用户名: 密码: 验证码:
松辽盆地梨树断陷构造演化及区域动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨树断陷位于松辽盆地东南隆起区,为一典型的断坳叠置复合型沉积断陷,大地构造位置处于吉黑中小地块群与华北板块之间的索伦-西拉木伦-长春-延吉构造拼接带上,基底由燕山早期花岗岩、华力西晚期变质岩、前寒武系基底以及华力西期和加里东期花岗岩共同组成。根据梨树断陷断陷期的构造沉积格局,将梨树断陷划分为4个次级构造单元,分别为十屋深洼陷(断洼)、东部斜坡、双龙洼陷(或断洼)、苏家屯洼陷(断洼),在此基础上划出4个二级构造带:桑树台断裂构造(或断陡)带、小宽断裂构造带、秦家屯断裂构造带和皮家断裂构造带。
     梨树断陷各断裂带不同时期结构、构造特征整体表明,断陷期主要发生在早白垩世,大致可分为火石岭期、沙河子期、营城期和登娄库期-泉头期早期四大阶段;晚白垩世为区域坳陷期,白垩世末期--新生代为盆地后期改造期。梨树断陷断陷期各主要阶段后期改造活动相对较弱;坳陷期整体沉降,广泛接受沉积;之后盆地开始遭受强烈改造。
     根据平衡剖面恢复、裂变径迹热模拟等方法,结合区域构造特征,早白垩世火石岭期,在地幔汇聚上隆深部作用活跃的构造环境中,地壳浅部裂陷,桑树台大断裂及秦家屯断裂开始强烈伸展断陷,梨树断陷雏形出现。沙河子期,桑树台断裂带中桑树台断裂、金山断裂和苏家屯断裂及其间侧接带均撕裂伸展,小宽断裂带也开始活动,秦家屯断裂带活动较弱。营城期,桑树台断裂带中的苏家屯断裂和桑树台断裂、皮家断裂构造带和小宽断裂构造带均强烈伸展活动,同时苏家屯洼陷开始强烈断陷。登娄库期-泉头期早期,小宽断裂带中小宽断槽段和双龙洼陷段走滑拉张、小宽隆起段走滑挤压、SW8-SW9井区段平行走滑,秦家屯断裂带因走滑挤压褶皱隆升、秦东断裂贯通,皮家断裂带则进
     一步撕裂。泉头期晚期-嫩江期,区域坳陷,梨树断陷被巨厚的泉头组上部-嫩江组覆盖。嫩江期末期-明水期,在南东-北西向挤压兼左行走滑构造环境下,小宽断裂带附近强烈褶皱隆起、遭受剥蚀;秦家屯断裂带挤压隆升、秦东断裂向上进一步扩展。古近纪,梨树断陷之东(也是今松辽盆地东缘)裂陷,大致沿郯庐断裂带发育狭长带状展布的依兰-伊通断陷带,在该断陷裂陷沉降和接受沉积过程中,伴有基性火山活动。新生代构造活动和改造对包括梨树断陷在内的今松辽盆地本部改造相对要弱。
     梨树断陷为早白垩世东北亚裂陷系的组成部分,其形成演化整体受华北板块和西伯利亚板块斜向汇聚及其引起的地幔流体上隆共同导致的区域岩石圈北西-南东向离散应力场控制。早白垩世末期以来,太平洋板块的俯冲作用对东北亚东部构造动力学环境的影响渐趋明显和增强。在晚白垩世,大致以大兴安岭为界,之西的断陷区沉降-沉积作用大为减弱,甚或停止,遭受剥蚀;之东包括梨树断陷在内的松辽盆地进入坳陷期,大范围整体沉降、接受巨厚-较厚沉积。其形成演化的区域动力学环境与古太平洋板块向东亚大陆斜向汇聚及其引起的深部物质运动密切相关。晚白垩世末期以来,大型松辽盆地抬升消亡,周缘地区以遭受剥蚀改造为主,盆地内部有厚度不等、层序不全的新生代不同时代沉积。
     梨树断陷的箕状断陷结构在宏观上总体控制着油气分布:在平面上油气呈弧形绕深凹陷带状分布,天然气分布在靠近桑树台深凹陷的弧形内环带,如孤家子气田、后五家户气田;在中环带为油气混合区;油田分布在斜坡带的外环带。纵向上油气主要分布于泉二段和泉一段,营城组及沙河子组上部也有少量油气产出。二级构造带对油气的控制明显,目前已发现的油气藏绝大多数位于小宽、秦家屯等二级断裂构造带及其附近。因梨树箕状断陷在断陷期(泉头期前)便已开始规模生烃,位于斜坡受大断裂控制的二级构造带及其附近的局部正向构造发育较早、但定型较晚,处于油气运移的优势方向,具有较长时间捕获油气和对前期已聚集油气进一步调节再运聚的条件。
Lishu subbasin is a superposed subbasin composed of fault-subsidence and depression. It is located in the Southeast uplift area of Songliao basin, a part of Solon-Xarmoron-Changchun-Yanji suture zone between medium-small plots of Jihei and North China plate. The basement rock are composed of early Yanshanian granite, late Variscan metamorphic rock, Precambrian basement, Variscan and Caledonian granite. According to the fault depression period deposition pattern of Lishu subbasin, it is divided into four Secondary structural unit:Shiwu sags the eastern slopes Shuanglong sag and Sujiatun sag, on which based,four second-order tectonic belt can be recognised:Sangshutai fault belt, Xiaokuan fault belt, Qinjiatun fault belt and Pijia fault belt.
     The faulting evolution of Lishu subbasin can be divided into Huoshiling stage, Shahezi stage, Yingcheng stage and Denglouku-early Quantou stage in early Cretaceous.Late Cretaceous was depression period, and late-reformation of basin occured in the end of Cretaceous-Cenozoic. Late-reformation of each major phase were weak in the faulting period; Both subsidence and deposition peaked during depression period; Then the Lishu subbasin was strong reformed in the end of Cretaceous-Cenozoic.
     In Huoshiling stage, the prototype of Lishu subbasin emerged in the background of mantle converge, crust lacunae, Sangshutai faut and Qinjiatun fault strong stretching. In Shahezi stage, Sangshutai fault zone (include Sangshutai fault, Jinshan fault, Sujiatun fault and Side joint belt) stretched, Xiaokuan fault belt emerged, Qinjiatun fault belt activity was weak; In Yingcheng stage, all the fault were strong stretched; Denglouku stage-Early Quantou stage, Xiaokuan fault trough (D) and Shuanglong sag (A) strike-slip extensional, Xiaokuan uplift (C) strike-slip extrusion, Xiaokuan fault belt B section parallel strike-slip, Qinjiatun fault belt compressed uplift, Pijia fault belt further teared.In the Late Quantou stage-Nenjiang stage, Lishu subbasin was covered by very thick upper Quantou stage-Nenjiang stage; In the end of Nenjiang stage-Mingshui stage, under the SE-NW compression, strong fold uplift and erosion appeared near the Xiaokuan fault belt, Qinjiatun fault belt uplift too; In Paleogene, the east of Lishu subbasin rifted, roughly along the Yilan-Yitong grabens was in the process of sedimentation and deposition, with basic volcanic rock activitis. Tectonic activity and reform in Cenozoci was relative weak in Lishu subbasin and Northern part of Songliao basin.
