用户名: 密码: 验证码:
水热法制备铋铁系化合物及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人口的增长和工业的发展,能源危机和环境问题变得日益严重。以半导体为催化剂,可以利用太阳光将有机污染物氧化分解成无机物。因此,光催化技术作为一种解决能源和环境问题的理想绿色技术引起了人们的高度重视。TiO2是目前被研究最广泛的半导体光催化剂,被广泛研究和应用于降解有机污染物、裂解水制氢、空气净化和杀菌等方面。但是TiO2的带隙较宽(3.2eV),仅能吸收利用太阳光中波长小于380nm的紫外光,而太阳光谱中仅含有不到4%的紫外线,这就极大地限制其在环境净化实际中的应用。虽然通过对TiO2的掺杂和改性可使其吸收波段向可见光区移动,但其光催化效率仍不理想。因此,开发高效利用太阳光的可见光响应光催化材料,是当前半导体光催化技术研究的一个重要方向。
     本文采用水热合成技术制备铋铁系化合物,并对其可见光辐照下的光催化性能进行了研究,其主要内容包括:
     (1)将水热合成技术与溶胶-凝胶法相结合,首次用于制备BiFeO3粉体,通过调节反应前驱体和矿化剂浓度,可以获得具有不同尺寸和形貌的BiFeO3粉体。使用溶胶作为前驱体时,可以获得微米尺寸的球形和立方块状的BiFeO3粉体;使用凝胶作为前驱体则可以获得亚微米尺寸的BiFeO3颗粒。Ostwald熟化机制主导了晶体生长的整个过程,而OH导致的沿不同方向生长速率上的差异,则是形成立方块状BiFeO3粉体的根本原因。BiFeO3的紫外-可见吸收光谱和样品降解甲基橙溶液的实验结果表明,BiFeO3材料是一种可见光响应的光催化剂。
     (2)采用静电纺丝技术结合水热法,首次制备出具有核壳结构的一维BiFeO3@C复合材料,通过调节水热合成过程中葡萄糖溶液的浓度,可以实现BiFeO3纤维表面碳层的厚度可控。BiFeO3@C复合材料样品在可见光下对甲基橙的降解效果明显强于BiFeO3纤维样品。BiFeO3@C复合材料样品中的碳,在提高BiFeO3纤维样品吸收光子能力的同时,还可以增强材料对甲基橙分子的吸附能力,并且能够促进光生电子-空穴对的分离,因而极大地提高了材料的光催化活性。BiFeO3@C复合材料不仅具有优异的光催化性能,还可以重复使用而不削弱其光催化活性,并且易于回收,因此该材料作为一种可见光响应的光催化剂,在环境污染治理领域有很大的应用潜力。
     (3)利用水热合成技术,首次尝试添加无机盐作为辅助矿化剂调节Bi2Fe409晶体的形貌和尺寸。无KN03添加时Bi2Fe409样品由亚微米尺寸的颗粒组成,且具有良好的分散性;添加KN03作为辅助矿化剂时,产物则为微米尺寸的棒状Bi2Fe4O9晶体。TEM测试结果表明,棒状Bi2Fe4O9晶体是沿[001]方向取向生长的。研究表明,棒状Bi2Fe409晶体是通过Ostwald熟化机制实现长大的,N03的“位阻”效应导致了晶体的一维棒状形貌。Bi2Fe4O9晶体的紫外-可见吸收光谱和样品降解甲基橙溶液的实验结果表明,Bi2Fe4O9晶体是一种潜在的可见光响应的光催化材料。
     (4)采用溶剂热合成技术,首次使用无水乙醇与水的混合溶液作为溶剂制备出纯相Bi2Fe4O9粉体。详细研究了溶剂对产物相结构和形貌的影响,以及棒状和带缺陷的立方块状Bi2Fe4O9晶体的形成过程。通过调节溶剂中无水乙醇与水的比例,可以获得棒状和立方块状的Bi2Fe4O9晶体。研究结果表明,在离子浓度更高的溶剂中易于获得棒状Bi2Fe4O9晶体,同时Bi2Fe4O9晶体的各向异性也是一个重要因素。由于颗粒尺寸较大、比表面积较小和禁带宽度相对较小等原因,棒状Bi2Fe4O9晶体的光催化活性较弱。
     (5)采用水热合成技术,通过添加LiNO3作为辅助矿化剂制备Bi25FeO40粉体,并详细地研究了合成条件(矿化剂浓度、物质量配比和LiNO3用量)对产物相结构和形貌的影响。实验中Li+的引入不仅有助于软铋矿结构的Bi25FeO40粉体的形成,还可以减小晶体的尺寸。Bi25FeO40粉体的紫外-可见吸收光谱和光催化实验结果表明,Bi25FeO40材料可被用于制备可见光响应的光催化剂。
In recent years, with the increase of population and the development of industry, the energy and environmental problems have become more and more serious. Since semiconductor catalysts can be applied for the degradation of organic pollutants by using sunlight, photocatalytic technology has been considered as one of the promising solutions to address the increasing energy crisis and environmental pollution, which has attracted considerable attention. Titanium dioxide (TiO2) has been widely studied and used as a photocatalyst for the degradation of organic pollutant, water splitting, air purification and sterilization. However, the application of pure TiO2is limited, because of its wide band gap (3.2eV). TiO2can only be excited with ultraviolet light (λ<380nm), which makes up only a small fraction (4%) of the total solar spectrum. Over the past years, many efforts have been devoted to the extension of the photoresponse of TiO2to the visible region by doping with metal ions or non-metals, and sensitizing with organic dyes, organic-inorganic hybrid dyes, and narrow band gap semiconductors. However, the corresponding photocatalytic efficiency is not ideal for practical applications. Therefore, it is of great interest to develop efficient visible-light photocatalysts for the degradation of organic pollutants.
     On the basis of these, bismuth ferrite compounds were prepared by hydrothermal process and their visible-light photocatalytic activities were studied in this thesis. The main contents were outlined below:
     (1) BiFeO3powders with various morphologies were successfully prepared via combining the sol-gel technique and hydrothermal process for the first time. Microspheres and microcubes were obtained as sol was used as a precursor, and submicrometer-sized particles could be prepared by using gel. Possible formation mechanism of BiFeO3microcrystals was the Ostwald ripening process. It was supposed that the difference of the morphology between BiFeO3microcrystals should be attributed to the changed crystal growth behavior caused by the varying OH" concentration. Moreover, the results of UV-vis diffuse reflectance spectroscopy and photodegradation experiments reveal that BFO powders can be used as an effective photocatalyst under visible light.
     (2) BiFeO3@carbon core/shell nanofibers (BFO@C NFs) with different thickness of carbon layers were successfully prepared by combining the electrospining technique and hydrothermal process for the first time. The photodegradation experiments show that BFO@C NFs samples exhibit higher degradation efficiency for methyl orange than the pure BFO NFs. It was proposed that the introduction of carbon should not only enhance the light absorption of BFO NFs and the adsorption capacity for methyl orange, but also facilitate the separation of photogenerated electron-hole pairs, both of which result in the enhanced photocatalytic activity of BFO NFs. In addition, BFO@C NFs could be easily recycled without decreasing the photocatalytic activity, which will promote their application for removal of the organic pollutants in waste water.
