用户名: 密码: 验证码:
基于非嵌段双亲大分子改性碳纳米管功能涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自碳纳米管被发现后,其独特的形态和结构吸引了众多研究者来探索其新的性能。然而,由于碳纳米管高的比表面积和管间强的范德华力使其非常容易发生团聚,导致碳纳米管几乎不溶于任何溶剂。此外,由于其特殊的石墨烯结构,碳纳米管与聚合物间不相容,与聚合物之间的界面作用非常弱,从而使其在聚合物等材料中无法分散,极大的限制了其应用领域。因此,需对碳纳米管进行改性以提高其在溶剂及聚合物中的分散性和加工性,以满足应用需求。
     双亲大分子的亲水性链段和疏水性链段能以特定的方式排列在同一分子链上,其最大的特点是能够在一定条件下发生自组装行为,形成各种有序的纳米微相结构,如球形、棒状、囊泡、由小胶束形成的大复合胶束等。根据双亲性大分子独特的性质,利用其分子链或者组装胶束改性碳纳米管,制备的纳米复合材料将具备很多优异的性能,在涂料等领域具有潜在的应用价值。然而,该研究领域的构建单元主要以嵌段双亲大分子为主。其合成相对困难,故规模化应用受到限制。非嵌段双亲大分子简单易得、来源丰富,较之于嵌段大分子而言更有潜在的应用价值。
     本文设计合成了一系列非嵌段双亲性大分子对碳纳米管进行了非共价改性,研究了其在功能涂层材料中的应用。具体研究内容分为以下几个部分:(1)水溶性光敏环糊精改性碳纳米管及其在传感涂层中的应用
     以环氧氯丙烷为桥接单元,水溶性的α-环糊精与7-羟基-4-甲基香豆素反应,制备了α-CD-C。用氢核磁共振(1H-NMR)、液质联用(HLPC-MS)等表征了α-CD-C的结构。紫外光二聚实验表明, α-CD-C可在365nm光照下进行光二聚反应,且可在随后的254nm光照下进行解二聚反应。通过比较该交替光照下的光二聚反应程度,发现该光二聚反应仅部分可逆。此后,研究了水体系下α-CD-C分散碳纳米管。透射电子显微镜(TEM)和扫描电子显微镜(SEM)测试结果表明:α-CD-C成功的对碳纳米管进行了改性,并研究了其在传感涂层中的应用。(2)双亲大分子P(St/VM-co-MA)改性碳纳米管制备传感涂层
     以苯乙烯(St)、7-(4-乙烯基苄氧基-4-甲基香豆素(VM)和马来酸酐(MA)为共聚单体,合成了光敏双亲大分子聚(苯乙烯-7-(4-乙烯基苄氯氧基-4-甲基香豆素-马来酸酐)P(St/VM-co-MA),利用1H-NMR对所得共聚物结构进行了表征,使其在选择性溶剂(DMF/H2O)中自组装形成胶束,研究了胶束包裹分散碳纳米管的行为。用傅里叶红外、拉曼光谱、TEM和SEM表征了自组装胶束分散碳纳米管的结构及形态。结果表明:大分子组装胶束改性后的碳纳米管分散液稳定,在碳纳米管的表面形成了稳定的形貌,双亲大分子改性的碳纳米管的分散行为及其稳定性都明显提高。此外,将改性后的碳纳米管分散液应用于传感涂层材料。实验结果表明,传感涂层在对气体的检测中,具有良好的响应性和回复性。用改性后的碳纳米管分散液修饰玻碳电极制备电化学传感涂层,在抗坏血酸的存在下对多巴胺进行检测,结果表明,传感涂层可对不同浓度的多巴胺进行检测,且能消除抗坏血酸的干扰,对多巴胺的检测下限为5×10~(-8)mol/L。(3)双亲性光电活性大分子改性碳纳米管及其在传感涂层中的应用
     以光敏性苯乙烯类单体(VM)、电活性苯乙烯类单体(VCz)和马来酸酐(MA)为共聚单体,利用自由基共聚的方式合成了类交替共聚物P(VM/VCz-co-MA),通过FTIR、~1H-NMR等手段对其结构进行了表征。共聚物在选择性溶剂中可自组装形成稳定的胶束,利用紫外光谱(UV)、TEM等对胶束进行了表征。利用所合成双亲大分子改性碳纳米管,所得碳纳米管分散液具有良好的稳定性。并通过紫外光谱、TEM、SEM、热失重(TGA)、拉曼激光光谱等对改性后的碳纳米管进行了表征.实验结果表明,随着聚合物中咔唑基团含量的增加,双亲大分子对碳纳米管的分散能力增强。研究了P(VM/VCz-co-MA)改性碳纳米管在气体传感及电化学传感涂层材料中的应用,用改性后的碳纳米管分散液修饰过的玻碳电极通过测试其循环伏安曲线在抗坏血酸的存在下对多巴胺进行检测,结果表明,随着有机蒸汽的吸附,碳纳米管的电阻增大,电化学传感涂层可对不同浓度的多巴胺进行检测,且能消除抗坏血酸的干扰。(4)支化型双亲大分子改性碳纳米管及其在传感涂层和超疏水导电涂料中的应用
     利用对乙烯基卞硫醇(VBT)为链转移单体,以苯乙烯、马来酸酐为聚合主单体,通过巯基链转移支化聚合法合成了支化聚苯乙烯马来酸酐(BPSMA)。改变支化单体的摩尔投料量、聚合时间,通过与线性PSMA的结构性能进行比较及分子量、粘度、玻璃化转变温度(Tg)、转化率等表征,证明了BPSMA的支化结构。并研究了支化单体含量、聚合时间对BPSMA的自组装行为影响,通过动态激光光散射(DLS)、TEM表征胶束的粒径大小和形态。利用有机-无机杂化技术,在γ-氨基丙基-三乙氧基硅烷存在下,BPSMA非共价键改性多壁碳纳米管(MWCNTs)。改性后的多壁碳纳米管与硅酸四乙酯在乙醇中,与含氟硅烷相互作用,然后进行热处理,制备了的超疏水导电涂料, SEM观察到涂层具有微米和纳米级的层次结构。此外,对碳纳米管的加入量、固化温度对涂料的性能的影响进行了系统的研究,结果表明,碳纳米管的加入量越大,涂层疏水性越强,导电性越好;固化温度越高,涂层稳定性越好,当碳纳米管含量10wt%时,接触角为180°,电阻为7.2×10~5。
     综上所述,利用合成的一系列非嵌段双亲大分子并对碳纳米管进行了改性,对其在功能涂层材料中的应用性能也进行了研究,得到了一些颇具新意的结果。
Since the discovery of carbon nanotubes, its unique shape and structure has attractedmany researchers to explore its new performance. However, due to carbon nanotubes withhigh specific surface area and strong van der Waals force makes it very easy to agglomerate,leading to carbon nanotubes almost insoluble in any solvent. In addition, due to its specialgraphene structure, carbon nanotubes can not be dispersed in the polymer and other materials,which greatly limit its application fields. Therefore, carbon nanotubes should be modified toimprove its dispersibility in solvents and the polymers, in order to meet the applicationrequirements.
     Hydrophilic segments and hydrophobic segments of amphiphilic macromolecular can bearranged in the same molecular chain by a particular way, and its biggest feature is the abilityto self-assembly behavior under certain conditions. Amphiphilic macromolecular can form avariety of ordered nano-phasestructure, such as spherical, rod-like, vesicles and compositemicelles formed by small micelles. According to the unique property of the amphiphilicmacromolecular, its molecular chains and self-assembled micelles can be used to modifycarbon nanotubes, and the prepared nanocomposites have many excellent performances in thefield of coatings and other potential application fields. However, the construction unit of theresearch area is block polymer. Because of its synthesis is relatively difficult, which limitstheir large-scale applications. Compared with block amphiphilic macromolecules, Non-blockamphiphilic macromolecules is simple and easy to obtain, rich source, and have morepotential application value.