     As a part of early Cretaceous basin in Northeastern Asia fault basin system, the evolution of Lishu subbasin was controlled by NW-SE tension stress, resulting from a convergence between North China plate and Siberian plate. Tectonic dynamics environment of East-Asian continent enhanced after the subduction of Pacific plate at the end of the early cretaceous. In late cretaceous, the west aera of Great Khingan deposition reduced, even stopped to suffer erosion, then the east aera of Great Khingan (include Lishu subbasin and Songliao basin) went into depression period and was thickly deposited. From the end of late cretaceous, large-scale Songliao basin began to be lifted and extinct, the sequence of Cenozoic sedimentary was incomplete and the deposition was unequal in basin.
     The half-graben structure dominated the distribution of the gas and oil in the Lishu subbasin generally. Hydrocarbons is toroidal-fanned located around the deep sag:gas is mostly distributed circularity inner the Sangshutai fault such as Gujiazi, Houwujiahu gas field, while the oil field is distributed outside the ramp region and the mixing area is between the two. The main productive series are Q1, Q2, Yingcheng and the upper Shahezi Formation. Second-order tectonic belt controlled hydrocarbon obviously, most oil and gas traps are found near the second-order tectonic belt. Because the hydrocarbon began to generated in Quantou stage, the second-order tectonic belt, which located in the Oil and gas migration direction turned active relative late, it took a long time to capture oil and gas, and adjust the earlier gathered hydrocarbon.
引文
1. Barbarand J, Hurford A J, Carter A. Variation in apatite fission track length measurement implications for thermal history modelling[J]. Chemical Geology, 2003,198(1):77-106.
    2. Berger G W, York D, Geothermometry from 40Ar/39Ar dating experiments [J]. Geochimica et Cosmochimica Acta,1981,45:795-811.
    3. Bernet M, Brandon MT, Garver JI, Reiners PW, Fitzgerald PG, Determining the zircon fission-track closure temperature. GSA Cordilleran Section,98th annual meeting, Abstract with Programs,2002,34:18.
    4. Brandon M T, Roden-Tice MK, Garver JI, Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State [J]. GSA Bull,1998,110:985-1009.
    5. Brandon M T, Vance JA, New statistical methods for analysis of fi ssion track grain-age distributions with applications to detrital zircon ages from the Olympic subduction complex, western Washington State [J]. Am J Sci 1992,292:565-636.
    6. Carpena J, Lacout J L. Thermal annealing of fission tracks in synthetic apatites[J]. Nuclear Instruments and Methods in Physics Research,2010,268(19): 3191-3194.
    7. Christopher Johnson, Resolving denudational histories in orogenic belts with apatite fission-track thermochronology and structural data:An example from southern Spain [J]. Geology,1997,25(7):623-626.
    8. Corrigan JD, Inversion of apatite fi ssion track data for thermal history information [J]. J Geophys Res,1991,96:10,347-10,360.
    9. Crowley K D, Cameron M, Schaefer R L. Experimental studies of annealing of etched fission tracks in fluorapatitete[J]. Geochim Cosmochim Acta,1991,55(5): 1449-1465.
    10. Daniel F. Stockli, Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings [J].Mineralogy&Geochemistry,2005,58:411-448.
    11. Dewey J F. Extensional collapse of orogens Tectonics[M].1988,7 (6):1123-1139.
    12. Donelick RA,O'Sullivan PB, RA Ketcham,2005, Apatite fi ssion-track analysis [J]. Rev Mineral Geochem 58:49-94.
    13. Ehlers, T. A., and Farley, K. A., Apatite (U-Th)/He thermochronometry:Methods and applications to problems in tectonics and surface processes:Earth and Planetary Science Letters,2003,206:1-14.
    14. Engebretson, D. C., Cox, A., Gordon, R. G.. Relativemotions between oceanic and continental plates in the Pacific Basin[J]. Geological Society of America Special Paper 206,1985,58-59.
    15. Enkin R J, Yang Z Y, Chen Y et al. Paleomagnetic Constraints on the Geodynamic History of the Major Blocks of China from the Permian to the Present[M]. J. Geophys. Res.1992,97:13953-13989.
    16. Fayon AK, U electron microprobe analyses and monazite fission-track thermochronology. Abstr.10th International Conference on Fission Track Dating and Thermochronology, Amsterdam,2004,36.
    17. Fei Wang, Xin-Hua Zhou, Lian-Chang Zhang, et al. Late Mesozoic volcanism in the Great Xing' an Range (NE China):iming and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters 251,2006,179-198.
    18. Fitzgerald, P.G., Baldwin, S. L., Webb, L.E., and 0'Sullivan, P. B., Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes:A case study from the Transantarctic Mountains of southern Victoria Land [J], Chemical Geology,2006,225:91-120.
    19. Foster DA, Kohn BP, Gleadow, AJW, Sphene and zircon fission track closure temperatures revisited:empirical calibrations from 40Ar/39Ar diffusion studies on K-feldspar and biotite. International Workshop on Fission Track Dating, Abstracts,1996,37.
    20. Galbraith R., On statistical models for fission track counts [J]. Mathematical Geology,1981,13:471-488.
    21. Gallagher K, Evolving temperature histories from apatite fission-track data [J]. Earth Planet Sci Lett,1995,136:421-443.
    22. Gallagher, K., Brown, R., and Johnson, C. Fission track analysis and its applications to geological problems[J], Annual Reviews in Earth and Planetary Science Letters,1998,6:519-572.
    23. Gleadow A J W, Duddy I R, Green P F, et al. Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis[J]. Contrib Mineral Petrol,1986,94(4):405-415.
    24. Gleadow AJW, Belton DX, Kohn BP, Brown RW, Fission track dating of phosphate minerals and the thermochronology of apatite [J]. Rev Mineral Geochem,2002, 48:579-630.
    25. Gleadow AJW, Raza A, Kohn BP, Spencer SAS, The potential of monaizite as a new low-temperature fission-track thermochronometer. Abstr.10th International Conference on Fission Track Dating and Thermochronology, Amsterdam,2004,3.
    26. Gleadow, A. J. W., and Fitzgerald, P.G. Uplift history and structure of the Transantarctic Mountains:New evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land [J], Earth and Planetary Science Letters,1987,82:1-14.