     (3) Bi2Fe4O9crystals with various morphologies were successfully prepared by introducing inorganic salt (KNO3) during the hydrothermal process for the first time. Submicron-sized Bi2Fe4O9crystals were successfully in the absence of mineralizer KNO3, while micron-sized Bi2Fe4O9crystals with rod-like morphology were obtained in the presence of KNO3. Transmission electron microscopy was employed to characterize the products and the results demonstrate that the rod-like crystals grow preferentially along the [001] direction. The Ostwald ripening process was the possible formation mechanism for the microrods according to a series of time-dependent experiments. It was suggested that the block effect of NO3-should result in the rod-like powders. Moreover, the optical absorption of the as-prepared Bi2Fe4O9crystals and the results of photodegradation experiments suggest their promising applications as photocatalysts in the visible range.
     (4) Pure Bi2Fe4O9powders with different morphologies and particle size have been prepared via surfactant-free solvothermal route in water and water-ethanol mixed solvents for the first time. The effect of the solvent on the morphology of Bi2Fe4O9crystals and the formation process of rod-like microrods and defective crystals were investigated. Rod-like and cubic shape Bi2Fe4O9crystals could be easily obtained by changing the volume ratios of H2O/EtOH. The results indicate that the rod-like Bi2Fe4O9crystals could be formed in the more ionic solvent, and may be related to the anisotropic nature of the crystal structure. The lower photocatalytic activity of Bi2Fe4O9microrods could be attributed to their larger particle sizes, smaller specific surface areas and smaller band gap.
     (5) Bi25Fe04o powders were successfully synthesized via hydrothermal method in the presence of mineralizer LiNO3. The effect of the hydrothermal condition, i.e., the concentration of mineralizer, the stoichiometry of reagents, and the amount of LiNO3, on the phase structure and morphology of the as-prepared samples were investigated. The results demonstrate that the introduction of Li+not only promotes the formation of Bi25FeO40, but also induces the decrease of particle size. Moreover, the absorption feature of the Bi25FeO40powders and the results of photodegradation experiments suggest their promising applications as photocatalysts activated by visible light.
引文
[1]李申生.太阳能物理学.北京:首都师范大学出版社,1996.
    [2]Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358):37-38.
    [3]Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
    [4]Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis:A Historical Overview and Future Prospects. Japanese Journal of Applied Physics,2005,44(12):8269-8285.
    [5]Kitano M., Matsuoka M., Ueshima M., Anpo M. Recent Developments in Titanium Oxide-Based Photocatalysts. Applied Catalysis A:General,2007,325(1):1-14.
    [6]Kominami H., Miyakawa M., Murakami S.-y., Yasuda T., Kohno M., Onoue S.-i., Kera Y., Ohtani B. Solvothermal Synthesis of Tantalum(V) Oxide Nanoparticles and Their Photocatalytic Activities in Aqueous Suspension Systems. Physical Chemistry Chemical Physics,2001, 3(13):2697-2703.
    [7]Zhu Y. F., Yu F., Man Y, Tian Q. Y, He Y, Wu N. Z. Preparation and Performances of Nanosized Ta2O5 Powder Photocatalyst. Journal of Solid State Chemistry,2005,178(1):224-229.
    [8]Emeline A. V, Kuzmin G. N., Basov L. L., Serpone N. Photoactivity and Photoselectivity of a Dielectric Metal-Oxide Photocatalyst (ZrO2) Probed by the Photoinduced Reduction of Oxygen and Oxidation of Hydrogen. Journal of Photochemistry and Photobiology A:Chemistry,2005, 174(3):214-221.
    [9]Lo C.-C., Hung C.-H., Yuan C.-S., Wu J.-F. Photoreduction of Carbon Dioxide with H2 and H2O over TiO2 and ZrO2 in a Circulated Photocatalytic Reactor. Solar Energy Materials and Solar Cells,2007,91(19):1765-1774.
    [10]Avudaithai M., Kutty T. R. N. Ultrafine Powders of SrTiO3 from the Hydrothermal Preparation and Their Catalytic Activity in the Photolysis of Water. Materials Research Bulletin, 1987,22(5):641-650.
    [11]Subramanian V, Roeder R. K., Wolf E. E. Synthesis and UV-Visible-Light Photoactivity of Noble-Metal-SrTiO3 Composites. Industrial & Engineering Chemistry Research,2006, 45(7):2187-2193.
    [12]Domen K., Yoshimura J., Sekine T., Tanaka A., Onishi T. A Novel Series of Photocatalysts with an Ion-Exchangeable Layered Structure of Niobate. Catalysis Letters,1990,4(4-6):339-343.
    [13]Sarahan M. C., Carroll E. C., Allen M., Larsen D. S., Browning N. D., Osterloh F. E. K4Nb6O17-Derived Photocatalysts for Hydrogen Evolution from Water:Nanoscrolls versus Nanosheets. Journal of Solid State Chemistry,2008,181(7):1678-1683.
    [14]Zhen L., Xu C. Y., Wang W. S., Lao C. S., Kuang Q. Electrical and Photocatalytic Properties of Na2Ti6O13 Nanobelts Prepared by Molten Salt Synthesis. Applied Surface Science,2009, 255(7):4149-4152.
    [15]Stengl V., Bakardjieva S., Subrt J., Vecernikova E., Szatmary L., Klementova M., Balek V. Sodium Titanate Nanorods:Preparation, Microstructure Characterization and Photocatalytic Activity. Applied Catalysis B:Environmental,2006,63(1-2):20-30.
    [16]Shangguan W. F., Yoshida A. Influence of Catalyst Structure and Modification on the Photocatalytic Production of Hydrogen from Water on Mixed Metal Oxides. International Journal of Hydrogen Energy,1999,24(5):425-431.
    [17]Guan G. Q., Kida T., Harada T., Isayama M., Yoshida A. Photoreduction of Carbon Dioxide with Water over K2Ti6O13 Photocatalyst Combined with Cu/ZnO Catalyst under Concentrated Sunlight. Applied Catalysis A:General,2003,249(1):11-18.
    [18]Kohno M., Ogura S., Inoue Y. Preparation of BaTi4O9 by a Sol-Gel Method and Its Photocatalytic Activity for Water Decomposition. Journal of Materials Chemistry,1996, 6(12):1921-1924.
    [19]Kohno M., Kaneko T., Ogura S., Sato K., Inoue Y. Dispersion of Ruthenium Oxide on Barium Titanates (Ba6Ti17O40, Ba4Ti13O30, BaTi4O9 and Ba2Ti902o) and Photocatalytic Activity for Water Decomposition. Journal of the Chemical Society, Faraday Transactions,1998,94(1):89-94.
    [20]Tang J. W., Zou Z. G., Ye J. H. Photocatalytic Decomposition of Organic Contaminants by Bi2WO6 under Visible Light Irradiation. Catalysis Letters,2004,92(1):53-56.
    [21]Gao F., Chen X. Y, Yin K. B., Dong S., Ren Z. F., Yuan F., Yu T., Zou Z. G, Liu J. M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Advanced Materials,2007,19(19):2889-2892.
    [22]Xie H. D., Shen D. Z., Wang X. Q., Shen G Q. Microwave Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of y-Bi2MoO6 Nanoplates. Materials Chemistry and Physics, 2008,110(2-3):332-336.
    [23]Sun S., Wang W., Xu H., Zhou L., Shang M., Zhang L. Bi5FeTi3015 Hierarchical Microflowers: Hydrothermal Synthesis, Growth Mechanism, and Associated Visible-Light-Driven Photocatalysis. The Journal of Physical Chemistry C,2008,112(46):17835-17843.
    [24]Hou J., Qu Y, Krsmanovic D., Ducati C., Eder D., Kumar R. V. Hierarchical Assemblies of Bismuth Titanate Complex Architectures and Their Visible-Light Photocatalytic Activities. Journal of Materials Chemistry,2010,20(12):2418-2423.