     The paper design and synthesis a series of non-block amphiphilic macromolecules tomodify carbon nanotubes base on non-covalently interaction. The application in the functionalcoatings was researched, and the contents are divided into the following sections:
     (1) Carbon nanotubes were modified by water-soluble photosensitive α-cyclodextrin and itsapplication in sensor coatings
     First, using epichlorohydrin as the bridged unit, water-soluble α-cyclodextrin (α-CD)was introduced to modify7-hydroxy-4-methylcoumarin and prepare α-CD-C. α-CD-C wascharacterized with1H-NMR and HPLC-MS. The photo-dimerization experiment showed thatα-CD-C could photo-dimerize upon365nm irradiation, and then photo-de-crosslink upon thesubsequent254nm irradiation. Next, α-CD-C was used to disperse carbon nanotubes in water.Transmission electron microscope (TEM) and scanning electron microscope (SEM)demonstrated that carbon nanotubes was successful modified by α-CD-C, and its applicationin sensor coatings were studied.
     (2) Carbon nanotubes were modified by amphiphilic macromolecular P(St/VM-co-MA) toprepare sensor coatings
     Photosensitive amphiphilic macromolecular P(St/VM-co-MA) was synthesized withstyrene (St), styrene-containing photosensitive monomer7-(4-vinylbenzyloxy)-4-methyl coumarin (VM) and maleic anhydride (MA) via free radical copolymerization. The structureof P(St/VM-co-MA) was characterized by1H nuclear magnetic resonance (1H-NMR).P(St/VM-co-MA) could form micelles in the selective solvent N, N-dimethylformamide(DMF)/H2O. UV-Vis spectrum indicating the photodimerization reaction of P(St/VM-co-MA)micelles. The multi-wall carbon nanotubes (MWCNTs) were encapsulated in the formedmicelles through non-covalent interactions. The formed structures were novel nanocompositeswhich were confirmed by TEM, SEM, and Raman spectroscopic analysis. The results showedthat the dispersion performance of the obtained micelle-encapsulated carbon nanotubes inwater was greatly improved compared to the pure carbon nanotubes. From the TEMobservation, the individual MWCNTs structure and the uniform polymer coating around thesurface of MWCNTs were seen after crosslinking. In addition, the prepared materials wereused in sensor coating, the response and recovery properties of the coatings were measured. Itwas showed that the resistance of sensors inereased with increasing content of gas. Amodified glassy-carbon (GC) electrode by P(St/VM-co-MA) has been successfully developedsensor coatings for determination of dopamine (DA) in the presence of ascorbic acid (AA). Itcan be concluded from the result that the respond changes within different concentration ofDA. Interference from AA was effectively eliminated and the detection limit was5×10-8mol/L.
     (3) Dispersion of carbon nanotubes through electro-active photo-senstive amphiphilicmacromolecular and its application in sensor coatings
     P(VM/VCz-co-MA) was synthesized through free radical copolymerization with twostyrene derivative monomers and maleic anhydride. The amphiphilic macromolecular canself-assemble into micelle (EACM) which could efficiently disperse MWCNTs in aqueoussolution. The EACM/MWCNTs hybrid was characterized by UV-Vis, TEM、SEM、TGA andRaman. Experimental results show that the dispersion capacity of macromolecular enhancedwith the increasing content of carbazole group. Then, dispersion of carbon nanotubes wereused to product gas sensor and electrochemical sensors. Dopamine sensors were fabricatedusing glassy carbon electrode (GCE) modified with EACM/MWCNTs hybrid. The carbazolemoieties in macromolecular chains could electro-polymerize with increasing CV cycles, thuscreating large conjugated system and forming a conducting surface on MWCNTs. Ourinvestigations indicate that the peaks of dopamine (DA) and ascorbic acid (AA) wereoverlapped without carbazole moieties electro-polymerized in DPV measurement. In contrast,the peak currents were amplified about ten times and the peaks of DA and AA were separatedwith carbazole moieties electro-polymerized. Such results showed that the EACM/MWCNTsmodified GCE could serve as an efficient biosensor for low-concentration DA detecting in thepresence of high-concentration AA.
     (4) Branched styrene-maleic anhydride copolymer modified carbon nanotubes and theirapplications in sensor coatings and superhydrophobic coatingsBranched Polystyrene maleic anhydride (BPSMA) were synthesized through the method ofMCTBP with maleic anhydride(MA), styrene (St), and4-vinyl benzyl thiol (VBT) as branched monomer and AIBN as the initiator. The successful synthesis of BPSMA wasconfirmed by a triple detection systems including gel permeation chromatography (GPC),multiangle laser light scattering (MALLS), and differential viscosity (DV) detectors, as wellas thermal analysis (differential scanning calorimetry). The influence of more inventory andpolymerization time on structure and properties of BPSMA were studied. The influence ofcontent of branched monomer and polymerization time on self-assembly behavior of BPSMAwas researched. The particle size and morphology of the self-assembled micelles werecharacterized by DLS and TEM. Pristine multiwalled carbon nanotubes (MWCNTs) werenon-covalently modified by an organic-inorganic hybrid of the BPSMA and silica with theexistence of γ-aminopropyl-triethoxysilane. The modified MWCNTs were mixed withtetraethyl orthosilicate in ethanol, coated with a fluoroalkylsilane, and then heat treated toobtain the superhydrophobic antistatic coatings. Scanning electron microscopy (SEM) showedthat the coatings have a micrometer-and nanometer-scale hierarchical structure similar to thatof lotus leaves with high water contact angles (>170°). In addition, the relationship betweencontent of MWCNTs, cure temperature and the properties of the coatings were investigatedsystematically. The results showed that the hydrophobic and conductivity of the coating wasincreased with the increasing content of carbon nanotubes, the stability of the coating wasbetter with the increasing curing temperature, when the content of carbon nanotube was10wt%, the contact angle was180°, and the resistance was7.2×10~5.
     In summary, a series of amphiphilic macromolecules were synthesized to modify carbonnanotubes, and their application in the functional coatings was studied. A series of quite newfindings were obtained.
引文
[1] Iijima S, Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56.
    [2] Nikolaos K, Nikos T, Current progress on the chemical modification of carbonnanotubes[J]. Chem. Rev.,2010,110:5366-5397.
    [3] Dimitrios T, Nikos T, Alberto B, Chemistry of Carbon Nanotubes[J]. Chem. Rev.,2006,106:1105-1136.
    [4] Meysam R, Pascal H, Carbon nanotube–polymer interactions in nanocomposites: Areview[J]. Composites Science and Technology,2011,72:72-84.
    [5] Zhang Q, Zhao M Q, Tang D M, et al. Carbon-nanotube-array double helices[J]. Angew.Chem. Int. Ed.,2010,49:3642–3645.
    [6] Zhao M Q, Zhang Q, Zhang W, et al. Embedded high density metal nanoparticles withextraordinary thermal stability derived from guest-host mediated layered doublehydroxides[J]. J. Am. Chem. Soc.,2010,132:14739–14741.
    [7] Zhao M Q, Huang J Q, Zhang Q, et al. Stretchable single-walled carbon nanotube doublehelices derived from molybdenum-containing layered double hydroxides[J]. Carbon,2011,49:2141–2161.
    [8] Zhao M Q, Zhang Q, Huang J Q, et al. Hierarchical nanocomposites derived fromnanocarbons and layered double hydroxides-properties, synthesis, and applications[J].Adv. Funct. Mater,2012,22:675–694.
    [9]杨应奎.聚合物修饰多壁碳纳米管的合成、结构与性质[D].博士学位论文.武汉:华中科技大学.2007.
    [10]Christopher A D, James M, Tour covalent functionalization of single-walled carbonnanotubes for materials applications[J]. J. Phys. Chem. A,2004,108:11151-11159.