    27. Graham S A, Hendrix M S, Badamgarav D. Sedimentary record and tectonic implication of Mesozoic rifting in southeast Mongolia.GSA Bulletin[M].2001,113 (12): 1560-1579.
    28. Green P F. A new look at statistics in fission track dating[J]. Nuclear Tracks, 1981, (5):77-86.
    29. Green P F. On the thermo-tectonic evolution of northern England:Evidence from fission track analysis[J]. Geology,1986,123(5):493-506.
    30. Grove M, Harrison TM,40Ar* diffusion in Fe-rich biotite. Am Mineral, 1996,81:940-951.
    31. Guedes S, Hadler N, Oliverira K M G, et al. Kinetic model for the annealing of fission tracks in minerals and its application to apatite[J]. Radiation Measurements,2006,41(4):392-398.
    32. Harding T P. Petroleum traps associated with wrench fault. AAPG Bulletin, 1974,58(7):1290-1304.
    33. Harding T P. Seismic characteristics and identification of negative flower structures, positive flower structures and positive structural inversion. AAPG Bulletin,1985,69(4):1016-1058.
    34. Harding T P. Identification of wrench faults using subsurface structural data: criteria and pitfalls. AAPG Bulletin,1990,75(11):1779-1788.
    35. Harkard F, Cogne J P, Kravchinsky V A. A new Late Cretaceous paleomagnetic pole for the west of Amuria block (KhurmenUul, Mongolia) [J]. EarthPlanet. Sei. Lett, 2005,236:359-373.
    36. Harrison TM, Armstrong RL, Naeser CW, Harakal JE, Geochronology and thermal history of the Coast Plutonic Complex, near Prince Rupert, British Columbia [J]. Can J Earth Sci,1979,16:400-410.
    37. Harrison TM, Duncan I, McDougall I, Diffusion of 40Ar in biotite:Temperature, pressure andcompositional effects [J]. Geochim Cosmochim Acta,1985,49: 2461-2468.
    38. Harrison TM, Grove M, Lovera OM, Zeitler PK. Continuous thermal histories from inversion of closure profi les [J]. Rev Mineral Geochem,2005,58:389-409.
    39. Hong-Hong Wei, Jun-Lai Liu, Qing-Ren Meng. Structural and sedimentary evolution of the southern Songliao Basin, northeast China, and implications for hydrocarbon prospectivity[J]. AAPG Bulletin,2010,94(4):533-566.
    40. Hurford A J, Green P F. A users'guide to fission-track dating calibration[J]. Earth Planet Sci Lett,1982,59(2):343-354.
    41. Jean D R. Stress field, a key to oil migration[J]. AAPG,1981,65:74-85.
    42. Jianye Ren, Kensaku Tamaki, Sitian Li, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas [J]. Tectonophysics, 2002,344,175-205.
    43. Jingeng Sha. Cretaceous stratigraphy of northeast China:non-marine and marine correlation[J]. Cretaceous Research 28,2007,146-170.
    44. Kenji S, Yuka H, Hiroyuld I. Sr and Nd isotopic compositions of the magma source beneath north Hokkaido, Japan comparison with the back-arc side in the NE Japan arc[J]. J.Volcano. Geo. Res,2004,134 (1-2):57-75.
    45. Ketcham RA, Donelick RA, Carlson WD. Variability of apatite fi ssion-track annealing kinetics:Ⅲ. Extrapolation to geological time scales. Am Mineral 1999,84:1235-1255.
    46. Ketcham RA, Donelick RA, Donelick MB. AFTSolve; a program for multi-kinetic modeling of apatite fission-track data. Am Mineral,2003,88:929.
    47. Ketcham RA, Forward and inverse modeling of low-temperature thermochronometry data [J]. Rev Mineral Geochem,2005,58:275-314.
    48. Ketcham, R. A., Donelick, R. A., and Donelick,M. B. AFTSolve:A program for multikinetic modeling of apatite fission track data [J]. Geological Materials Research,2000,2:1-32.
    49. Laslett, G. M., Green, P. F., Duddy, I. R., and Gleadow, A. J. W., Thermal annealing of fission tracks in apatite.2. A quantitative discription [J]. Chemical Geology,1987,65:1-13.
    50. Lister GS, Baldwin SL. Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh [J]. Tectonophysics,1996,253:83-109.
    51. Liu J L, Davis G A, Lin Z Y, Wu F Y. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of Eastern Liaoning,Korea and contiguous areas[J]. Tectonophysics, 2005,407(1-2):65-80.
    52. Lovera OM, Richter FM, Harrison TM.40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes [J]. J Geophys Res,1989,94:17,917-17,935.
    53. Lutz TM, Omar GI. An inverse method of modeling thermal histories from apatite fi ssion-track data [J]. Earth Planet Sci Lett,1991,104:181-195.
    54. M. L. Balestrieri, E. Abbate, G. Bigazzi, Insights on the thermal evolution of the Ligurian Apennines (Italy) through fission-track analysis [J]. Jourrnal of the Geological Society, London,1996,153:419-425.
    55. M. A. d'Alessio, A. E. Blythe, R. Burgmann, No frictional heat along the San Gabriel fault, California:Evidence from fission-track thermochronology [J]. Geology,2003,31(6):541-544.
    56. Maruyam S, Gakukimura Y, Terabayashi M. Paleogeographic maps of the Japanese islands:plate tectonic synthesis from 750 Ma to the present[J]. The Island Arc,1997,6(1):121-142.
    57. Matthias Bernet, John I. Garver,2005, Fission-track Analysis of Detrital Zircon [J]. Mineralogy&Geochemistry,58:205-238.
    58. Murakami M, Tagami T, Dating pseudotachylyte of the Nojima fault using the zircon fission-track method [J]. Geophys Res Lett,2004,31:10.
    59. Murakami M, Yamada R, Tagami T, Detection of frictional heating of fault motion by zircon fission track thermochronology [J]. Geochim Cosmochim Acta, 2002,66:A537
    60. Northrup C J, Royden L H and Burchfiel B C. Motion of the Pacific plate relative to Eurasia and potential relation to Cenozoic extension along the eastern margin of Eurasia[J].Geology,1995,23(8):719-722.
    61. Otofuji Y, Matsuda T, Enami R., et al. Late Cretaceous palaeomagnetic results from Sikhote Alin, far eastern Russia:tectonic implications for the eastern margin of the Mongolia Block[J]. Geophys. J. Int.2003.152:202-214.
    62. Park Y H, Doh S J, Ryu I C, et al. A synthesis of Cretaceous Palaeomagnetic data from South Korea:tectonic implications in East Asia[J]. Geophys. J. Int, 2005,162:709-724.