    [25]Pan C. S., Zhu Y. F. Size-Controlled Synthesis of BiPO4 Nanocrystals for Enhanced Photocatalytic Performance. Journal of Materials Chemistry,2011,21(12):4235-4241.
    [26]Madhusudan P., Zhang J., Cheng B., Liu G Photocatalytic Degradation of Organic Dyes with Hierarchical Bi2O2CO3 Microstructures under Visible-Light. CrystEngComm,2013, 15(2):231-240.
    [27]韩世同,习海玲,史瑞雪,付贤智,王绪绪.半导体光催化研究进展与展望.化学物理学报,2003,16(5):339-349.
    [28]Tryk D. A., Fujishima A., Honda K. Recent Topics in Photoelectrochemistry:Achievements and Future Prospects. Electrochimica Acta,2000,45(15-16):2363-2376.
    [29]Calza P., Minero C., Hiskia A., Papaconstantinou E., Pelizzetti E. Photocatalytic Transformations of CCl3Br, CBr3F, CHCl2Br and CH2BrCl in Aerobic and Anaerobic Conditions. Applied Catalysis B:Environmental,2001,29(1):23-34.
    [30]Parra S., Malato S., Pulgarin C. New Integrated Photocatalytic-Biological Flow System Using Supported TiO2 and Fixed Bacteria for the Mineralization of Isoproturon. Applied Catalysis B: Environmental,2002,36(2):131-144.
    [31]Chen L. H., Zhu X. W., Wang F. D., Gu W. Z. Photoproduction of Hydrogen and 1,2-Propanediol from Aqueous Methanol and Ethanol Solution Catalysed by ZnS. Journal of Photochemistry and Photobiology A:Chemistry,1993,73(3):217-220.
    [32]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95(l):69-96.
    [33]Stoltzfus M. W., Woodward P. M., Seshadri R., Klepeis J.-H., Bursten B. Structure and Bonding in SnWO4, PbWO4, and BiVO4:Lone Pairs vs Inert Pairs. Inorganic Chemistry,2007, 46(10):3839-3850.
    [34]Kudo A., Kato H., Tsuji I. Strategies for the Development of Visible-Light-Driven Photocatalysts for Water Splitting. Chemistry Letters,2004,33(12):1534-1539.
    [35]王鹏,陈晓晖,魏可镁.含铋复合氧化物催化剂的研究进展.工业催化,2011,19(2):1-10.
    [36]许效红,姚伟峰,张寅,周爱秋,侯云,王民.钛酸铋系化合物的光催化性能研究.化学学报,2005,63(1):5-10.
    [37]Thanabodeekij N., Gulari E., Wongkasemjit S. Bi12TiO20 Synthesized Directly from Bismuth (III) Nitrate Pentahydrate and Titanium Glycolate and Its Activity. Powder Technology,2005, 160(3):203-208.
    [38]Zhu X. Q., Zhang J. L., Chen F. Hydrothermal Synthesis of Nanostructures Bi12TiO20 and Their Photocatalytic Activity on Acid Orange 7 under Visible Light. Chemosphere,2010, 78(11):1350-1355.
    [39]Hou J. G, Wang Z., Jiao S. Q., Zhu H. M.3D Bi12Ti02o/Ti02 Hierarchical Heterostructure: Synthesis and Enhanced Visible-Light Photocatalytic Activities. Journal of Hazardous Materials, 2011,192(3):1772-1779.
    [40]Shi Y. H., Feng S. H., Cao C. S. Hydrothermal Synthesis and Characterization of Bi2MoO6 and Bi2WO6. Materials Letters,2000,44(3-4):215-218.
    [41]Kudo A., Hijii S. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+with 6s2 Configuration and d0 Transition Metal Ions. Chemistry Letters,1999,28(10):1103-1104.
    [42]Tang J. W., Zou Z. G, Ye J. H. Photocatalytic Decomposition of Organic Contaminants by Bi2WO6 under Visible Light Irradiation. Catalysis Letters,2004,92(1):53-56.
    [43]Fu H. B., Pan C. S., Yao W. Q., Zhu Y. F. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6. The Journal of Physical Chemistry B,2005,109(47):22432-22439.
    [44]杨英杰,陈建林,王仪春,姚三丽,徐缇,李娣Bi2WO6催化剂的合成和表征及其光催化活性.化工环保,2007,27(6):501-505.
    [45]刘自力,韦江慧.光催化降解糖蜜酒精废水的研究.工业催化,2004,12(2):31-34.
    [46]Ren J., Wang W. Z., Zhang L., Chang J., Hu S. Photocatalytic Inactivation of Bacteria by Photocatalyst Bi2WO6 under Visible Light. Catalysis Communications,2009,10(14):1940-1943.
    [47]Ren J., Wang W. Z., Sun S. M., Zhang L., Chang J. Enhanced Photocatalytic Activity of Bi2WO6 Loaded with Ag Nanoparticles under Visible Light Irradiation. Applied Catalysis B: Environmental,2009,92(1-2):50-55.
    [48]Li Y. Y, Liu J. P., Huang X. T., Yu J. G Carbon-Modified Bi2WO6 Nanostructures with Improved Photocatalytic Activity under Visible Light. Dalton Transactions,2010, 39(14):3420-3425.
    [49]Zhang Z. J., Wang W. Z., Gao E. P., Shang M., Xu J. H. Enhanced Photocatalytic Activity of Bi2WO6 with Oxygen Vacancies by Zirconium Doping. Journal of Hazardous Materials,2011, 196:255-262.
    [50]Shang M., Wang W. Z., Zhang L., Xu H. L. Bi2WO6 with Significantly Enhanced Photocatalytic Activities by Nitrogen Doping. Materials Chemistry and Physics,2010, 120(1):155-159.
    [51]Xiao Q., Zhang J., Xiao C., Tan X. Photocatalytic Degradation of Methylene Blue over Co3O4/Bi2WO6 Composite under Visible Light Irradiation. Catalysis Communications,2008, 9(6):1247-1253.
    [52]Colon G., Murcia Lopez S., Hidalgo M. C., Navio J. A. Sunlight Highly Photoactive Bi2WO6-TiO2 Heterostructures for Rhodamine B Degradation. Chemical Communications,2010, 46(26):4809-4811.
    [53]Kudo A., Ueda K., Kato H., Mikami I. Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution. Catalysis Letters,1998,53(3-4):229-230.
    [54]Kohtani S., Koshiko M., Kudo A., Tokumura K., Ishigaki Y., Toriba A., Hayakawa K., Nakagaki R. Photodegradation of 4-Alkylphenols Using BiVO4 Photocatalyst under Irradiation with Visible Light from a Solar Simulator. Applied Catalysis B:Environmental,2003, 46(3):573-586.
    [55]Kohtani S., Hiro J., Yamamoto N., Kudo A., Tokumura K., Nakagaki R. Adsorptive and Photocatalytic Properties of Ag-Loaded BiVO4 on the Degradation of 4-N-Alkylphenols under Visible Light Irradiation. Catalysis Communications,2005,6(3):185-189.
    [56]Guan M. L., Ma D. K., Hu S. W., Chen Y. J., Huang S. M. From Hollow Olive-Shaped BiVO4 to n-p Core-Shell BiV04@Bi203 Microspheres:Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties. Inorganic Chemistry,2010,50(3):800-805.