    [11]Tang Z. K., Zhang L. Y., Wang N., et al. Superconductivity in4angstrom single-walledcarbon nanotubes[J]. Science,2001,292:2462-2465.
    [12]Ramirez A P, Haddon R C, Zhou O, et al. Magnetic-susceptibility of molecularcarbon-nanotubes and fullerite[J]. Science,1994,265:84-86.
    [13]Jan M Schnorr, Timothy M Swager. Emerging applications of carbon nanotubes[J]. Chem.Mater,2011,23,646–657.
    [14]Elena H, Eric W B,Gregg R D, et al. Are carbon nanotubes a natural solution?applications in biology and medicine[J]. ACS Appl. Mater, Interfaces2013,5,18701891.
    [15]Liu P, Modification strategies for carbon nanotubes as a drug delivery system[J]. Ind. Eng.Chem. Res.,2013,52:1351713527.
    [16]Justin O, Melburne C L, Zhenan Bao, Nanotubes on display: How carbon nanotubes canbe integrated into electronic displays[J]. ACS Nano,2010,4:2975-2978.
    [17]Zachary P M, Alexander S, Carbon nanotubes for the label-free detection ofbiomarkers[J]. ACS Nano,2013,7:7448-7453.
    [18]Nima R, Dheeraj J, Peter J B, High-performance semiconducting nanotube inks: progressand prospects[J]. ACS Nano,2011,5:8471-8487.
    [19]de Heer W A, Bonard J M, Fauth K, et al. Electron field emitters based on carbonnanotube films[J]. Adv. Mater.,1997,9:87-89.
    [20]Sara Y, Junichi T, Tomohiro Y, Toru W, et al. Dispersion of carbon nanotubes in ethanolby a bead milling process[J]. Carbon,2011,49:4131-4137.
    [21]Meysam R, Pascal H, Carbon nanotube–polymer interactions in nanocomposites: Areview[J]. Composites Science and Technology,2011,72:72-84.
    [22]Chi H L, Alan M C N, Chris S K, et al. Ruthenium complex containing block copolymerfor the enhancement of carbon nanotube photoconductivity[J]. ACS Appl. Mater.Interfaces,2012,4:74-80.
    [23]Hong C. Y, You Y Z, Pan C Y, Synthesis of water-soluble multiwalled carbon nanotubeswith grafted temperature-responsive shells by surface RAFT polymerization[J]. Chem.Mater.,2005,17:2247-2254.
    [24]Lou X D, Raphae D, Stephane C, et al. Synthesis of pyrene-containing polymers andnoncovalent sidewall functionalization of multiwalled carbon nanotubes[J]. Chem. Mater.2004,16,4005-4011.
    [25]Shen J F, Hu Y Z, Chen Q, et al. Layer-by-Layer self-assembly of multiwalled carbonnanotube polyelectrolytes prepared by in situ radical polymerization[J]. Langmuir,2008,24:3993-3997.
    [26]Xia W, Jin C, Kundu S, et al. A highly efficient gas-phase route for theoxygenfunctionalization of carbon nanotubes based on nitric acid vapor[J]. Carbon,2009,47:919-922.
    [27]Datsyuk V, Kalyva M., Papagelis K., et al. Chemical oxidation of multiwalled carbonnanotubes[J].Carbon,2008,46:833-840.
    [28]Bergeret C, Cousseau J, Fernandez V, et al. Spectroscopic Evidence of CarbonNanotubes’ Metallic Character Loss Induced by Covalent Functionalization via NitricAcid Purification[J]. Phys. Chem. C,2008,112:16411-16416.
    [29]Yu H, Jin Y, Peng F, et al. Controlled Side-Wall Functionalization of Carbon Nanotubesby Nitric Acid Oxidation[J]. Phys. Chem. C,2008,112:6758-6763.
    [30]Xing Y, Li L, Chusuei C, et al. Sonochemical Oxidation of Multiwalled CarbonNanotubes[J]. Langmuir,2005,21:4185-4190.
    [31]Aviles F, Cauich-Rodr guez J V, Moo-Tah L, et al. Evaluation of mild acid oxidationtreatments for MWCNT Functionalization[J]. Carbon,2009,47:2970-2975.
    [32]Park K C, Hayashi T, Tomiyasu H, et al. Progressive and invasive functionalization ofcarbon nanotube sidewalls by diluted nitric acid under supercritical conditions[J]. Mater.Chem.,2005,15:407-411.
    [33]Ziegler K J, Gu Z, Peng H, et al. Controlled Oxidative Cutting of Single-Walled CarbonNanotubes[J]. J. Am. Chem. Soc.2005,127(5):1541-1547.
    [34]Miyata Y, Maniwa Y, Kataura H, Selective Oxidation of Semiconducting Single-WallCarbon Nanotubes by Hydrogen Peroxide[J]. J. Phys. Chem. B,2006,110(1):25-29.
    [35]Marega R, Accorsi G., Meneghetti M, et al. Cap removal and shortening of double-walledand very-thin multi-walled carbon nanotubes under mild oxidative conditions[J]. Carbon,2009,47(3):675-682.
    [36]Yoon S M, Kim S J, Shin H J, et al. Selective oxidation on metallic carbon nanotubes byhalogen oxoanions[J]. J. Am. Chem. Soc.,2008,130(8):2610-2616.
    [37]Chen Z, Kobashi K, Rauwald U, et al. Soluble ultra-short single-walled carbonnanotubes[J].J. Am. Chem. Soc.,2006,128(32):10568-10571.
    [38]Arrais A, Diana E, Pezzini D, et al. A fast effective route to pH-dependentwater-dispersion of oxidized single-walled carbon nanotubes[J]. Carbon,2006,44:587-590.
    [39]Ma P C, Kim J K, Tang B Z, Functionalization of carbon nanotubes using a silanecoupling agent[J]. Carbon,2006,44:3232-3238.
    [40]Gromov A, Dittmer S, Svensson J, et al. Covalent amino-functionalisation of single-wallcarbon nanotubes[J]. J.Mater. Chem.,2005,15:3334-3339.
    [41]Dallinger D, Kappe C O, Microwave-Assisted Synthesis in Water as Solvent[J]. Chem.Re.,2007,107(6):2563-2591.
    [42]Wang Y, Iqbal Z, Mitra S, Rapidly Functionalized, Water-Dispersed Carbon Nanotubes atHigh Concentration[J]. J. Am. Chem. Soc.,2006,128(1):95-99.
    [43]Fagnoni M, Profumo A, Merli D, et al. Water-Miscible Liquid Multiwalled CarbonNanotubes[J]. Adv. Mater.,2009,21(17):1761-1765.
    [44]Jiang G, Wang L, Chen C, et al. Study on attachment of highly branched molecules ontomultiwalled carbon nanotubes[J]. Mater.Lett.,2005,59(16):2085-2089.
    [45]Tao L, Chen G, Mantovani G, et al. Modification of multi-wall carbon nanotube surfaceswith poly(amidoamine) dendrons: Synthesis and metal templating[J]. Chem.Commun.,2006,47:4949-4951.
    [46]Wang Y, Iqbal Z, Malhotra S V, Functionalization of carbon nanotubes with amines andenzymes[J].Chem. Phys. Lett.,2005,402:96-101.
    [47]Hu N, Dang G, Zhou H, et al. Efficient direct water dispersion of multi-walled carbonnanotubes by functionalization with lysine[J]. Mater. Lett.,2007,61(30):5285-5287.
    [48]Yao Y, Li W, Wang S, et al. Polypeptide Modification of Multiwalled Carbon Nanotubesby a Graft-From Approach[J]. Macromol. Rapid.Commun.,2006,27(23):2019-2025.
    [49]Umeyama T, Tezuka N, Fujita M, et al. Electrophoretic Deposition, andPhotoelectrochemical Properties of Fullerene-Functionalized Carbon NanotubeComposites[J]. Chem.-Eur. J.,2008,14(16):4875-4885.