    63. Peter W. Reiners, Zircon (U-Th)/He Thermochronometry [J]. Mineralogy and Geochemistry,2005,58:49-94
    64. Phillip A. Armstrong, Thermochronometers in Sedimentary Basins [J]. Mineralogy and Geochemistry,2005,58:499-525.
    65. Raymond A. Donelick, Paul B.O'Sullivan, Richard A. Ketcham. Apatite Fission-Track Analysis [J].Mineralogy and Geochemistry,2005,58:49-94.
    66. Reddy S M, Potts G J., Constraining absolute deformation ages:the relationship between deformation mechanisms and isotope systematic [J]. Journal of Structural Geology,1999,21:1255-1265.
    67. Reiners P W, Ehlers T A, Zeitler P K, Past, present, and future of thermochronology [J]. Mineralogical Society of America,2005,58(1):1-18.
    68. Ritts B D, Darby B J, Cope T. Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt, northern North China Block, Inner Mongolia[J]. Tectonophysics,2001,339:239-258.
    69. Stuwe K, Foster D,2001,40Ar/39Ar, pressure, temperature and fission track constraints on the age and nature of metamorphism around the main central thrust in the eastern Bhutan Himalaya [J]. Journal of Asian Earth Sciences,19:85-95.
    70. Svenningsen OM. Thermal history of thrust sheets in an orogenic wedge:40Ar/39Ar data from the polymetamorphic Seve Nappe Complex, northern Swedish Caledonides [J]. Geological Magazine,2000,137(4):437-446.
    71. Tagami T, Dumitru TA, Provenance and thermal history of the Franciscan accretionary complex Constraints from zircon fi ssion track thermochronology [J]. J Geophys Res.1996,101:11,353-11,364.
    72. Tagami T,O'Sullivan PB. Fundamentals of fission-track thermochronology [J]. Rev Mineral Geochem,2005,58:19-47.
    73. Tagami T, Zircon fission-track thermochronology and applications to fault studies [J]. Rev Mineral Geochem,2005,58:95-122.
    74. Taira A. Tectonic evolution of the Japanese Island Arc system[J]. Annual Review of Earth and Planetary Sciences 2001,29:109-134.
    75. Takahiro Tagami, Paul B.O'Sullivan, Fundamentals of Fission-Track Thermoch-ronology [J]. Mineralogy and Geochemistry,2005,58:19-47.
    76. Tian ZaiYi.Han Ping, Xu Keding, etal. The Mesozoic-Cenozoic East China rift system[J]. Tectonophysics,1992,208:341-363.
    77. Timoth M. Kusky. Geophysical and geological tests of tectonic models of the North China Craton [J].Gondwana Research,2011,20:26-35.
    78. Turner, G. The distribution of potassium and argon in chonddrites. In Origin and Distribution of the Element. L.R. Ahrens [J]. Ed, Pergamon Press. London. 1968,387-398.
    79. Turner, G. Thermal histories of meteorites try the method [J], In meteorite Research. PM. Millman, ed.,1969,417-447
    80. Vincent S J, Allen M B. Evolution of the Minle and Chaoshui basins, China: Implications for Mesozoic strike-slip basin formation in central Asia[J].Geol.Soc. Am. Bull,1999,111:725-742.
    81. Wagner G A, Van den haute P. Fission-track dating, Kulwer Academic Publishers. 1992,26-31.
    82. Wagner, G.A., and Reimer, G.M. Fission track tectonics;the tectonic interpretation of fission track apatite ages [J]. Earth and Planetary Science Letters,1972,14:263-268.
    83. Wagnerg. A., Reimerg. M.,Jager, E. Cooling ages derived by fission-track, mica Rb-Sr and K-Ar dating:the uplift and cooling history of the Central Alps [J]. Memorie dell'Universita di Padova.1977,30,1-27.
    84. Wang P J, Liu W Z, Wang S X, etal.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China:Constraints on Stratigraphy and Basin Dynamics[J]. International Journal of Earth Sciences.2002,91(2):331-340.
    85. Wang Y, Zhang X M, Zhang J F, et al.40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau [J]. GSA bulletin,2005,117: 1336-1346.
    86. Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005,233:103-119.
    87. Yamada R, Tagami T, Nishimura S, Ito H, Annealing kinetics of fission tracks in zircon:an experimental study [J]. Chem Geol,1995,122:249-258.
    88. Yang J H, Wu F Y, Wilde S A. Geodynamic setting of large-scale late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning[J]. Ore Geology Review,2003,23:125-152.
    89. Yin An, Nie S. A. A phanerozoic palinspastic reconstruction of China and its neighboring region[M]. In:Yin A, Harrison T M, eds. The tectonic evolution of Asia. Cambridge:Cambridge University Press,1996.442-486.
    90. Zeitler, P.K., Herczeg, A. L., McDougall, I., and Honda, M. U-Th-He dating of apatite; a potential thermochronometer [J], Geochimica et Cosmochimica Acta, 1987,51:2865-2868.
    91. Zhao X X. New paleomagnetic results from North China:Collision and suturing with Siberia and Kazakstan[J]. Tectonophysics,1990,181:43-81.
    92. Zonenshain L P. Pacific and Kula/Eurasia relation motions during the last 130Ma and their bearing on orogenesis in Northeast Asia[M]. In:Monger J W H, Francheteum F eds. Circum-Pacific orogenic belts and evolution of the Pacific Ocean basin. Washington:American Geophysical Union.1987,29-47.
    93.操应长.梨树断陷营城组物源体系、沉积特征及砂体预测研究报告[R].中国石化东北油气分公司勘探开发研究院,2009.
    94.曹成润,董晓伟.东北北部中新生代盆地群构造与深部结构特征[J].煤田地质与勘探,2008,36(2):1-5.
    95.曹熹,党增新,张兴洲.佳木斯复合地体[M].长春:吉林科技出版社,1992.
    96.陈安定,万景林,郭彤楼.裂变径迹研究构造抬升应用实例[J].石油学报,2004,25(4):29-32.
    97.陈孔全,徐言岗,唐黎明,等.松辽盆地十屋断陷油气成藏条件[J].石油与天然气地质,1995,(4):337-342.
    98.陈孔全,徐言岗,张文淮,等.松辽盆地南部有机包裹体特征及石油地质意义[J].石油与天然气地质,1995,16(2):138-147.
    99.陈新军,徐旭辉,朱建辉,等.松辽盆地十屋断陷层序地层研究[J].石油实验地质,2007,(5):462-465.
    100.崔永谦,童亨茂,李先平,等.二连盆地早燕山期构造体质及原型盆地推测[J].地质学报.2011,85(8):1265-1273.
    101.单伟.松辽盆地南部长岭、十屋断陷层构造演化与沉积响应研究[D].北京:中国地质 大学(北京)博士论文.2009.