    [57]Long M., Cai W., Cai J., Zhou B., Chai X., Wu Y. Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. The Journal of Physical Chemistry B,2006,110(41):20211-20216.
    [58]Wang J., Neaton J. B., Zheng H., Nagarajan V., Ogale S. B., Liu B., Viehland D., Vaithyanathan V., Schlom D. G, Waghmare U. V., Spaldin N. A., Rabe K. M., Wuttig M., Ramesh R. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science,2003,299(5613):1719-1722.
    [59]Gao F., Yuan Y., Wang K. F., Chen X. Y., Chen F., Liu J. M., Ren Z. F. Preparation and Photoabsorption Characterization of BiFeO3 Nanowires. Applied Physics Letters,2006, 89(10):102506.
    [60]Luo J. H., Maggard P. A. Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3. Advanced Materials,2006,18(4):514-517.
    [61]Lu X. M., Xie J. M., Song Y. Z., Lin J. M. Surfactant-Assisted Hydrothermal Preparation of Submicrometer-Sized Two-Dimensional BiFeO3 Plates and Their Photocatalytic Activity. Journal of Materials Science,2007,42(16):6824-6827.
    [62]Cho C. M., Noh J. H., Cho I.-S., An J.-S., Hong K. S., Kim J. Y. Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts. Journal of the American Ceramic Society,2008, 91(11):3753-3755.
    [63]Li S., Lin Y. H., Zhang B. P., Wang Y., Nan C. W. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. The Journal of Physical Chemistry C,2010,114(7):2903-2908.
    [64]Ruan Q. J., Zhang W. D. Tunable Morphology of Bi2Fe4O9 Crystals for Photocatalytic Oxidation. The Journal of Physical Chemistry C,2009,113(10):4168-4173.
    [65]Sun S. M., Wang W. Z., Zhang L., Shang M. Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions. The Journal of Physical Chemistry C,2009,113(29):12826-12831.
    [66]Martinez-de la Cruz A., Obregon Alfaro S. Synthesis and Characterization of Nanoparticles of α-Bi2Mo3O12 Prepared by Co-Precipitation Method:Langmuir Adsorption Parameters and Photocatalytic Properties with Rhodamine B. Solid State Sciences,2009, 11(4):829-835.
    [67]He C. H., Gu M. Y. Preparation, Characterization and Photocatalytic Properties of Bi12SiO20 Powders. Scripta Materialia,2006,55(5):481-484.
    [68]Chen R. G., Bi J. H., Wu L., Wang W. J., Li Z. H., Fu X. Z. Template-Free Hydrothermal Synthesis and Photocatalytic Performances of Novel Bi2SiO5 Nanosheets. Inorganic Chemistry, 2009,48(19):9072-9076.
    [69]Hou J. G, Wang Z., Jiao S. Q., Zhu H. M. Bi2O3 Quantum Dots Decorated Nitrogen Doped Bi3NbO7 Nanosheets:In-Situ Synthesis and Enhanced Visible-Light Photocatalytic Activity. CrystEngComm,2012,14(18):5923-5928.
    [70]Li Z. Q., Lin X. S., Zhang L., Chen X. T., Xue Z. L. Fast Preparation of Bi2Ge05 Nanoflakes via a Microwave-Hydrothermal Process and Enhanced Photocatalytic Activity after Loading with Ag Nanoparticles. Materials Research Bulletin,2012,47(9):2422-2427.
    [71]Zhang X., Ai Z. H., Jia F. L., Zhang L. Z. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X= Cl, Br, I) Nanoplate Microspheres. The Journal of Physical Chemistry C,2008,112(3):747-753.
    [72]Choi T., Lee S., Choi Y. J., Kiryukhin V., Cheong S.-W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science,2009,324(5923):63-66.
    [73]Kundys B., Viret M., Colson D., Kundys D. O. Light-Induced Size Changes in BiFeO3 Crystals. Nature Materials,2010,9(10):803-805.
    [74]Baek S. H., Jang H. W., Folkman C. M., Li Y. L., Winchester B., Zhang J. X., He Q., Chu Y. H., Nelson C. T., Rzchowski M. S., Pan X. Q., Ramesh R., Chen L. Q., Eom C. B. Ferroelastic Switching for Nanoscale Non-Volatile Magnetoelectric Devices. Nature Materials,2010, 9(4):309-314.
    [75]Yang S. Y, Zavaliche F., Mohaddes-Ardabili L., Vaithyanathan V., Schlom D. G, Lee Y. J., Chu Y. H., Cruz M. P., Zhan Q., Zhao T., Ramesh R. Metalorganic Chemical Vapor Deposition of Lead-Free Ferroelectric BiFeO3 Films for Memory Applications. Applied Physics Letters,2005, 87(10):102903.
    [76]Thery J., Dubourdieu C., Baron T., Ternon C., Roussel H., Pierre F. MOCVD of BiFeO3 Thin Films on SrTiO3. Chemical Vapor Deposition,2007,13(5):232-238.
    [77]Popa M., Crespo D., Calderon-Moreno J. M., Preda S., Fruth V. Synthesis and Structural Characterization of Single-Phase BiFeO3 Powders from a Polymeric Precursor. Journal of the American Ceramic Society,2007,90(9):2723-2727.
    [78]Selbach S. M., Einarsrud M.-A., Tybell T., Grande T. Synthesis of BiFeO3 by Wet Chemical Methods. Journal of the American Ceramic Society,2007,90(11):3430-3434.
    [79]Xu J. H., Ke H., Jia D. C., Wang W, Zhou Y. Low-Temperature Synthesis of BiFeO3 Nanopowders via a Sol-Gel Method. Journal of Alloys and Compounds,2009,472(1-2):473-477.
    [80]Liu T., Xu Y. B., Feng S. S., Zhao J. Y. A Facile Route to the Synthesis of BiFeO3 at Low Temperature. Journal of the American Ceramic Society,2011,94(9):3060-3063.
    [81]Das N., Majumdar R., Sen A., Maiti H. S. Nanosized Bismuth Ferrite Powder Prepared through Sonochemical and Microemulsion Techniques. Materials Letters,2007,61(10):2100-2104.
    [82]Liu Z. K., Qi Y. J., Lu C. J. High Efficient Ultraviolet Photocatalytic Activity of BiFeO3 Nanoparticles Synthesized by a Chemical Coprecipitation Process. Journal of Materials Science: Materials in Electronics,2010,21(4):380-384.
    [83]Chen J.-C., Wu J.-M. Dielectric Properties and AC Conductivities of Dense Single-Phased BiFeO3 Ceramics. Applied Physics Letters,2007,91(18):182903.
    [84]Han J. T., Huang Y. H., Wu X. J., Wu C. L., Wei W., Peng B., Huang W, Goodenough J. B. Tunable Synthesis of Bismuth Ferrites with Various Morphologies. Advanced Materials,2006, 18(16):2145-2148.
    [85]Wang Y. G, Xu G, Ren Z. H., Wei X., Weng W. J., Du P. Y, Shen G., Han G. R. Mineralizer-Assisted Hydrothermal Synthesis and Characterization of BiFeO3 Nanoparticles. Journal of the American Ceramic Society,2007,90(8):2615-2617.
    [86]Fei L. F., Yuan J. K., Hu Y. M., Wu C. Z., Wang J. L., Wang Y. Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant{111}c Facets. Crystal Growth & Design,2011, 11 (4):1049-1053.
    [87]Liu B., Hu B. B., Du Z. L. Hydrothermal Synthesis and Magnetic Properties of Single-Crystalline BiFeO3 Nanowires. Chemical Communications,2011,47(28):8166-8168.