    [50]Bonifazi D, Nacci C, Marega R, et al. Microscopic and Spectroscopic Characterization ofPaintbrush-like Single-walled Carbon Nanotubes[J]. Nano Lett.2006,6(7):1408-1414.
    [51]Herranz M A, Martin N, Campidelli S, et al. Control over Electron Transfer inTetrathiafulvalene-Modified Single-Walled Carbon Nanotubes[J].Angew. Chem., Int. Ed.,2006,45(27):4478-4482.
    [52]Xu H B, Chen H Z, Shi M M, Bai R, Wang M, A novel donor–acceptor heterojunctionfrom single-walled carbon nanotubes functionalized by erbium bisphthalocyanine.Mater[J]. Chem.Phys.,2005,94:342-346.
    [53]Lee T Y, Yoo J B, Adsorption characteristics of Ru(II) dye on carbon nanotubes fororganic solar cell[J]. Diamond Relat. Mater.,2005,14:1888-1890.
    [54]Alvaro M, Aprile C, Ferrer B, Garcia H, Functional molecules from single wall carbonnanotubes[J]. Photoinduced solubility of short single wall carbon nanotube residues bycovalent anchoring of2,4,6-triarylpyrylium units[J]. J. Am. Chem. Soc.,2007,129(17):5647-5655.
    [55]Aprile C, Martin R, Alvaro M, Garcia H, Scaiano J C, Covalent Functionalization ofShort, Single-Wall Carbon Nanotubes: Photophysics of2,4,6-TriphenylpyryliumAttached to the Nanotube Walls[J]. Chem. Mater.,2009,21(5):884-890.
    [56]Feng Y, Feng W, Noda H, et al. Synthesis of photoresponsive azobenzene chromophore-modified multi-walled carbon nanotubes[J]. Carbon2007,45(12):2445-2248.
    [57]Li J, Tang T, Zhang X, et al. Dissolution, characterization and photofunct-ionalization ofcarbon nanotubes[J].Mater. Lett.,2007,61(22):4351-4353.
    [58]Delgado J L, de la Cruz P, Urbina A, et al. The first synthesis of a conjugated hybrid ofC60–fullerene and a single-wall carbon nanotube[J]. Carbon2007,45(11):2250-2252.
    [59]Ford W E, Jung A, Hirsch A, et al. Urea-Melt Solubilization of Single-Walled CarbonNanotubes[J]. Adv. Mater,2006,18(9):1193-1197.
    [60]Basiuk V A, Salvador-Morales C., Basiuk E. V., et al.‘Green’ derivatization of carbonnanotubes with Nylon6and L-alanine[J]. J. Mater. Chem.,2006,16(45):4420-4426.
    [61]Chen X H, Chen C S, Xiao H N, et al. Lipophilic functionalization of multi-walledcarbon nanotubes with stearic acid[J]. Carbon2005,43(8):1800-1803.
    [62]Wang H, Gu L, Lin Y, et al. Unique Aggregation of Anthrax (Bacillus anthracis) Sporesby Sugar-Coated Single-Walled Carbon Nanotubes[J]. J. Am. Chem. Soc.,2006,128(41):13364–13365.
    [63]Nednoor P, Gavalas V G., Chopra N, et al. Carbon nanotube based biomimeticmembranes: mimicking protein channels regulated by phosphorylation[J]. J. Mater.Chem.,2007,17:1755-1757.
    [64]Yim T J, Liu J, Lu Y, et al. Highly active and stable DNAzyme-carbon nanotubehybrids[J]. J. Am. Chem.Soc.,2005,127(35):12200-12201.
    [65]Asuri P, Bale S S, Pangule R C, et al. Structure, Function, and Stability of EnzymesCovalently Attached to Single-Walled Carbon Nanotubes[J]. Langmuir,2007,23(24):12318-12321.
    [66]Piran M, Kotlyar V, Medina D D, et al. End-selective functionalization of carbonnanotubes. Use of DOE for the optimization of a DNA probe attachment andhybridization using an enzymatic amplifying system[J]. J. Mater. Chem.,2009,19:631-638.
    [67]Smorodin T, Beierlein U, Ebbecke J, et al. Surface-Acoustic-Wave-Enhanced Alignmentof Thiolated Carbon Nanotubes on Gold Electrodes[J]. Small,2005,1(12):1188-1190.
    [68]You Y Z, Hong C Y, Pan C Y, Covalently Immobilizing a Biological Molecule onto aCarbon Nanotube via a Stimuli-Sensitive Bond[J]. J. Phys. Chem. C,2007,111(44):16161-16166.
    [69]Chowdhary, D Kim, W E, Kouklin N, Unstable Micellarization of Carbon-NanotubeSolutions for Low-Loss Reactivity and Crosslinking[J]. Small2007,3(2):226-229.
    [70]Pekker S, Salvetat J P, Jakab E, et al. Hydrogenation of carbon nanotubes and graphite inliquid ammonia[J]. J. Phys. Chem. B,2001,105:7938-7943.
    [71]Khare B N, Meyyappan M, Cassell A M, et al. Functionalization of carbon nanotubesusing atomic hydrogen from a glow discharge[J]. Nano Lett.,2002,2:73-77.
    [72]Kim K S, Bae D J, Kim J R, et al. Modification of electronic structures of a carbonnanotube by hydrogen functionalization[J]. Adv. Mater.,2002,14:1818-1821.
    [73]Khare B N, Meyyappan A M, Moore M H, et al. Proton irradiation of carbon nanotubes[J].Nano Lett.,2003,3:643-646.
    [74]Zhang G, Qi P, Wang X, et al. Hydrogenation and hydrocarbonation and etching ofsingle-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2006,128:6026-6027.
    [75]Mickelson E T, Huffman C B, Rinzler A. G., et al. Fluorination of single-wall carbonnanotubes[J]. Chem. Phys. Lett.,1998,296:188-194.
    [76]Mickelson E T, Chiang I W, Zimmerman J L, et al. Soluation of fluorinated single-wallcarbon nanotubes in alcohol solvents[J]. J. Phys. Chem. B,1999,103:4318-4322.
    [77]Stevens J L, Huang A Y, Peng H Q, et al. Sidewall amino-functionalization ofsingle-walled carbon nanotubes through fluorination and subsequent reactions withterminal diamines[J]. Nano Lett.,2003,3:331-336.
    [78]Zhang L, Kiny V U, Peng H, et al. Sidewall functionalization of single-walled carbonnanotubes with hydroxyl group-terminated moieties[J]. Chem. Mater.,2004,16:2055-2061.
    [79]Tasis D, Tagmatarchis N, Bianco A et al. Chemistry of carbon nanotubes[J]. Chem. Rev.,2006,106:1105-1136.
    [80]Geng H, Rosen R, Zheng B, et al. Fabrication and properties of composites ofpoly(ethylene oxide) and functionalized carbon nanotubes[J]. Adv. Mater.,2002,14:1387-1390.
    [81]Lu X, Tian F, Zhang Q, et al. The [2+1] cycloadditions of dichlorocarbene, silylene,germylene, and oxycarbonylnitrene onto the sidewall of armchair (5,5) single-wallcarbon nanotube[J]. J. Phys. Chem. B,2003,107:8388-8391.
    [82]Chu Y Y, Su M D, et al. Theoretical study of addition reactions of carbene, silylene, andgermylene to carbon nanotubes[J]. Chem. Phys. Lett.,2004,394:231-237.
    [83]Graupner R, Abraham J, Wunderlich D, et al. Nucleophilic Alkylation Reoxidation: AFunctionalization Sequence for Single-Wall Carbon Nanotubes[J]. J. Am.Chem. Soc.,2006,128,6683.
    [84]Syrgiannis Z, Hauke F Ro J, Hundhausen M, et al. Covalent cidewall functionalization ofSWNTs by nucleophilic addition of lithium amides[J]. Eur. J. Org. Chem.,2008,2544-2550.