    102.丁超,陈刚,李振华,等.鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析[J].现代地质,2011,25(3):582-588.
    103.董树文,李廷栋,钟大赉,等.侏罗纪/白垩纪之交东亚板块汇聚的研究进展和展望[J].中国科学基金.2009(5):281-286.
    104.董树文,张岳桥,陈宣华,等.晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J].地球学报.2008,29(3):306-317.
    105.杜金虎.二连盆地隐蔽油气藏勘探[M].北京:石油工业出版社,2003.
    106.方石,刘招君,郭巍.松辽盆地与大兴安岭新生代热构造耦合研究[J].核技术,2005,28(9):717-721.
    107.冯明,陈力,万天丰,等.吉林省大黑山条垒南段构造演化与成矿作用[J].吉林地质,1995,14(3):55-59,16.
    108.冯明,张先,吴继伟.构造地质学[M].北京:地质出版社,2007.
    109.高福红,许文良,杨德彬,等.松辽盆地南部基底花岗质岩石锆石LA-ICP-MSU-Pb定年:对盆地基底形成时代的制约[J].中国科学D辑:地球科学,2007,37(3):331-335.
    110.高瑞祺,张莹,崔同翠等.松辽盆地白垩纪石油地层[M].北京:石油工业山版社.1994.
    111.葛荣峰,张庆龙,王良书,等.松辽盆地构造演化与中国东部构造体制转换[J].地质论评,2010,56(2):180-195.
    112.郭亚俊,赵志刚,胡金堂,等.东戈壁盆地宗巴音凹陷构造发育特征研究[J].中国石油勘探,2009,(2):24-22,30.
    113.汉丘克A И唐克东.那丹哈达山脉和相邻的锡霍特阿林地区的古洋[J].中国地质科学院.中国地质科学院沈阳地质矿产研究所集刊,1993,(2):1-9.
    114.何生,陶一川,姜鹏.利用多种古地温计研究松辽盆地东南隆起区的地热史[J].地球科学-中国地质大学学报,1995,(3):3-13.
    115.何兴华.松辽盆地南部及其深层油气系统形成演化与勘探潜力分析[D].长春:吉林大学.2005.
    116.黑龙江省地质矿产局.黑龙江省区域地质志[M].地质出版社.1993.
    117.侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009:11-20,73-74,77.
    118.侯启军.伊通盆地演化与油气成藏动力学[M].石油工业出版社,2009.
    119.胡正国.1987.平移断层和转换断层概念、特征和形成机制的探讨.地质地球化学,1987(02):18-26.
    120.黄宝春,朱鸿,谭承泽.吉林省东部地区古地磁结果的大地构造意义[J].地球物理学报,1994,37(增刊2):304-315.
    121.黄光明.伊通盆地白垩纪泉头期构造格架探讨[J].地质与资源,2009,(1):1-2.
    122.吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988:137-176.
    123.贾宏伟,康立功.2004.十屋断陷构造发育特征及油气分布研究.安徽地质,14(3):180-184.
    124.姜华,王华,李俊良,林正良,方欣欣,蔡佳,吕学菊.2008.珠江口盆地珠三坳陷断层特征及其对油气成藏的控制作用.石油实验质,30(5):460-466.
    125.焦贵浩.二连盆地裂谷构造演化与油气[M].北京:石油工业出版社,2003.
    126.解国爱,张庆龙,王良书,等.松辽盆地南缘十屋断陷构造物理模拟研究[J].地质通报,2009,(4):420-430.
    127.解习农,焦赳赳,熊海河.松辽盆地十屋断陷异常低压体系及其成因机制[J].地球科学 -中国地质大学学报,2003,(1):61-66.
    128.荆惠林.东北晚中生代聚煤盆地与成矿规律[J].中国煤田地质,1995,7(1):1-5.
    129.康铁笙,王世成.地质热历史研究的裂变径迹法[M].科学出版社,1991.
    130.来庆洲,丁林,王宏伟,等.青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J].中国科学D辑(地球科学),2006,36(9):785-796.
    131.李超文.吉林省东南部晚中生代火山作用及其深部过程研究[D].中国科学院研究生院(广州地球化学研究所博士论文),2006.
    132.李家康.2001.渤海油气成藏特点及与断层关系.石油学报,22(2):26-31.
    133.李建民.海—塔盆地开发区块断裂系统及对油水关系控制作用[D].大庆:大庆石油学院博士论文.2010.
    134.李军辉,卢双舫,蒙启安,曹瑞成,朱德丰,刘赫.2011.海拉尔盆地呼和湖凹陷断裂形成演化及其对油气的控制作用.地质科学,46(4):929--941.
    135.李君,黄志龙,王海.烃源岩生烃时效性对油气分布的控制作用—以松辽盆地南部东南隆起区梨树断陷为例[J].天然气工业,2006,26(9):14-16.
    136.李立兴,松权衡,王登红,等.吉林福安堡钼矿中辉钼矿Re-0s同位素年龄及成矿作用探讨[J].岩矿测试,2009,28(3):283-287.
    137.李明,韩淑霞,李瑞磊.松辽盆地南部梨树断陷二、三维地震资料连片解释成果报告[R],中国石化东北油气分公司勘探开发研究院,2009.
    138.李明诚.石油与天然气运移(第二版)[M].北京:石油工业出版社,1994.
    139.李瑞磊,于鹏,杨饶平,等.梨树断陷高精度三维地震勘探效果分析.2010,49(6):584-590.
    140.李三忠,索艳慧,戴黎明,等.渤海湾盆地形成与华北克拉通破坏[J],地学前缘,2010,17(4):64-89.
    141.李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J],海洋地质与第四纪地质,1998,18(3):45-53.
    142.李双林.块体的拼合级序与镶嵌造山作用——以兴蒙造山带为例[A].中国科学院博士后论文集[C],贵阳:贵州科技出版社,1996,129-123.
    143.李思田,黄家福,杨士恭,等.霍林河煤盆地晚中生代沉积构造史和聚煤特征[J].地质学报,1982,(3):244-254.
    144.李思田,路凤香,林畅松,等.中国东北中新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社,1997.186-196.
    145.李思田,杨士恭,程守田.中国东部及邻区中新生代裂陷作用的大地构造背景[A].见:王鸿祯,刘本培,李思田.中国及邻区构造古地理和生物古地理[C],武汉:中国地质大学出版社,1990,109-124.
    146.李思田,杨士恭,吴冲龙,等.中国东北部晚中生代裂陷作用和东北区断陷盆地系[J].中国科学B辑,1987,(2):185-195.
    147.李思田.中国东北部晚中生代断陷型煤盆地的沉积作用和构造演化[J].地球科学,1982,18(3):275-294.
    148.李忠,刘少峰,张金芳,王清晨.燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应[J].中国科学(D辑),2003,33(10):931-940.