    [88]Bellakki M. B., Manivannan V. Citrate-Gel Synthesis and Characterization of Yttrium-Doped Multiferroic BiFeO3. Journal of Sol-Gel Science and Technology,2010,53(2):184-192.
    [89]Ghosh S., Dasgupta S., Sen A., Sekhar Maiti H. Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route. Journal of the American Ceramic Society,2005, 88(5):1349-1352.
    [90]Ghosh S., Dasgupta S., Sen A., Maiti H. S. Low Temperature Synthesis of Bismuth Ferrite Nanoparticles by a Ferrioxalate Precursor Method. Materials Research Bulletin,2005, 40(12):2073-2079.
    [91]Wei J., Xue D. S. Low-Temperature Synthesis of BiFeO3 Nanoparticles by Ethylenediaminetetraacetic Acid Complexing Sol-Gel Process. Materials Research Bulletin,2008, 43(12):3368-3373.
    [92]Kumar M., Yadav K. L., Varma G. D. Large Magnetization and Weak Polarization in Sol-Gel Derived BiFeO3 Ceramics. Materials Letters,2008,62(8-9):1159-1161.
    [93]Simoes A. Z., Garcia F. G., Riccardi C. d. S. Rietveld Analysys and Electrical Properties of Lanthanum Doped BiFeO3 Ceramics. Materials Chemistry and Physics,2009,116(2-3):305-309.
    [94]Park T.-J., Mao Y., Wong S. S. Synthesis and Characterization of Multiferroic BiFeO3 Nanotubes. Chemical Communications,2004, (23):2708-2709.
    [95]Liu T., Xu Y. B., Zhao J. Y. Low-Temperature Synthesis of BiFeO3 via PVA Sol-Gel Route. Journal of the American Ceramic Society,2010,93(11):3637-3641.
    [96]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001.
    [1]Wang J., Neaton J. B., Zheng H., Nagarajan V., Ogale S. B., Liu B., Viehland D., Vaithyanathan V., Schlom D. G, Waghmare U. V., Spaldin N. A., Rabe K. M., Wuttig M., Ramesh R. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science,2003,299(5613):1719-1722.
    [2]Luo J. H., Maggard P. A. Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3. Advanced Materials,2006,18(4):514-517.
    [3]Gao F., Chen X. Y., Yin K. B., Dong S., Ren Z. F., Yuan F., Yu T., Zou Z. G., Liu J. M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Advanced Materials,2007,19(19):2889-2892.
    [4]Lu X. M., Xie J. M., Song Y. Z., Lin J. M. Surfactant-Assisted Hydrothermal Preparation of Submicrometer-Sized Two-Dimensional BiFeO3 Plates and Their Photocatalytic Activity. Journal of Materials Science,2007,42(16):6824-6827.
    [5]Cho C. M., Noh J. H., Cho I.-S., An J.-S., Hong K. S., Kim J. Y. Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts. Journal of the American Ceramic Society,2008, 91(11):3753-3755.
    [6]Li S., Lin Y. H., Zhang B. P., Wang Y, Nan C. W. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. The Journal of Physical Chemistry C,2010,114(7):2903-2908.
    [7]Fei L. F., Yuan J. K., Hu Y M., Wu C. Z., Wang J. L., Wang Y. Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant{111}c Facets. Crystal Growth & Design,2011, 11(4):1049-1053.
    [8]Huo Y N., Jin Y, Zhang Y Citric Acid Assisted Solvothermal Synthesis of BiFeO3 Microspheres with High Visible-Light Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical,2010,331(1-2):15-20.
    [9]Liu B., Hu B. B., Du Z. L. Hydrothermal Synthesis and Magnetic Properties of Single-Crystalline BiFeO3 Nanowires. Chemical Communications,2011,47(28):8166-8168.
    [10]Zhang L., Cao X. F., Ma Y. L., Chen X. T., Xue Z. L. Polymer-Directed Synthesis and Magnetic Property of Nanoparticles-Assembled BiFeO3 Microrods. Journal of Solid State Chemistry,2010,183(8):1761-1766
    [11]Liu J. B., Wang H., Hou Y. D., Zhu M. K., Yan H., Masahiro Y. Low-Temperature Preparation of Nao.5Bio.5TiO3 Nanowhiskers by a Sol-Gel-Hydrothermal Method. Nanotechnology,2004, 15(7):777-780.
    [12]Hou L., Hou Y. D., Song X. M., Zhu M. K., Wang H., Yan H. Sol-Gel-Hydrothermal Synthesis and Sintering of Ko.5Bio.5Ti03 Nanowires. Materials Research Bulletin,2006,41(7):1330-1336.
    [13]Hou Y. D., Hou L., Zhang T. T., Zhu M. K., Wang H., Yan H. (Nao.8Ko.2)o.5Bi0.5Ti03 Nanowires:Low-Temperature Sol-Gel-Hydrothermal Synthesis and Densification. Journal of the American Ceramic Society,2007,90(6):1738-1743.
    [14]Hou Y. D., Hou L., Zhu M. K., Yan H. Synthesis of (K0.5Bi0.5)0.4Bao.6TiO3 Nanowires and Ceramics by Sol-Gel-Hydrothermal Method. Applied Physics Letters,2006,89(24):243114.
    [15]Song Z. Q., Wang S. B., Yang W., Li M., Wang H., Yan H. Synthesis of Manganese Titanate MnTiO3 Powders by a Sol-Gel-Hydrothermal Method. Materials Science and Engineering B,2004, 113(2):121-124.
    [16]Wang G Z., Saeterli R., R(?)rvik P. M., van Helvoort A. T. J., Holmestad R., Grande T., Einarsrud M.-A. Self-Assembled Growth of PbTiO3 Nanoparticles into Microspheres and Bur-Like Structures. Chemistry of Materials,2007,19(9):2213-2221.
    [17]Xu Y, Chen D., Jiao X. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route. The Journal of Physical Chemistry B,2005,109(28):13561-13566.
    [18]Joshi U. A., Jum Suk J., Borse P. H., Jae Sung L. Microwave Synthesis of Single-Crystalline Perovskite BiFeO3 Nanocubes for Photoelectrode and Photocatalytic Applications. Applied Physics Letters,2008,92(24):242106.
    [19]Chen X. Z., Qiu Z. C., Zhou J. P., Zhu G Q., Bian X. B., Liu P. Large-Scale Growth and Shape Evolution of Bismuth Ferrite Particles with a Hydrothermal Method. Materials Chemistry and Physics,2011,126(3):560-567.
    [20]Liu T., Xu Y. B., Feng S. S., Zhao J. Y. A Facile Route to the Synthesis of BiFeO3 at Low Temperature. Journal of the American Ceramic Society,2011,94(9):3060-3063.
    [21]Kubelka P., Munk F. Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift fur technische Physik,1931,12:593-601.
    [22]He Y. P., Miao Y. M., Li C. R., Wang S. Q., Cao L., Xie S. S., Yang G Z., Zou B. S., Burda C. Size and Structure Effect on Optical Transitions of Iron Oxide Nanocrystals. Physical Review B, 2005,71(12):125411.
    [233 Jaiswal A., Das R., Vivekanand K., Mary Abraham P., Adyanthaya S., Poddar P. Effect of Reduced Particle Size on the Magnetic Properties of Chemically Synthesized BiFeO3 Nanocrystals. The Journal of Physical Chemistry C,2010,114(5):2108-2115.