    [85]Lee W H, Kim S J, Lee W J, et al. X-ray photoelectron spectroscopic studies of surfacemodified single-walled carbon nanotube material[J]. Appl. Surf. Sci.,2001,181:121-127.
    [86]Xu Y, Wang X, Tian R, et al. J. Microwave-induced electrophilic addition ofsingle-walled carbon nanotubes with alkylhalides[J]. Appl. Surf. Sci.,2008,254:2431-2435.
    [87]Tagmatarchis N, Georagakilas V, Prato M, et al. Sidewall functionalization ofsingle-walled carbon nanotubes through electrophilic addition[J]. Chem. Comm.,2002,18:2010-2011.
    [88]Tessonnier J P, Villa A, Majoulet O, et al. Defect-mediated functionalization of carbonnanotubes as a route to design single-site basic heterogeneous catalysts for biomassconversion[J]. Angew. Chem. Int. Ed.,2009,48,6543-6546.
    [89]Strano M S, Dyke C A, Usrey M L, et al. Electronic structure control of single-walledcarbon nanotube functionalization[J]. Science,2003,301:1519-1522.
    [90]Dyke C A, Tour J M, Unbundled and highly functionalized carbon nanotubes fromaqueous reactions[J]. Nano Lett.,2003,3:1215-1218.
    [91]Strano M S, Probing chiral selective reactions using a revised kataura plot for theinterpretation of single-walled carbon nanotube spectroscopy[J]. J. Am. Chem. Soc.,2003,125:16148-16153.
    [92]Leventis H C, Wildgoose G G, Davies I G, et al. Multiwalled carbon nanotubes covalentlymodified with fast black K[J]. Chem.Phys.Chem.,2005,6:590-595
    [93]杨应奎,邱胜强,王贤保,解孝林.碳纳米管的聚合物功能化与结构控制:聚合物接枝碳纳米管[J].化学进展,2010,22(4):684-695.
    [94]Mitchell C A, Bahr J L, Arepalli S, et al. Dispersion of functionalized carbon nanotubesin polystyrene[J]. Macromolecules,2002,35:8825-8830.
    [95]Hudson J L, Casavant M J, Tour J M, Water-Soluble, exfoliated, nonroping single-wallcarbon nanotubes[J]. J. Am. Chem. Soc.,2004,126:11158-11159.
    [96]Dyke C A, Tour J M, Solvent-free functionalization of carbon nanotubes[J]. J. Am. Chem.Soc.,2003,125:1156-1157.
    [97]Dyke C A, Tour J M, Overcoming the insolubility of carbon nanotubes through highdegrees of sidewall functionalization[J]. Chem. Eur. J.,2004,10:812-817.
    [98]B Katherine Price, Jared L Hudson, James M Tour, Green Chemical Functionalization ofSingle-Walled Carbon Nanotubes in Ionic Liquids[J]. J. Am. Chem. Soc.,2005,127:14867-14870.
    [99]S E Kooi, U Schlecht, M Burghard, et al. Electrochemical modification of single carbonnanotubes[J]. Angew. Chem. Int. Ed.,2002,41:1353-1355.
    [100] Ying Y M, Saini R K, Liang F, et al. Functionalization of carbon nanotubes by freeradicals[J]. Org. Lett.,2003,5:1471-1473.
    [101] Chen J, Hamon MA, Hu H, et al. Solution Properties of Single-Walled CarbonNanotubes[J]. Science,1998,282:95-98.
    [102] Bingjing H, Weilin S, Miao W, et al. Preparation and characterization of a series ofnovel complexes by single-walled carbon nanotubes (SWNTs) connected poly(amic acid)containing bithiazole ring[J]. Materials Chemistry and Physics,2004,84:140-145.
    [103] Jason E R, Guo Z X, David L, et al. Strong Luminescence of Solubilized CarbonNanotubes[J]. J. Am. Chem. Soc.,2000,122:5879-5880.
    [104] Huang W. J., Yi L., Shelby T., et al. Sonication-Assisted Functionalization andSolubilization of Carbon Nanotubes[J]. Nano Lett.,2002,2:231-234.
    [105] Yi L, Apparao M R, Bindu S, et al. Functionalizing Multiple-Walled CarbonNanotubes with Amino-polymers[J]. J. Phys. Chem. B,2002,106:1294-1298.
    [106] Jason E R, David B W, David L, et al. Optical Limiting Properties of Suspended andSolubilized Carbon Nanotubes[J]. J. Phys. Chem. B,2000,104:7071-7076.
    [107] Masahito S, Ayumi K, Junko O, et al. Self-Organization of PEO-graft-Single-WalledCarbon Nanotubes in Solutions and Langmuir Blodgett Films[J]. Langmuir,2001,17:5125-5128.
    [108] Darron E H, Yi L, Apparao M R, et al. Functionalization of Carbon Nanotubes withPolystyrene[J]. Macromolecules,2002,35:9466-9471.
    [109] Yi L, Bing Z, K A Shiral Fernando, et al. Polymeric Carbon Nanocomposites fromCarbon Nanotubes Functionalized with Matrix Polymer[J]. Macromolecules,2003,36:7199-7204.
    [110] Wong S, Joselevich E, Woolley AT, et al. Covalently functionalized nanotubes asnanometre-sized probes in chemistry and biology[J].Nature,1998,394:52-55.
    [111] Philip B, Xie JN, Chandrasekhar A, et al. A novel nanocomposite from multiwalledcarbon nanotubes functionalized with a conducting polymer[J]. Smart Mater Struct,2004,13:295-298.
    [112] Sun Y P, Huang W J, Yi L, et al. Soluble Dendron-Functionalized CarbonNanotubes:Preparation, Characterization, and Properties[J]. Chem. Mater.,2001,13:2864-2869.
    [113] Xudong L, Christophe D, Valerie S, et al. Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes[J]. Polymer,2004,45:6097-6102.
    [114] Liu I C, Huang H M, Chang C Y, et al. Preparing a Styrenic Polymer CompositeContaining Well-Dispersed Carbon Nanotubes: Anionic Polymerization of aNanotube-Bound p-Methylstyrene[J]. Macromolecules,2004,37(2):283–287.
    [115] Wu W, Zhang S, Li Y, et al. PVK-Modified Single-Walled Carbon Nanotubes withEffective Photoinduced Electron Transfer[J].Macromolecules,2003,36:6286-6288.
    [116] Qin S H, Qin D Q, Warren T F, et al. Functionalization of Single-Walled CarbonNanotubes with Polystyrene via Grafting to and Grafting from Methods[J].Macromolecules,2004,37:752-757.
    [117] Chris D, Martin G, Michael F, et al. DNA-functionalized single-walled carbonnanotubes[J]. Nanotechnology,2002,13:601-604.
    [118] Davide P, Charalambos D, Partidos, et al. Synthesis, Structural Characterization, andImmunological Properties of Carbon Nanotubes Functionalized with Peptides[J]. J. AM.CHEM. SOC.,2003,125:6160-6164.
    [119] Pantarotto D, Partidos C. D, Gra R, et al. Synthesis, structural characterization, andimmunological properties of carbon nanotubes functionalized with peptides[J]. J. Am.Chem. Soc.,2003,125:6160-6164.
    [120] Jiang K Y, Linda S, Schadler, et al. Protein immobilization on carbon nanotubes viaa two-step process of diimide-activated amidation[J]. J. Mater. Chem.,2004,14:37-39.
    [121] Liu Y Q, Yao Z L, Alex A, Functionalization of Single-Walled Carbon Nanotubeswith Well-Defined Polymers by Radical Coupling[J]. Macromolecules,2005,38:1172-1179.
    [122] Mao P, Liao Z J, Zhu Z M, et al. A Simple Polymerizable Polysoap Greatly Enhancesthe Grafting Efficiency of the “Grafting-to” Functionalization of Multiwalled CarbonNanotubes[J]. Macromolecules,2010,43:9635-9644.