    149.林建平,万天丰,冯明.吉林省大黑山条垒南段古生代晚期—中生代构造演化[J].现代地质,1994,8(4):467-473.
    150.林强,葛文春,孙德友,等.东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2):129-139.
    151.林强,葛文春,孙德友,等.东北亚中生代火山岩的地球动力学意义[J].地球物理学报.1999.42(增刊):75-84.
    152.林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质科学.1998,33(2):129-139.
    153.刘池洋,孙海山.改造型盆地类型划分[J].新疆石油地质,1999,20(2):79-82.
    154.刘池洋,杨兴科.改造盆地研究和油气评价的思路[J].石油与天然气地质,2000,21(1):11-14.
    155.刘池洋,赵红格,谭成仟,等.多种能源矿产赋存与盆地成藏(矿)系统[J].石油与天然气地质.2002,2(9):131-142.
    156.刘池洋.100Ma BP. (+10Ma)中国大陆东部中新生代地球动力学环境的重大转换时期[C]//何晓雄.中生代以来中国大陆板块作用过程学术研讨会论文摘要集.合肥:合肥工业大学,2005:108.
    157.刘池洋.沉积盆地动力学与盆地成藏(矿)系统[J].地球科学与环境学报,2008,30(1):1-23.
    158.刘池洋.沉积盆地动力学与盆地成藏(矿)系统[J].地球科学与环境学报.2008,30(1):1-23.
    159.刘池洋.后期改造强烈--中国沉积盆地的重要特点之一[J].石油与天然气地质,1996,17(4):255-261.
    160.刘池洋.后期改造与古地质构造恢复[J].西北大学学报(自然科学版),1991,21(增刊):1-8.
    161.刘池洋.盆地动态演化研究的基础:原始盆地恢复—以柴达木盆地为例[C].赵重远,刘池洋,姚远.含油气盆地地质学研究进展.西安:西北大学出版社,1993,26-32.
    162.刘池洋.盆地构造动力学研究的弱点、难点及重点[J].地学前缘,2005,12(3):113--124
    163.刘池洋.中国东部晚侏罗世一早白垩世地球动力学环境探讨[C]//何晓雄.中生代以来中国大陆板块作用过程学术研讨会论文摘要集.合肥:合肥工业大学,2005:109.
    164.刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制[J].地学前缘,2000,7(04):477-486.
    165.刘和甫,夏义平,殷进垠,尚培乐.1999.走滑造山带与盆地藕合机制.地学前缘,6(3):121-132.
    166.刘洪,邱检生,王德滋,等.鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年--以五莲分岭山火山机构为例[J],高校地质学报,2001,7(3):351-355.
    167.刘俊来,Gregory A·Davis,纪沫,等.地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束[J].地学前缘,2008,15(3):72-81.
    168.刘少峰,张国伟.盆山关系研究的基本思路、内容和方法[J].地学前缘,2005,12(3):101-111.
    169.刘少峰.松南地区基底与石炭-二叠系地层分布[J].中石化东北油气分公司研究报告,2010.
    170.刘顺生,张峰等编著.裂变径迹年龄测定—方法、技术和应用[M].地质出版社,1984,第1版.
    171.刘祥.中国东北地区新生代火山活动构造控制及火山灾害[J].世界地质,1999,(2):23-29.
    172.刘小平,吕修祥,解启来,等.松辽盆地十屋断陷深层油气成藏过程与模式[J].现代地质,2010,24(6):1132-1139.
    173.刘招君,汪筱林,刘万洙,等.满洲里—绥芬河地学断面域松辽-海拉尔中生代盆地形成机制[A]:MSGT地质课题组编.中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究[C]:地震出版社,1994,14-25.
    174.刘震;付东阳;肖伟;杜金虎;易士威:党虎强.二连盆地三种典型构造带岩性油藏形成模式分析[J]石油实验地质.2007.
    175.龙胜祥.松辽盆地十屋—德惠地区断裂特征及其与油气的关系[J].现代地质,1997,(4):501-509.
    176.吕超.三江地区中生代盆地原型与古地理变迁[D].《山东科技大学硕士论文》2010.
    177.罗群.中国东北地区断裂系统及其控藏特征[J].石油实验地质,2010,32(3):205-210.
    178.罗志立,姚军辉.试论松辽盆地新的成因模式及其地质构造和油气勘探的意义[J].科学发展与研究,1992,(1):1-10.
    179.马醒华,杨振宇.中国三大地块的碰撞拼合与古欧亚大陆的重建[J].地球物理学报,1993,36(04):476-488.
    180.毛建仁,高桥浩,厉子龙,等.中国东南部与日本中—新生代构造-岩浆作用对比研究[J].地质通报,2009,28(7):7-12.
    181.孟庆任,胡健民,袁选俊,等.中蒙边界地区晚中生代伸展盆地的结构、演化和成因[J].地质通报,2002,21(4-5):224-231.
    182.内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1993.
    183.牛树根.华北地台北侧的古板块构造演化[J].地质科技情报,1993,12(1):17-21.
    184.裴福萍,许文良,杨德彬,等.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约[J].地球科学-中国地质大学学报,2008,33(5):9-15.
    185.裴军令,杨振宇,赵越,等.2009.中国东北及邻区白垩纪古地磁分析与块体旋转运动动力学背景.地质学报,83(5):617-627.
    186.蒲仁海.十屋断陷高精度层序地层研究与目标优选报告[R].中石化东北局,2009.
    187.曲少东,刘池洋,宋立军,等.梨树断陷秦家屯—秦东断裂带构造特征及形成演化[J].地质科学,2013,48(1):245-253.
    188.曲少东,刘池洋,宋立军,等.松辽盆地梨树断陷下白垩统断层特征研究[J].地下水,2012,34(6):140-142.
    189.邵济安,唐克东,王成源.那丹哈达地体的构造特征及其演化[J].中国科学,1991,(7):744-751.
    190.邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995,1-185.
    191.赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,29(2):105-119.
    192.马杏垣,刘和甫,王维襄,等.中国东部中新生代裂隙作用和伸展构造[J].地质学报,1983,(10):22-32.
    193.绍济安,张履桥,肖庆辉,李晓波.中生代大兴安岭的隆起——一种可能的陆内造山机制[J].岩石学报.2005,21(3):789-794.
    194.沈传波,梅廉夫,徐振平,等.大巴山中—新生代隆升的裂变径迹证据[J].岩石学报,2007,23(11):2901-2910.
    195.沈传波,梅廉夫,凡元芳,等.磷灰石裂变径迹热年代学研究的进展与展望[J].地质科技情报,2005,24(2):57-63.
    196.沈武显.松辽盆地十屋断陷层序沉积特征及构造地貌的控制作用[D].北京:中国地质大学博士学位论文,2010.