    [24]Barton D. G., Shtein M., Wilson R. D., Soled S. L., Iglesia E. Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures. The Journal of Physical Chemistry B,1999,103(4):630-640.
    [25]Tauc J. Amorphous and Liquid Semiconductors. London:Plenum,1974.
    [26]Ihlefeld J. F., Podraza N. J., Liu Z. K., Rai R. C., Xu X., Heeg T., Chen Y. B., Li J., Collins R. W., Musfeldt J. L., Pan X. Q., Schubert J., Ramesh R., Schlom D. G Optical Band Gap of BiFeO3 Grown by Molecular-Beam Epitaxy. Applied Physics Letters,2008,92(14):142908.
    [27]Basu S. R., Martin L. W., Chu Y. H., Gajek M., Ramesh R., Rai R. C., Xu X., Musfeldt J. L. Photoconductivity in BiFeO3 Thin Films. Applied Physics Letters,2008,92(9):091905.
    [28]Xu Y, Shen M. R. Structure and Optical Properties of Nanocrystalline BiFeO3 Films Prepared by Chemical Solution Deposition. Materials Letters,2008,62(20):3600-3602.
    [29]Chen P., Podraza N. J., Xu X. S., Melville A., Vlahos E., Gopalan V., Ramesh R., Schlom D. G, Musfeldt J. L. Optical Properties of Quasi-Tetragonal BiFeO3 Thin Films. Applied Physics Letters,2010,96(13):131907.
    [30]Wu J. G, Qiao S., Wang J., Wu H. P., Zhu J. G, Xiao D. Q. Optical Properties of 0.95BiFeO3-RTiO3 (R= Mg, Pb, Ba, Ca and Sr) Thin Films. Integrated Ferroelectrics,2012, 139(1):1-6.
    [31]Neaton J. B., Ederer C., Waghmare U. V., Spaldin N. A., Rabe K. M. First-Principles Study of Spontaneous Polarization in Multiferroic BiFeO3. Physical Review B,2005,71(1):014113.
    [32]Clark S. J., Robertson J. Band Gap and Schottky Barrier Heights of Multiferroic BiFeO3. Applied Physics Letters,2007,90(13):132903.
    [33]Gujar T. P., Shinde V. R., Lokhande C. D. Nanocrystalline and Highly Resistive Bismuth Ferric Oxide Thin Films by a Simple Chemical Method. Materials Chemistry and Physics,2007, 103(1):142-146.
    [34]Fruth V., Tenea E., Gartner M., Anastasescu M., Berger D., Ramer R., Zaharescu M. Preparation of BiFeO3 Films by Wet Chemical Method and Their Characterization. Journal of the European Ceramic Society,2007,27(2-3):937-940.
    [35]Wang H., Zheng Y., Cai M. Q., Huang H. T., Chan H. L. W. First-Principles Study on the Electronic and Optical Properties of BiFeO3. Solid State Communications,2009, 149(15-16):641-644.
    [36]Dong H. F., Wu Z. G., Wang S. Y., Duan W. H., Li J. B. Improving the Optical Absorption of BiFeO3 for Photovoltaic Applications via Uniaxial Compression or Biaxial Tension. Applied Physics Letters,2013,102(7):072905.
    [37]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [38]Bell A. T. The Impact of Nanoscience on Heterogeneous Catalysis. Science,2003, 299(5613):1688-1691.
    [1]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [2]Li S., Lin Y. H., Zhang B. P., Li J. F., Nan C. W. BiFeO3/TiO2 Core-Shell Structured Nanocomposites as Visible-Active Photocatalysts and Their Optical Response Mechanism. Journal of Applied Physics,2009,105(5):054310-054315.
    [3]Zhao L., Chen X. F., Wang X. C., Zhang Y. J., Wei W., Sun Y. H., Antonietti M., Titirici M.-M. One-Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible-Light Photocatalysis. Advanced Materials,2010,22(30):3317-3321.
    [4]Guo Y., Wang H. S., He C. L., Qiu L. J., Cao X. B. Uniform Carbon-Coated ZnO Nanorods: Microwave-Assisted Preparation, Cytotoxicity, and Photocatalytic Activity. Langmuir,2009, 25(8):4678-4684.
    [5]Zhang P., Shao C. L., Zhang Z. Y, Zhang M. Y., Mu J. B., Guo Z. C., Liu Y. C. TiO2@Carbon Core/Shell Nanofibers:Controllable Preparation and Enhanced Visible Photocatalytic Properties. Nanoscale,2011,3(7):2943-2949.
    [6]Hou J. G, Jiao S. Q., Zhu H. M., Kumar R. V. Carbon-Modified Bismuth Titanate Nanorods with Enhanced Visible-Light-Driven Photocatalytic Property. CrystEngComm,2011, 13(14):4735-4740.
    [7]Zhang P., Shao C. L., Zhang M. Y, Guo Z. C., Mu J. B., Zhang Z. Y, Zhang X., Liang P. P., Liu Y. C. Controllable Synthesis of Zn2TiO4@Carbon Core/Shell Nanofibers with High Photocatalytic Performance. Journal of Hazardous Materials,2012,229-230(0):265-272.
    [8]Li T., Shen J. F., Li N., Ye M. X. Hydrothermal Preparation, Characterization and Enhanced Properties of Reduced Graphene-BiFeO3 Nanocomposite. Materials Letters,2013,91:42-44.
    [9]Kubelka P., Munk F. Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift ftir technische Physik,1931,12:593-601.
    [10]Turchi C. S., Ollis D. F. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. Journal of Catalysis,1990,122(1):178-192.
    [11]Lee M. S., Park S. S., Lee G.-D., Ju C.-S., Hong S.-S. Synthesis of TiO2 Particles by Reverse Microemulsion Method Using Nonionic Surfactants with Different Hydrophilic and Hydrophobic Group and Their Photocatalytic Activity. Catalysis Today,2005,101(3-4):283-290.
    [12]Guo R., Fang L., Dong W., Zheng F., Shen M. Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles. The Journal of Physical Chemistry C,2010, 114(49):21390-21396.
    [13]Gao F., Chen X. Y., Yin K. B., Dong S., Ren Z. F., Yuan F., Yu T., Zou Z. G, Liu J. M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Advanced Materials,2007,19(19):2889-2892.
    [14]Huo Y. N., Jin Y., Zhang Y. Citric Acid Assisted Solvothermal Synthesis of BiFeO3 Microspheres with High Visible-Light Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical,2010,331(1-2):15-20.
    [15]Li S., Lin Y. H., Zhang B. P., Wang Y., Nan C. W. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. The Journal of Physical Chemistry C,2010,114(7):2903-2908.
    [16]Wei J., Zhang C., Xu Z. Low-Temperature Hydrothermal Synthesis of BiFeO3 Microcrystals and Their Visible-Light Photocatalytic Activity. Materials Research Bulletin,2012, 47(11):3513-3517.
    [17]Cho C. M., Noh J. H., Cho I.-S., An J.-S., Hong K. S., Kim J. Y. Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts. Journal of the American Ceramic Society,2008, 91(11):3753-3755.
    [18]Li S., Lin Y. H., Zhang B. P., Nan C. W., Wang Y. Photocatalytic and Magnetic Behaviors Observed in Nanostructured BiFeO3 Particles. Journal of Applied Physics,2009,105(5):056105.
    [1]Singh A. K., Kaushik S. D., Kumar B., Mishra P. K., Venimadhav A., Siruguri V., Patnaik S. Substantial Magnetoelectric Coupling Near Room Temperature in Bi2Fe4O9. Applied Physics Letters,2008,92(13):132910.