    [123] Li X F, Guan W C, Yan H B, et al. Fabrication and atomic force microscopy/frictionforce microscopy (AFM/FFM) studies of polyacrylamide-carbon nanotubes (PAM-CNTs)copolymer thin films[J]. Mater Chem Phys,2004,88:53-58.
    [124] Kong H, Gao C, Yan D Y, Constructing amphiphilic polymer brushes on the convexsurfaces of multi-walled carbon nanotubes by in situ atom transfer radicalpolymerization[J]. J Mater Chem,2004,14:1401-1405.
    [125] Shaer M S P, Koziol K, Polystyrene grafted multi-walled carbon nanotubes[J]. ChemCommun,2002,2074-2075.
    [126] Tong X, Liu C, Cheng H M, et al. Surface modification of single-walled carbonnanotubes with polyethylene via in situ Ziegler–Natta polymerization[J]. J Appl PolymSci,2004,92:3697-3700.
    [127] Hao K, Chao G, Yan D Y, Controlled Functionalization of Multiwalled CarbonNanotubes by in Situ Atom Transfer Radical Polymerization[J]. J. Am. Chem. Soc.,2004,126:412-413.
    [128] Hao K, Chao G, Yan D Y, Functionalization of multiwalled carbon nanotubes by atomtransfer radical polymerization and defunctionalization of the products[J].Macromolecules,2004,37:4022-4030.
    [129] Qin S H, Qin D Q, Warren T F, et al. Polymer Brushes on Single-Walled CarbonNanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate[J]. J. AM.CHEM. SOC.,2004,126:170-176.
    [130] Baskaran D, Mays J W, Bratcher M S, Polymer-Grafted Multiwalled CarbonNanotubes through Surface-Initiated Polymerization[J]. Angew Chem Int Ed,2004,43:2138-2142.
    [131] Yao Z L, Braidy N, Botton G A, et al. Polymerization from the Surface ofSingle-Walled Carbon Nanotubes-Preparation and Characterization of Nanocomposites[J].J. Am. Chem. Soc.,2003,125:16015:16024.
    [132] Hong C Y, You Y Z, Wu D C, et al. Multiwalled Carbon Nanotubes Grafted withHyperbranched Polymer Shell via SCVP[J]. Macromolecules,2005,38:2606-2611.
    [133] Viswanathan G, Chakrapani N, Yang H, et al. Single-Step in Situ Synthesis ofPolymer-Grafted Single-Wall Nanotube Composites[J]. J. Am. Chem. Soc.,2003,125:9258-9259.
    [134] Yoon K R, Kim W J, Choi I S, Functionalization of Shortened Single-Walled CarbonNanotubes with Poly(p-dioxanone) by “Grafting-From” Approach[J]. Macromol ChemPhys,2004,205:1218-1221.
    [135] Robert J C, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization ofsingle-walled carbon nanotubes for protein immobilization[J]. J. Am.Chem. Soc.,2001,123:3838-3839.
    [136] Nakayama-Ratchford N, Bangsaruntip S, Sun X, et al. Noncovalent functionalizationof carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates withpH-dependent absorbance and fluorescence[J]. J. Am. Chem. Soc.,2007,129:2448-2449.
    [137] Rahman G M A, Guldi D M, Cagnoli Ri, M Prato, et al. Combining single-wallcarbon nanotubes and photoactive polymers for photoconversion[J]. J. Am. Chem. Soc.,2005,127:10051-10057.
    [138] Cheng F, Adronov A, Noncovalent functionalization and solubilization of carbonnanotubes by using a conjugated Zn-porphyrin polymer[J]. Chem. Eur. J.,2006,12:5053-5059.
    [139] Alvaro M, Atienzar P, de la Cruz P, et al. Synthesis, photochemistry, andelectrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and oftheir metal complexes with zinc porphyrin comparison with pyridyl-bearing fullerenes[J].J. Am. Chem. Soc.,2006,128:6626-6635.
    [140] Ehli C, Rahman G M A, Jux N, et al. Interactions in single wall carbonnanotubes/pyrene/porphyrin nanohybrids[J]. J. Am. Chem. Soc.,2006,128:11222-11231.
    [141] Chen J, Liu H, Weimer W A, Noncovalent engineering of carbon nanotube surfacesby rigid, functional conjugated polymers[J]. J. Am. Chem. Soc.,2002,124:9034-9035.
    [142] Zhao Y L, Hu L B, J Fraser Stoddart, et al. Pyrenecyclodextrin-DecoratedSingle-Walled Carbon Nanotube Field-Effect Transistors as Chemical Sensors[J]. Adv.Mater.,2008,20:1910-1915.
    [143] Moore V C,. Strano M S, Haroz E, et al. Individually suspended single-walled carbonnanotubes in various surfactants[J]. Nano Lett.,2003,3:1379-1382.
    [144] Richa R, Rahul K, S K Tripathi, et al. Comparative study of carbon nanotubedispersion using surfactants[J]. Journal of Colloid and Interface Science,2008,328:421-428.
    [145] Hagen A, Hertel T, Quantitative analysis of optical spectrum from individualsingle-wall carbon nanotubes[k]. Nano Lett.,2002,3:383-388.
    [146] Islam M F, Rojas E, Bergey D M et al. High weight fraction surfactant solubilizationof single-wall carbon nanotubes in water[J]. Nano Lett.,2003,3:269-273.
    [147] Matarredona O, Rhoads H, Li Z R et al. Dispersion of single-walled carbonnanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. J. Phys. Chem. B.,2003,107:13357-13367.
    [148] Yurekli K, Mitchell C A, Krishnamoorti R, Small-angle neutron scattering fromsurfactant-assisted aqueous dispersions of carbon nanotubes[J]. J. Am. Chem. Soc.,2004,126:9902-9903.
    [149] Youngjong K, T Andrew Taton, Micelle-encapsulated carbon nanotubes: a route tonanotube composites[J]. J. Am. Chem. Soc.,2003,125:5650-5651.
    [150] Hye-in S, Byung G M, Wonyong J, Amphiphilic Block Copolymer Micelles: NewDispersant for Single Wall Carbon Nanotubes[J]. Macromol. Rapid. Commun.,2005,26:1451-1457.
    [151] Jinwoo S, Pil S J, Hyein S, et al. Transparent, Low-Electric-ResistanceNanocomposites of Self-Assembled Block Copolymers and SWNTs[J]. Adv. Mater.,2008,20:1505-1510.
    [152] Himadri A, Jinwoo S, Hye-in S, et al. Deposition of silver nanoparticles on singlewall carbon nanotubes via a self assembled block copolymer micelles[J]. Reactive&Functional Polymers,2009,69:552-557.
    [153] Kim T H, Changwoo D, Steven R, Water-Redispersible Isolated Single-WalledCarbon Nanotubes Fabricated by In Situ Polymerization of Micelles[J]. Adv. Mater.,2007,19,929–933.
    [154] Kathryn E L, Hermenegildo N P, Lisa J C, Todd D K, Fluorescent Carbon Nanotubesin Cross-Linked Micelles[J]. Chem. Mater.,2009,21:436-438.
    [155] Peng Z, Shi G Y, Pan C. Y, Large-Compound Vesicle-Encapsulated MultiwalledCarbon Nanotubes: A Unique Route to Nanotube Composites[J]. Journal of PolymerScience: Part A: Polymer Chemistry,2009,47:3669-3679.
    [156] Wei Z, Lv S C, Shi W F, Preparation of micelle-encapsulated single-wall andmulti-wall carbon nanotubes with amphiphilic hyperbranched polymer[J]. EuropeanPolymer Journal,2008,44:587-601.