    197.十屋地区地质综合研究与目标评价报告[R],中国石化东北油气分公司勘探开发研究院.2009.
    198.史建南,孔庆莹.赛汉塔拉凹陷早白垩世沉积相与层序地层特征[J].石油地质与工程.2009-03-25
    199.水谷伸治郎,邵济安,张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系[J].地质学报,1989,63(3):204-215.
    200.王国栋.松辽盆地上白垩统旋回地层与坳陷盆地的沉积演化[D].吉林大学博士毕业论文,2010.
    201.宋建国,窦立荣.中国东部中新生代含油气盆地构造与油气系统[M].北京:石油工业出版社,1997
    202.宋立军.盆地原型及其迭加改造分析的思路与方法——以早中生代永梅盆地为例[J].石油地质与工程,2009,23(5):4-7.
    203.孙晓猛,龙胜祥,张梅生,等.佳木斯一伊通断裂带大型逆冲构造带的发现及形成时代[J].石油与天然气地质,2006,27(5):637-643.
    204.孙晓猛,朱德丰,郑常青,单玄龙,程日辉,孙庆春.松辽盆地东缘中生代断裂构造特征、形成期次及其储层意义.吉林大学学报(地球科学版),2007,37(6):1055-1063.
    205.孙莹,刘永江,孙晓猛,等.吉林大黑山条垒南段构造特征及隆升时代[J].世界地质,2008,27(1):30-35.
    206.孙永河,漆家福,吕延防,韩华君.渤中坳陷断裂构造特征及其对油气的控制.石油学报,2008,29(5):669-675.
    207.覃素华,袁智广,刘福春.松南盆地十屋断陷油气成藏条件分析[J].天然气勘探与开发,2003,26(2):77-84.
    208.唐克东,邵济安,李景春,等.吉林延边缝合带的性质与东北亚构造.地质通报[J].2004,23(9-10):885-891.
    209.田继强,贾承造,段书府,等.海拉尔盆地贝尔凹陷走滑断层特征及石油地质意义[J].天然气地球科学,2011,22(2):293-298.
    210.万天丰.中国大地构造学纲要[M].地质出版社,2005.
    211.汪新文,刘友元.东北地区前中生代构造演化及其与晚中生代盆地发育的关系[J].现代地质.1997,4:434-443.
    212.汪新文.中国东北地区中-新生代盆地构造演化与油气关系[M].地质出版社,2007.
    213.王成辉,松权衡,王登红,等.吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义[J].岩矿测试,2009,28(3):269-273.
    214.王东坡,刘招君,刘立.松辽盆地演化与海平面升降[M].北京:地质出版社.1994.
    215.王国栋.松辽盆地上白垩统旋回地层与坳陷盆地的沉积演化[J].吉林大学博士学位论文,2010.
    216.王惠民,靳涛,杨红霞.银根盆地查干凹陷火成岩岩相特征及其识别标志[J].新疆石油地质,2005,26(3):249-252.
    217.王骏,王东坡,C.A.乌沙科夫.东北亚沉积盆地的形成及其含油气远景[M].地质出版社,北京,2009.
    218.王凯红,贾海明,张俊影,彭玉鲸.中国东北44Ma/42Ma火山时间的出现及其地质找矿意义[J].地质与资源,2008,,17(3):161-166.
    219.王荣湖,金成洙,李景春,等.排山楼金矿床40Ar-39Ar年龄及其地质意义[J].东北大学学报(自然科学版),2008,29(10):1482-1485.
    220.王锐.十屋断坳区断裂系统对油气成藏的作用[J].天然气工业,2000,20(增刊):34-37
    221.王涛,郑亚东,张进江,等.华北克拉通中生代伸展构造研究的儿个问题及其在岩石圈减薄研究中的意义[J].地质通报,2007,26(9):1154-1166.
    222.王微,许文良,纪伟强,等.辽东中生代晚期和古近纪玄武岩及深源捕虏晶——对岩石圈地幔性质的制约[J].高校地质学报,2006,(1):30-40.
    223.王五力,付俊或,杨雅军.中国东北晚中生代——新生代盆山体系构造演化及成因探讨[J].地质与资源.2012,21(1):17-26.
    224.王小凤,李中坚,陈柏林.郯庐断裂带.北京:地质出版社,2000,1—374.
    225.吴冲龙,张善文,毛小平,等.胶莱盆地原型与盆地动力学分析[M].中国地质大学出版社,2009.
    226.吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,2008,24(1):1145-1174.
    227.吴刚,2009,二连盆地侏罗纪—白垩纪原型盆地恢复[D].中国石油大学硕士学位论文
    228.夏义平,刘万辉,徐礼贵,郑良合.走滑断层的识别标志及其石油地质意义.中国石油勘探,2007,(01):17-23.
    229.向才富,冯志强,庞雄奇,等.松辽盆地晚期热历史及其构造意义:磷灰石裂变径迹(AFT)证据[J].中国科学D辑:地球科学,2007,37(8):1024-1031.
    230.肖安成,杨树锋,陈汉林.二连盆地形成的地球动力学背景关[J].石油与天然气地质.2001,22(2):137-140,145.
    231.肖龙,王方正,王华,等.地幔柱构造对松辽盆地及渤海湾盆地形成的制约[J].地球科学,2004,29(03):283-292.
    232.徐公愉.东亚地区古亚洲洋的构造特点[J].地质科技通报,1993,(3):2-6.
    233.徐嘉炜.1995.论走滑断层作用的几个主要问题.地学前缘,1995(02):125-136.
    234.徐义刚,李洪颜,庞崇进,等.论华北克拉通破坏的时限[J].科学通报,2009,54(14):1974-1989.
    235.许文良,裴福萍,高福红,等.伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义[J].地球科学——中国地质大学学报,2008,33(2):145-150.
    236.许文良,孙德有.满洲里—绥芬河地学断面岩浆作用与地壳结构[M].北京:地质出版社,1994.
    237.闫全人,高山林,王宗起,等.松辽盆地火山岩的同位素年代、地球化学特征及意义[J].地球化学,2002,31(02):169-179.
    238.杨峰平,陈发景,王玉华,等.松辽盆地中央坳陷磷灰石裂变径迹分析[J].石油勘探与开发,1995,22(6):20-25.
    239.杨惠心,董学斌,李朋武.满洲里—绥芬河地学断面域及其邻域主要地体的古地磁特征和演化;中国满洲里—绥芬河地学断面地球物理场及深部构造特征研究,北京:地震出版社,1994,167-185.
    240.杨立英,李瑞磊,张江涛,等.松辽盆地南部十屋断陷构造特征研究[J].地球物理学进展,2005,(3):775-779.
    241.杨涛.二连裂谷系含油气系统特征[J].石油勘探与开发,1996,23(6)16-19.