    [2]Poghossian A. S., Abovian H. V., Avakian P. B., Mkrtchian S. H., Haroutunian V. M. Bismuth Ferrites:New Materials for Semiconductor Gas Sensors. Sensors and Actuators B:Chemical,1991, 4(3-4):545-549.
    [3]Ruan Q. J., Zhang W. D. Tunable Morphology of Bi2Fe409 Crystals for Photocatalytic Oxidation. The Journal of Physical Chemistry C,2009,113(10):4168-4173.
    [4]Sun S. M., Wang W. Z., Zhang L., Shang M. Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions. The Journal of Physical Chemistry C,2009,113(29):12826-12831.
    [5]Zakharchenko N. I. Catalytic Properties of the Fe2O3-Bi2O3 System in Ammonia Oxidation to Nitrogen Oxides. Kinetics and Catalysis,2002,43(1):95-98.
    [6]Li S., Lin Y. H., Zhang B. P., Wang Y., Nan C. W. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. The Journal of Physical Chemistry C,2010,114(7):2903-2908.
    [7]Zhang X. Y, Lv J., Bourgeois L., Cui J., Wu Y. C., Wang H. T., Webley P. A. Formation and Photocatalytic Properties of Bismuth Ferrite Submicrocrystals with Tunable Morphologies. New Journal of Chemistry,2011,35(4):937-941.
    [8]Fei L. F., Yuan J. K., Hu Y. M., Wu C. Z., Wang J. L., Wang Y. Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant{111}c Facets. Crystal Growth & Design,2011, 11(4):1049-1053.
    [9]Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G, Smith S. C., Cheng H. M., Lu G. Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature,2008, 453(7195):638-641.
    [10]Yang Z., Huang Y, Dong B., Li H. L., Shi S. Q. Densely Packed Single-Crystal Bi2Fe409 Nanowires Fabricated from a Template-Induced Sol-Gel Route. Journal of Solid State Chemistry, 2006,179(11):3324-3329.
    [11]Zhang M., Yang H., Xian T., Wei Z. Q., Jiang J. L., Feng Y. C., Liu X. Q. Polyacrylamide Gel Synthesis and Photocatalytic Performance of Bi2Fe4O9 Nanoparticles. Journal of Alloys and Compounds,2011,509(3):809-812.
    [12]Liu T., Xu Y, Zeng C. Synthesis of Bi2Fe4O9 via PVA Sol-Gel Route. Materials Science and Engineering:B,2011,176(7):535-539.
    [13]Park T. J., Papaefthymiou G. C., Moodenbaugh A. R., Mao Y, Wong S. S. Synthesis and Characterization of Submicron Single-Crystalline Bi2Fe409 Cubes. Journal of Materials Chemistry, 2005,15(21):2099-2105.
    [14]Du Y., Cheng Z. X., Dou S. X., Wang X. L. Effect of Chromium Substitution on Structure and Magnetic Properties of Bi2Fe409. Materials Letters,2010,64(20):2251-2254.
    [15]Han J. T., Huang Y. H., Jia R. J., Shan G C., Guo R. Q., Huang W. Synthesis and Magnetic Property of Submicron Bi2Fe409. Journal of Crystal Growth,2006,294(2):469-473.
    [16]Zhang X. Y, Bourgeois L., Yao J. F., Wang H. T., Webley P. A. Tuning the Morphology of Bismuth Ferrite Nano-and Microcrystals:From Sheets to Fibers. Small,2007,3(9):1523-1528.
    [17]Wang Y. G, Xu G, Yang L. L., Ren Z. H., Wei X., Weng W. J., Du P. Y, Shen G, Han G. R. Low-Temperature Synthesis of Bi2Fe409 Nanoparticles via a Hydrothermal Method. Ceramics International,2009,35(1):51-53.
    [18]Wang Y B., Sun H. J., Zhou J., Bo L., Zhang C. Y, Chen W. Study of Hydrothermal Synthesis and Properties of Bi2Fe409. Functional Materials Letters,2010,3(3):173-176.
    [19]Xiong Y, Wu M., Peng Z., Jiang N., Chen Q. Hydrothermal Synthesis and Characterization of Bi2Fe409 Nanoparticles. Chemistry Letters,2004,33(5):502-503.
    [20]Yu Z. W., Miao H. Y, Tan G. Q. Bi2Fe409 Nanoparticles:Preparation by Hydrothermal Method and Characterization. Chinese Journal of Inorganic Chemistry,2008,24(3):483-486.
    [21]Wang Y. G., Xu G, Ren Z. H., Wei X., Weng W. J., Du P. Y, Shen G., Han G R. Mineralizer-Assisted Hydrothermal Synthesis and Characterization of BiFeO3 Nanoparticles. Journal of the American Ceramic Society,2007,90(8):2615-2617.
    [22]Wang Y. G., Xu G., Yang L. L., Ren Z. H., Wei X., Weng W. J., Du P. Y., Shen G., Han G R. Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method. Journal of the American Ceramic Society,2007,90(11):3673-3675.
    [23]Zhu X. H., Hang Q. M., Xing Z. B., Yang Y, Zhu J. M., Liu Z. G., Ming N. B., Zhou P., Song Y., Li Z. S., Yu T., Zou Z. G. Microwave Hydrothermal Synthesis, Structural Characterization, and Visible-Light Photocatalytic Activities of Single-Crystalline Bismuth Ferric Nanocrystals. Journal of the American Ceramic Society,2011,94(8):2688-2693.
    [24]Hojamberdiev M., Xu Y. H., Wang F. Z., Wang J., Liu W. G., Wang M. Q. Morphology-Controlled Hydrothermal Synthesis of Bismuth Ferrite Using Various Alkaline Mineralizers. Ceramics-Silikaty,2009,53(2):113-117.
    [25]Paik U., Hackley V. A., Lee H.-W. Dispersant-Binder Interactions in Aqueous Silicon Nitride Suspensions. Journal of the American Ceramic Society,1999,82(4):833-840.
    [26]Han J. T., Huang Y. H., Wu X. J., Wu C. L., Wei W., Peng B., Huang W., Goodenough J. B. Tunable Synthesis of Bismuth Ferrites with Various Morphologies. Advanced Materials,2006, 18(16):2145-2148.
    [27]Liu Z. S., Wu B. T., Yin D. G, Zhu Y. B., Wang L. G Enhanced Photocatalytic Activity in Al-Substituted Bi2Fe409 Submicrocrystals. Journal of Materials Science,2012,47(19):6777-6783.
    [28]Liu R. M., Jiang Y. W., Lu Q. Y, Du W., Gao F. Al3+-Controlled Synthesis and Magnetic Property of a-Fe2O3 Nanoplates. CrystEngComm,2013,15(3):443-446.
    [29]He Y. P., Miao Y. M., Li C. R., Wang S. Q., Cao L., Xie S. S., Yang G Z., Zou B. S., Burda C. Size and Structure Effect on Optical Transitions of Iron Oxide Nanocrystals. Physical Review B, 2005,71(12):125411.
    [30]Sherman D. M. The Electronic Structures of Fe3+Coordination Sites in Iron Oxides: Applications to Spectra, Bonding, and Magnetism. Physics and Chemistry of Minerals,1985, 12(3):161-175.
    [31]Tauc J. Amorphous and Liquid Semiconductors. London:Plenum,1974.
    [32]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [1]He Y., Zhu Y., Wu N. Mixed Solvents:A Key in Solvothermal Synthesis of KTaO3. Journal of Solid State Chemistry,2004,177(9):2985-2990.