    [157] Liu J Y, Nie Z H, Gao Y, et al.“Click” Coupling Between Alkyne-DecoratedMultiwalled Carbon Nanotubes and Reactive PDMA-PNIPAM Micelles[J]. Journal ofPolymer Science: Part A: Polymer Chemistry,2008,46.7187-7199.
    [158] Li Y G., Yang D G, Alex A, et al. Covalent Functionalization of Single-WalledCarbon Nanotubes with Thermoresponsive Core Cross-Linked Polymeric Micelles[J].Macromolecules,2012,45:4698-4706.
    [159] Petar D P, Georgi L G, Axel H E Müller, Dispersion of multi-walled carbonnanotubes with pyrene-functionalized polymeric micelles in aqueous media[J]. Polymer,2012,53,5502-5506.
    [160] Groschel A H, Tina I L, Petar D P, et al. Janus micelles as effective supracolloidaldispersants for carbon nanotubes[J]. Angew. Chem. Int. Ed.,2013,52:3602-3606.
    [161] Binks B P, Fletcher P D I, Particles adsorbed at the Oil-Water interface: atheoretical comparison between spheres of uniform wettability and “Janus” particles[J].Langmuir,2001,17:4708-4710.
    [162]王国建,顾贤科.两亲性聚合物修饰碳纳米管研究进展[J].高分子通报,2008,12:21-29.
    [163]窦文龄,辛霞,徐桂英.两亲分子对碳纳米管的分散稳定作用[J].物理化学学报,2009,25(2):382-388.
    [164]王旭,张爱波,郑亚萍,张娇霞.两亲性聚合物/碳纳米管复合材料的研究进展[J].材料导报,2011,25(3):136-140.
    [165] Otto S Wolfbeis, Sensor paints[J]. Adv. Mater.,2008,20:3759-3763.
    [166] Fu D L, Lim H L, Shi Y M, et al. Differentiation of gas molecules using flexible andall-carbon nanotube devices[J]. J. Phys. Chem. C,2008,112:650-653.
    [167] Ammu S, Dua V, Agnihotra S R, et al. Manohar. Flexible, all-organic chemiresistorfor detecting chemically aggressive vapors[J]. J. Am. Chem. Soc.,2012,134:4553-4556.
    [168] Li L,Yang Z B, Gao H J, et al. Vertically aligned and penetrated carbonnanotube/polymer composite film and promising electronic applications[J]. Adv. Mater.,2011,23:3730-3735.
    [169] Wei W, Sun X M, Wei W, et al. Photoinduced Deformation of CrosslinkedLiquid-Crystalline Polymer Film Oriented by a Highly Aligned Carbon NanotubeSheet[J]. Angew. Chem.,2012,124:4722-4725.
    [170] Kumara B, Parkb Y T, Castroa M, et al. Fellera. Fine control of carbonnanotubes–polyelectrolyte sensors sensitivity by electrostatic layer by layer assembly(eLbL) for the detection of volatile organic compounds (VOC)[J]. Talanta,2012,88:396-402.
    [171] Yanga H P, Zhu Y F, Chen D C, et al. Electrochemical biosensing platforms usingpoly-cyclodextrin and carbon nanotube composite[J]. Biosensors and Bioelectronics,2010,26:295-298.
    [172] Xu G Y, Li B B, Xin Y, et al. Electrodeposited conducting polymer PEDOT dopedwith pure carbon nanotubes for the detection of dopamine in the presence of ascorbicacid[J]. Sensors and Actuators B,2013,188:405-410.
    [173] Zhang Y Z, Ma H Y, Zhang K Y, et al. An improved DNA biosensor built bylayer-by-layer covalent attachment of multi-walled carbon nanotubes and goldnanoparticles[J]. Electrochimica Acta,2009,54:2385-2391.
    [174] Lee K P, Gopalan A I, Komathi S, Direct electrochemistry of cytochrome c andbiosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotubeelectrode[J]. Sens. Actuators. B.,2009,141:518-525.
    [175]邱军,张世红,王国建.多壁碳纳米管的表面改性及其在防火涂料中的应用.新型炭材料[J],2009,24(4):344-348.
    [176] A J López,A Ure a, J Rams, Wear resistant coatings: Silica sol–gel reinforced withcarbon nanotubes[J]. Thin Solid Films,2011,519:7904–7910.
    [177] Fayna Mammeri, Joan Teyssandier, Carole Connan,et al. Mechanical properties ofcarbon nanotube-PMMA based hybrid coatings: the importance of surface chemistry[J].RSC Advances,2012,2:2462-2468.
    [178] Mao P, Ji Q, Zhi Z, et al. Carbon Nanotubes Noncovalently Functionalized by anOrganic-Inorganic Hybrid: New Building Blocks for Constructing SuperhydrophobicConductive Coatings[J]. Langmuir,2010,26(16):3062-13064.
    [179] Mao P, Guo H L, Liao Z J, et al. Percolation-dominated superhydropho-bicity andconductivity for nanocomposite coatings from the mixtures of a commercial aqueoussilica sol and functionalized carbon nanotubes[J]. Journal of Colloid and InterfaceScience,2012,367:225-233.
    [180] Xiaolong Wang, Haiyuan Hu, Qian Ye,et al. Superamphiphobic coatings withcoralline-like structure enabled by one-step spray of polyurethane/carbon nanotubecomposites[J]. J. Mater. Chem.,2012,22:9624-9631.
    [181] Weibin Bai, Dongxian Zhuo, Xueqing Xiao, et al. Conductive, mechanical, andchemical resistanc properties of polyurushiol/multiwalled carbon nanotube compositecoatings[J]. Polym. Compos.,2012,33:711–715.
    [182] C M Santos, K M Cui, F Ahmed, et al. Bactericidal and anticorrosion properties inPVK/MWNT nanocomposite coatings on stainless steel[J]. Macromol. Mater. Eng.,2012,297:807–813.
    [183] P Hammer, F C dos Santos, B M Cerrutt,et al. Carbon nanotube-reinforcedsiloxane-PMMA hybrid coatings with high corrosion resistance[J]. Progress in OrganicCoatings,2013,76:601-608.
    [184] HaeRi Jeon, JinHwan Park, MinYoung Shon. Corrosion protection by epoxy coatingcontaining multi-walled carbon nanotubes[J]. Journal of Industrial and EngineeringChemistry,2013,19:849–853.
    [185] A A Ganash, Effect of conducting composite carbon nanotube-poly(o-toluidine)coatings on the corrosion resistance of stainless steel material[J]. Polym. Compos.,2013,34:1180-1185.
    [186] Farhad Batmanghelich, Mohammad Ghorbani, Effect of pH and carbon nanotubecontent on the corrosion behavior of electrophoretically depositedchitosan–hydroxyapatite–carbon nanotube composite coatings[J]. Ceramics International2013,39:5393–5402.
    [187]王俊,许飞,周斌,许海燕.聚氨酯/碳纳米管复合材料在涂料中的研究进展[J].涂料技术与文摘,2013,2:6-10.
    [188] Zhao Y, Light-responsive block copolymer micelles[J]. Macromolecules,2012,45(9):3647-3657.
    [189] Kenneth A Connors, The stability of cyclodextrin complexes in solution[J]. Chem.Rev.,1997,97(5):1325-1358.
    [190] Yiqun Yang, Chenglin Yi, Jing Luo, et al. Glucose sensors based on electrodepositionof molecularly imprinted polymeric micelles: A novel strategy for MIP sensors[J].Biosensors and Bioelectronics,2011,26:2607–2612.
    [191] Jiang J Q, Tong X, Zhao Y, A new design for light-breakable polymer micelles[J]. J.Am. Chem. Soc.,2005,127(23):8290-8291.
    [192]赵艳琼.双亲性共聚物制备及其包覆性能研究[D].无锡:江南大学硕士论文.2011.
    [193] Jiang J Q, Shu Q Z, Chen X, et al. Photoinduced morphology switching of polymernanoaggregates in aqueous solution[J]. Langmuir,2010,26(17):14247-14254.
