961,10:365-371.
    Rehak P, Kunath-Fandrei G, Losso P, et al. Study of the Al coordination in mullites with varying Al: Si ratio by 27Al NMR spectroscopy and X-ray diffraction [J]. American Mineralogist,1998,83: 1266-1276.
    Rodas M, Luque FJ, Mas R, Garzon MG. Calcretes, palycretes and silcretes in the paleogene detrital sediments of the Duero and Tajo Basins, central Spain [J]. Clay Minerals,1994,29:273-285.
    Ruiz-Hitzky E, Aranda P, Serratosa JM. Clay organic interactions:organo-clay complexes and polymer-clay nanocomposites [J]. Handbook of Layered Materials,2004:91-154.
    Sanz J, Robert JL. Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1 [J]. Physics and chemistry of minerals,1992,19(1):39-45.
    Sanoglan A. Tar removal on dolomite and steam reforming catalyst:Benzene, toluene and xylene reforming [J]. International Journal of Hydrogen Energy,2012,37(10):8133-8142.
    Sarkar B, Xi YF, Megharaj M? et al. Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution:Isothermal studies [J]. Journal of Colloid and Interface Science,2010,350:295-304
    Sarkar B, Xi Y, Megharaj M, et al. Orange Ⅱ adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide—an isothermal and kinetic study [J]. Applied Clay Science,2011,51(3):370-374.
    Sasaki K, Qiu X, Hosomomi Y, et al. Effect of natural dolomite calcination temperature on sorption of borate onto calcined products [J]. Microporous and Mesoporous Materials,2013b.171:1-8
    Sasaki K, Yoshida M, Ahmmad B, et al. Sorption of fluoride on partially calcined dolomite [J].
    Schneider M D, Furusho Y. Adsorption of wild rabies virus and neurotropic-adapted viruses by activated attapulgite [J]. Canadian Journal of Comparative Medicine and Veterinary Science, 1964,28(9):217.
    Schoonheydt RA, Johnston CT. Surface and interface chemistry of clay minerals [J]. Developments in Clay Science,2006(1):87-113.
    Seida Y, Nakano Y. Removal of phosphate by layered double hydroxides containing iron [J]. Water Research,2002,36(5):1306-1312.
    Serna C, Vanscoyoc GE, Ahlrichs JL. Hydroxyl groups and water in palygorskite [J]. American Mineralogist,1977,62:784-792
    Sheikhhosseini A, Shirvani M, Shariatmadari H. Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals [J]. Geoderma,2013,192:249-253.
    Sherriff BL, Grundy HD. Calculations of 29Si MAS NMR chemical shift from silicate mineral structure [J]. Nature 332,819-822
    Shirvani M, Shariatmadari H, Kalbasi M, et al. Sorption of cadmium on palygorskite, sepiolite and calcite:equilibria and organic ligand affected kinetics [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,287(1):182-190.
    Siddiqui, MK. Palygorskite clays from Andhra Pradesh, India. Clay Minerals.1967.7 (1):121-123.
    Singer A. Dissolution of two Australian palygorskites in dilute acid [J]. Clays and Clay Minerals, 1977,25(2):126-130.
    Singer A. Palygorskite in sediments:detrital, diagenetic or neoformed—a critical review [J]. Geologische Rundschau,1979,68(3):996-1008..
    Singer A. Palygorskite and sepiolite group minerals:in Minerals in Soil Environments [M], Soil Science Society of America, Madison,1989:829-872
    Smith ME. Application of 27Al NMR techniques to structure determination in solids [J]. Applied Magnetic Resonance,1993,4(1-2):1-64.
    Sorby DL. Effect of adsorbents on drug absorption I. Modification of promazine absorption by activated attapulgite and activated charcoal [J]. Journal of pharmaceutical sciences,1965,54(5): 677-683.
    Stebbins JF, Kroeker S, Keun Lee S, et al. Quantification of five-and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27A1 NMR [J]. Journal of Non-Crystalline Solids,2000,275(1):1-6.
    Stucki JW, Golden DC, Roth CB. Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites [J]. Clays and Clay Minerals,1984, 32(5):350-356.
    Suarez M, Garcia-Romero E, Sanchez MR, et al. The effect of the octahedral cations on the dimensions of the palygorskite cell [J]. Clay minerals,2007,42(3):287-297.
    Suarez M, Garcia-Romero E. FTIR spectroscopic study of palygorskite:influence of the composition of the octahedral sheet [J]. Applied Clay Science,2006,31(1):154-163.
    Suarez M, Garcia-Romero E., Advances in the Crystal Chemistry of Sepiolite and Palygorskite[M]// Galan E., Singer A. Developments in Palygorskite-sepiolite Research:A New Outlook on These Nanomaterials. Amsterdam, The Netherlands, Elsevier,2011:33-65.