    [2]Chen D., Jiao X. Solvothermal Synthesis and Characterization of Barium Titanate Powders. Journal of the American Ceramic Society,2000,83(10):2637-2639.
    [3]Kwon S.-G, Park B.-H., Choi K., Choi E.-S., Nam S., Kim J.-W., Kim J.-H. Solvothermally Synthesized Tetragonal Barium Titanate Powders Using H2O/EtOH Solvent. Journal of the European Ceramic Society,2006,26(8):1401-1404.
    [4]Wei N., Zhang D. M., Han X. Y., Yang F. X., Zhong Z. C., Zheng K. Y. Synthesis and Mechanism of Ferroelectric Potassium Tantalate Niobate Nanoparticles by the Solvothermal and Hydrothermal Processes. Journal of the American Ceramic Society,2007,90(5):1434-1437.
    [5]Chaudhuri A., Mitra S., Mandal M., Mandal K. Nanostructured Bismuth Ferrites Synthesized by Solvothermal Process. Journal of Alloys and Compounds,2010,491(1-2):703-706.
    [6]Zhang M., Yang H., Xian T., Wei Z. Q., Jiang J. L., Feng Y. C., Liu X. Q. Polyacrylamide Gel Synthesis and Photocatalytic Performance of Bi2Fe4O9 Nanoparticles. Journal of Alloys and Compounds,2011,509(3):809-812.
    [7]Zhang Q., Gong W., Wang J., Ning X., Wang Z., Zhao X., Ren W., Zhang Z. Size-Dependent Magnetic, Photoabsorbing, and Photocatalytic Properties of Single-Crystalline Bi2Fe4O9 Semiconductor Nanocrystals. The Journal of Physical Chemistry C,2011,115(51):25241-25246.
    [8]Park T. J., Papaefthymiou G. C, Moodenbaugh A. R., Mao Y., Wong S. S. Synthesis and Characterization of Submicron Single-Crystalline Bi2Fe4O9 Cubes. Journal of Materials Chemistry, 2005,15(21):2099-2105.
    [9]Sun S. M., Wang W. Z., Zhang L., Shang M. Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions. The Journal of Physical Chemistry C,2009,113(29):12826-12831.
    [10]Du Y, Cheng Z., Dou S., Wang X. Tunable Morphology and Magnetic Properties of Bi2Fe4O9 Nanocrystal Synthesized by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2011,11(3):2691-2695.
    [11]Zhang X. Y., Bourgeois L., Yao J. F., Wang H. T., Webley P. A. Tuning the Morphology of Bismuth Ferrite Nano-and Microcrystals:From Sheets to Fibers. Small,2007,3(9):1523-1528.
    [12]Han J. T., Huang Y. H., Jia R. J., Shan G. C., Guo R. Q., Huang W. Synthesis and Magnetic Property of Submicron Bi2Fe409. Journal of Crystal Growth,2006,294(2):469-473.
    [13]Ruan Q. J., Zhang W. D. Tunable Morphology of Bi2Fe4O9 Crystals for Photocatalytic Oxidation. The Journal of Physical Chemistry C,2009,113(10):4168-4173.
    [14]Niizeki N., Wachi M. The Crystal Structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9. Zeitschrift fur Kristallographie,1968,127(1-4):173-187.
    [15]Voll D., Beran A., Schneider H. Variation of Infrared Absorption Spectra in the System Bi2AL4-xFexO9 (x=0-4), Structurally Related to Mullite. Physics and Chemistry of Minerals,2006, 33(8):623-628.
    [16]Kubelka P., Munk F. Ein Beitrag Zur Optik Der Farbanstriche. Zeitschrift fur technische Physik,1931,12:593-601.
    [17]Tauc J. Amorphous and Liquid Semiconductors. London:Plenum,1974.
    [18]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [1]Zaleski M. Thermally Stimulated Processes Related to Photochromism of Scandium Doped Sillenites. Journal of Applied Physics,2000,87(9):4279-4284.
    [2]Valant M., Suvorov D. Processing and Dielectric Properties of Sillenite Compounds Bi12MO20-δ(M=Si, Ge, Ti, Pb, Mn, B1/2P1/2).Journal of the American Ceramic Society,2001, 84(12):2900-2904.
    [3]Nippolainen E., Kamshilin A. A., Prokofiev V. V., Jaaskelainen T. Combined Formation of a Self-Pumped Phase-Conjugate Mirror and Spatial Subharmonics in Photorefractive Sillenites. Applied Physics Letters,2001,78(7):859-861.
    [4]Valant M., Suvorov D. A Stoichiometric Model for Sillenites. Chemistry of Materials,2002, 14(8):3471-3476.
    [5]Yao W. F., Wang H., Xu X. H., Zhou J. T., Yang X. N., Zhang Y., Shang S. X., Wang M. Sillenites Materials as Novel Photocatalysts for Methyl Orange Decomposition. Chemical Physics Letters,2003,377(5-6):501-506.
    [6]Thanabodeekij N., Gulari E., Wongkasemjit S. Bi12TiO20 Synthesized Directly from Bismuth (III) Nitrate Pentahydrate and Titanium Glycolate and Its Activity. Powder Technology,2005, 160(3):203-208.
    [7]Li Z. Q., Lin X. S., Zhang L., Chen X. T., Xue Z. L. Fast Preparation of Bi2GeO5 Nanoflakes via a Microwave-Hydrothermal Process and Enhanced Photocatalytic Activity after Loading with Ag Nanoparticles. Materials Research Bulletin,2012,47(9):2422-2427.
    [8]Wang Y. G, Xu G., Yang L. L., Ren Z. H., Wei X., Weng W. J., Du P. Y, Shen G., Han G R. Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method. Journal of the American Ceramic Society,2007,90(11):3673-3675.
    [9]Han J. T., Huang Y. H., Wu X. J., Wu C. L., Wei W., Peng B., Huang W, Goodenough J. B. Tunable Synthesis of Bismuth Ferrites with Various Morphologies. Advanced Materials,2006, 18(16):2145-2148.
    [10]Zhu X. H., Hang Q. M., Xing Z. B., Yang Y., Zhu J. M., Liu Z. G, Ming N. B., Zhou P., Song Y, Li Z. S., Yu T., Zou Z. G Microwave Hydrothermal Synthesis, Structural Characterization, and Visible-Light Photocatalytic Activities of Single-Crystalline Bismuth Ferric Nanocrystals. Journal of the American Ceramic Society,2011,94(8):2688-2693.
    [11]Tan G Q., Zheng Y. Q., Miao H. Y., Xia A., Ren H. J. Controllable Microwave Hydrothermal Synthesis of Bismuth Ferrites and Photocatalytic Characterization. Journal of the American Ceramic Society,2012,95(l):280-289.
    [12]Sun A. W., Chen H., Song C. Y, Jiang F., Wang X., Fu Y S. Magnetic Bi25FeO40-Graphene Catalyst and Its High Visible-Light Photocatalytic Performance. RSC Advances,2013, 3(13):4332-4340.
    [13]Chen C., Cheng J. R., Yu S. W., Che L. J., Meng Z. Y. Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites. Journal of Crystal Growth,2006,291(1):135-139.
    [14]Wang X., Li Y. Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires. Angewandte Chemie International Edition,2002,41(24):4790-4793.
    [15]Dell'Agli G, Colantuono A., Mascolo G The Effect of Mineralizers on the Crystallization of Zirconia Gel under Hydrothermal Conditions. Solid State Ionics,1999,123(1-4):87-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700