    [194] Jiang J Q, Qi B, Martin L, Zhao Y, Polymer micelles stabilization on demand throughreversible photo-cross-linking[J]. Macromolecules,2007,40(4):790-792.
    [195] Yu J R, Grossiord N, Koning C E, et al. Controlling the dispersion of multi-wallcarbon nanotubes in aqueous surfactant solution[J]. Carbon,2007,45:618-623.
    [196] Sinani V A, Gheith M K, Yaroslavov A A, Aqueous dispersions of single-wall andmultiwall carbon nanotubes with designed amphiphilic polycations[J]. J. Am. Chem.Soc.,2005,127:3463-3472.
    [197] Luo Y L, Wang C, Li Z Q, Preparation, fabrication and response behavior of aHTBN/TDI/MWCNT composite sensing film by in situ dispersed polymerization[J].Synthetic Metals,2007,157:390-400.
    [198] Luo Y L, Wei Q B, Chen Y S, et al. Fabrication, characterization and vapor-inducedelectroresponsive behavior of P(St-alt-MA)/MWCNT conductive nanocomposite films[J].J Mater Sci: Mater Electron,2009,20:761-770.
    [199] Liu Y T, Zhao W, Huang Z Y, et al. Noncovalent surface modification of carbonnanotubes for solubility in organic solvents[J]. Carbon,2006,44:1581-1616.
    [200] Zhao W, Liu Y T, Feng Q F, et al. Dispersion and noncovalent modification ofmultiwalled carbon nanotubes by various polystyrene-based polymers[J]. Journal ofApplied Polymer Science,2008,109,3525-3532.
    [201]易成林,光敏性类交替共聚物自组装及其应用研究[D].无锡:江南大学硕士论文.2009.
    [202]赵艳琼,费凡,易成林等.光敏共聚物P(St/VM-co-MA)自组装胶体粒子及其性能[J].物理化学学报,2010,26(12):3230-3236.
    [203]方铖.分子印迹电化学传感器的研制[D].无锡:江南大学硕士论文.2009.
    [204] Zhao H, Zhang Y Z, Yuan Z B, Study on the electrochemical behavior of dopaminewith poly(sulfosalicylic acid) modified glassy carbon electrode[J]. Analytica ChimicaActa,2001,441:117-122.
    [205] Zhao H, Zhang Y Z, Yuan Z B, Electrochemical determination of dopamine using apoly(2-picolinicacid) modified glassy carbon electrode[J]. Analyst,2001,126:358-360.
    [206]尹坦姬.几种新型的电容型生物传感器及基于环糊精的超分子化学传感器的研制与应用[D].湖南大学硕士论文.2007.长沙.
    [207] Satyananda B, Suresh V, Synthesis and self-assembly of copolymers with pendantelectroactive units[J]. Macromolecules,2008,41:6376-6386.
    [208]宗亦吾.含液晶基元的聚合物的制备[D].无锡:江南大学硕士论文.2009.
    [209] Mirzaagha B, Thermal stability and high glass transition temperature of4-chloromethyl styrene polymers bearing carbazolyl moieties[J]. Polymer degradationand stability,2006,91:3245-3251.
    [210] Zhang L, Eisenberg A, Multiple morphologies of "Crew-Cut" aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers[J]. Science,1995,268:1728-1731.
    [211] Kui Y, Alan J H, Eisenberg A, Syntheses of silica/polystyrene-block-poly(ethyleneoxide) films with regular and reverse mesostructures of large characteristic length scalesby solvent evaporation-induced self-assembly[J]. Langmuir,2001,17(26):7961-7965.
    [212] Liu Y H, Li N J, Xia X W, et al. WORM memory devices based on conformationchange of a PVK derivative with a rigid spacer in side chain[J]. Materials Chemistry andPhysics,2010,123:685-689.
    [213] Kononenko Y T, Bogdal D, Yashchuk V M, Dynamics of electron-vibrationalexcitation of polyphosphazenes containing carbazole and coumarin[J]. Journal ofMolecular Liquids,2006,127:118-120.
    [214] Yang Y K, Xie X L, Wu J G, Multiwalled carbon nanotubes functionalized byhyperbranched poly(urea-urethane)s by a one-pot polycondensation[J]. Macromol. RapidCommun.,2006,27:1695-1701.
    [215] Murat A, Nesimi U, Synthesis and electropolymerization of9-(4-vinylbenzyl)-9-carbazole on carbon fiber microelectrode: capacitive behavior ofPoly(9-(4-vinylbenzyl)-9-carbazole)[J]. Fibers and Polymers,2010,11(3):331-337.
    [216] Chang C, Zhu J, Zhang Z. B, et al. Synthesizing and characterization of comb-shapedcarbazole containing copolymer via combination of ring opening polymerization andnitroxide-mediated polymerization[J]. Polymer,2010:511947-1953.
    [217] Sergiy P, Vladimir V T, The architectures and surface behavior of highly branchedmolecules[J]. Prog. Polym. Sci.,2008,33:523-580.
    [218] Gao C, Yan D, Hyperbranched polymers: from synthesis to applications[J]. Progressin Polymer Science,2004,29:183-275.
    [219] Fréchet J M J, Henmi M, Gitsov I, et, al. Self condensing vinyl polymerization: anew approach to dendritic materials[J]. Science,1995,269:1080-1083.
    [220] Ishizu K, Takahashi D, Takeda H, Novel synthesis and characterization ofhyperbranched polymers[J]. Polymer,2000,41:6081-6086.
    [221] Hawker C J, Bosman A W, Harth E, New polymer synthesis by nitroxide mediatedliving radical polymerizations[J]. Chem Rev,2001,101:3661-3688.
    [222] Isaure F, Cormack P A G, Sherrington D C, Synthesis of branched poly (methylmethacrylate)s:effect of the branching comonomer structure[J]. Macromolecules,2004,37:2096-2105.
    [223] Graham S, Cormack P A G, Sherrington DC, One-pot synthesis of branchedpoly(methacrylic acid)s and suppression of the rheological ‘‘polyelectrolyte effect’’[J].Macromolecules,2005,38:86-90.
    [224] Baudry R, Sherrington D C, Facile synthesis of branched poly(vinyl alcohol)s[J].Macromolecules,2006,39:5230-5237.
    [225] Ma R, Ma M G, Feng L L, et al. The synthesis of P(MAn-co-St)-b-PS-b-P(MAn-co-St) block copolymers by RAFT polymerization and the nanostructure oftheir self-assembly aggregates. Colloids and Surfaces A: Physicochem[J]. Eng. Aspects,2009,346:184-194.
    [226] Liu J, Wang Y, Fu Q, et al. Branched polymer via free radical polymerization ofchain transfer monomer: a theoretical and experimental investigation[J]. J Polym SciA,2008,46:1449-1459.
    [227] Neeta L L, Velmurugan T, Seeram R, Preparation of surface adsorbed andimpregnated multi-walled carbon nanotube/nylon-6nanofiber composites andinvestigation of their gas sensing ability[J]. Sensors,2009,9:86-101.
    [228] Biju P, Jose K A, Anupama C, Carbon nanotube/PMMA composite thin films forgas-sensing applications[J]. Smart Mater. Struct.,2003,12:935-939.
    [229] Xiao L, Wei J L, Gao Y, et al. Formation of gradient multiwalled carbon nanotubestripe patterns by using evaporation-induced self-assembly[J]. ACS Appl. Mater.Interfaces,2012,4:3811-3817.
    [230] Jennifer Q L, David A R, Emanuel O, et al. Carbon nanotubes with small and tunablediameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers[J].Langmuir,2006,22:5174-5179.
    [231] Lee S H, Lim J H, Kim K M, Fabrication of hybrid ladderlikepolysilsesquioxane-grafted multiwalled carbon nanotubes[J]. Journal of Applied PolymerScience,2012,124:3792-3798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700