    Suarez M, Romero EG. Macroscopic palygorskite from Lisbom Volcanic Complex [J]. European journal of mineralogy,2006,18(1):119-126.
    Sun Y, Jiang J, Kantarelis E, et al. Development of a bimetallic dolomite based tar cracking catalyst [J]. Catalysis Communications,2012,20:36-40.
    Tessens E, Zauyah S. Positive permanent charge in Oxisols [J]. Soil Science Society of America Journal,1982,46(5):1103-1106.
    Trindade MJ, Dias MI, Coroado J, et al. Mineralogical transformations of calcareous rich clays with firing:a comparative study between calcite and dolomite rich clays from Algarve, Portugal [J]. Applied Clay Science,2009,42(3):345-355.
    Vagvolgyi V, Daniel L M, Pinto C, et al. Dynamic and controlled rate thermal analysis of attapulgite [J]. Journal of Thermal Analysis and Calorimetry,2008,92(2):589-594.
    Van Olphen H. Maya Blue:a clay-organic pigment? [J]. Science,1966,154(3749):645-646.
    Vanscoyoc GE, Serna CJ, Ahlrichs JL Structural changes in palygorskite during dehydration and dehydroxylation[J]. American Mineralogist,1979,64:215-223
    Vicente-Rodriguez MA, Suarez M, Banares-Munoz MA, et al. Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1996, 52(13):1685-1694.
    Voorhees KJ, Baugh SF, Stevenson DN. The thermal degradation of poly (ethylene glycol)/poly (vinyl alcohol) binder in alumina ceramics [J]. Thermochimica acta,1996,274:187-207.
    Wang J, Cheng G, You Y, et al. Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite [J]. International Journal of Hydrogen Energy,2012,37(8):6503-6510.
    Wang WJ, Chen H, Wang AQ. Adsorption characteristics of Cd(Ⅱ) from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology,2007,55:157-164
    Wang XM, Li W, Harrington R, et al. Effect of ferrihydrite crystallite size on phosphate adsorption reactivity [J]. Environmental science & technology,2013,47(18):10322-10331.
    Weaver C E, Pollard L D. The chemistry of clay minerals. Developments in Sedimentology. [M]. Amsterdam:Elsevicr,1973:213.
    Woessner DE. Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy[J]. American Mineralogist,1989,74(1-2):203-215.
    Xic QQ, Chen TH, Zhou H, et al. Mechanism of palygorskite formation in the Red Clay Formation on the Chinese Loess Plateau, northwest China [J]. Geoderma,2013,192:39-49.
    Yagi S, Fukushi K. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite [J]. Journal of colloid and interface science,2012,384(1): 128-136
    Yang H, Tang A, Ouyang J, et al. From natural attapulgite to mesoporous materials:methodology, characterization and structural evolution [J]. The Journal of Physical Chemistry B,2010,114(7): 2390-2398.
    Ye HP, Chen FZ, Sheng YQ, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites [J]. Separation and Purification Technology,2006,50(3):283-290.
    Yin HB, Yun Y, Zhang YL, et al. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite [J]. Journal of hazardous materials,2011,198:362-369.
    Yoosuk B, Udomsap P, Puttasawat B. Hydration-dehydration technique for property and activity improvement of calcined natural dolomite in heterogeneous biodiesel production:Structural transformation aspect [J]. Applied Catalysis A:General,2011,395(1):87-94.
    Yu Q Z, Brage C, Nordgreen T, et al. Effects of Chinese dolomites on tar cracking in gasification of birch[J]. Fuel,2009,88(10):1922-1926.
    Zhang L, Jin Q, Shan L, et al. H3PW12O40 immobilized on silylated palygorskite and catalytic activity in esterification reactions [J]. Applied Clay Science,2010,47:229-234
    Zhang LL, Liu JQ, Tang C, et al. Palygorskite and SnO2-TiO2 for the photodegradation of phenol [J]. Applied Clay Science,2011,51:68-73
    Zhang PP, Chen XG, Cheng JP, et al. Behavior and structural transformation of palygorskite in NaOH solution under hydrothermal conditions [J]. Chinese Journal of Inorganic Chemistry, 2009,25(9):1545-1550
    Zhao DF, Zhou J, Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu+-PG/TiO?) catalysts [J]. Materials Science and Engineering A,2006, 431:256-262
    Zhao D, Sengupta AK. Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers [J]. Water Research,1998,32(5):1613-1625.
    Zhao DF, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior [J]. Applied Clay Science,2006,33:161-170
    Zhou H, Murray H H,2011. Overview of Chinese palygorskite clay resources- Their geology, mineralogy, depositional environment, applications and processing [M]//Galan E., Singer A. Developments in Palygorskite-sepiolite Research:A New Outlook on These Nanomaterials. vol.3. Amsterdam, The Netherlands, Elsevier,2011:239-261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700