    242.杨万里,高瑞祺,郭庆福.松辽盆地陆相油气生成运移和聚集.哈尔滨[M].黑龙江科学技术出版社.1985.
    243.殷长建,彭玉鲸,靳克.中国东北东部中生代火山活动与泛太平洋板块[J].中国区域地质,2000,19(3):303-311.
    244.俞凯,闫吉柱,杨振升,姚柏平.十屋断陷构造格架演化与油气的关系.天然气工业,2000,20(5):32-35.
    245.喻顺,吕修祥,柳广弟,等.断陷盆地构造枢纽部位油气富集规律[J].中国石油大学学报,2011,35(2):39-44,56.
    246.袁红军,刘民,王振升,等.十屋断陷小宽断裂带的走滑特征研究及其勘探前景分析[J].石油物探,2009,48(6):596-600,614.
    247.袁万明,杨志强,张招崇,等.安徽省黄山山体的隆升与剥露[J].中国科学:地球科学,2011,41(10):1435-1443.
    248.张顺,付秀丽,张晨晨.松辽盆地姚家组一嫩江组地层层序及沉积演化.沉积与特提斯地质,2011,31(2):34--42.
    249.张宏福,周新华,范蔚茗,等.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[M].岩石学报,2005,21(4):1271-1280.
    250.张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式[J].地学前缘,2006,13(2):65-75.
    251.张吉衡,高山,吴福元,葛文春.大兴安岭中南段中生代火山岩年代学初步研究[R].全国岩石学与地球动力学暨化学地球动力学研讨会,2007.
    252.张景廉,卫平生,张虎权,等.再论石油与矿床相互关系-四论油气与金属(非金属)矿床的相互关系[J].新疆石油地质,2006,27(4):493-497.
    253.张恺,陆克政,沈修志.石油构造地质学[M].北京:石油工业出版社,1989.
    254.张拴宏,赵越.与大型走滑断裂相关的旋转.地质科技情报,2006,25(3):29-34.
    255.张晓东,王颖,李桂荣.北方侏罗、白垩系盆地形成、演化及地球动力学背景[J].大庆石油地质与开发,2005,24(5):6-8.
    256.张兴洲,周建波.大庆探区外围中、新生代断陷盆地群演化与油气前景[R].国土资源部油气战略研究中心研究报告,2009.
    257.张兴洲.黑龙江岩系—古佳木斯地块加里东缝合带的证据[D].长春地质学院学报(博士论文集),1992,94-101.
    258.张旭东.东北中生代断陷盆地群形成机制与油气远景.吉林大学硕士学位论文,2007.
    259.张艳斌,吴倡元,李惠民,等.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄[J].岩石学报,2002,18(4):475-481.
    260.张玉明,张青林,王明君,杨木壮.松辽盆地十屋断陷反转构造样式及其油气勘探意义.地球学报,2006,27(2):151-156.
    261.张允平.东北亚地区晚侏罗—白垩纪构造格架主体特点[J].吉林大学学报:地球科学版.2011,41(5):1267-1284.
    262.赵澄林,祝玉衡.二连盆地储层沉积学[M].北京:石油工业出版社,1996
    263.赵海玲,邓晋福,陈发景,胡泉,赵世柯.东部地区新生代火山作用、深部作用与大陆裂谷型盆地[J].1996,21(6):615-619.
    264.赵红格,刘池洋,姚亚明,等.鄂尔多斯盆地西缘差异抬升的裂变径迹证据[J].西北大学学报(自然科学版),2007,37(3):470-474.
    265.赵孟为.磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用-以鄂尔多斯盆地为例[J].地球物理学报,1996,39(增刊):238-248.
    266.赵越,徐守礼,杨振宇.沿大型走滑断裂系的隆升.地质科学,1996,31(1):1-14.
    267.赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,29(2):105-119.
    268.赵重远,刘池洋,姚远.含油气盆地地质学研究进展[M].西安:西北大学出版社,1993.1-271.
    269.赵重远,刘池洋.华北克拉通沉积盆地形成与演化及其油气赋存[M].西安:西北大学出版 社,1990.
    270.赵重远,周立发.成盆期后改造与中国含油气盆地地质特征[J].石油与天然气地质.2000,21(1):7-10.
    271.郑德文,张培震,万景林,等.碎屑颗粒热年代学[J].地震地质,2000,22:25-34.
    272.郑建平,路凤香,余淳梅,等.华北克拉通破坏的物理、化学过程:地幔橄榄岩证[J].矿物岩石地球化学通报,2007,26(4):326-335.
    273.郑亚东,Davis,GA,王棕,等.内蒙古大青山大型逆冲推覆构造[J].中国科学(D辑),1998,28(4):289-295,
    274.郑亚东.中蒙边界新发现特大型推覆构造及伸展变质核杂岩[J].中国科学,B辑,1990,(12):1299-1305.
    275.钟大资,Tapponnier P,吴海威,张连生,嵇少丞,钟嘉猷,刘小汉,U.Schaerer,R.Lacassin, P. Leloup.大型走滑断层—碰撞后陆内变形的重要方式.科学通报,1989,34(7):526-529.
    276.周建波,张兴洲,马志红,等.中国东北地区的构造格局与盆地演化[J].石油与天然气地质,2009,30(5):530-538.
    277.周靖,张春芬,王守田.秦家屯油气田勘探成果及油气评价.天然气工业,2000,20(增刊):57-59.
    278.周靖,张春芬等.秦家屯油气田勘探成果及油气评价[J].天然气工业,2000,20:57-59.
    279.周新华华北中-新生代大陆岩石圈转型的研究现状与方向——兼评”岩石圈减薄”和”克拉通破坏”[J].高校地质学报,2009,15(1):1-18.
    280.周勇,潘裕生.茫崖—肃北段阿尔金断裂右旋走滑运动的确定.地质科学,1998,33(1):9-16.
    281.周中毅,潘长春.沉积盆地古地温测定方法及其应用[M].广州:广东科技出版社,1992.1-103.
    282.周祖翼,毛风鸣,廖宗廷,等.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用[J].沉积学报,2001,19(3):456-458.
    283.朱日祥,邵济安,潘永信,史瑞萍,施光海,李大明.辽西白垩纪火山岩古地磁测定与陆内旋转运动.科学通报,2002,47(17):1335-1340.
    284.朱日祥,杨振宇,吴汉宁等.中国主要地块显生宙古地磁视极移曲线与地块运动[J].中国科学(D辑).1998,28(增刊):1-16.
    285.朱夏,徐旺主编.中国中新生代沉积盆地[M].石油工业出版社,1990,1-230.
    286.左国朝,刘义科,李相博.蒙甘青地区侏罗纪开合盆山构造格局及原型盆地沉积特征[J].地质通报,2004,32(3):261-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700