用户名: 密码: 验证码:
苯和乙烯液相烷基化催化材料的制备、表征及催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙苯是重要的石油化工大宗有机化学品,其下游产品如工程塑料、合成树脂、合成橡胶等是建筑、汽车、电子及日用品等行业的重要原材料,用途非常广泛。目前,乙苯的生产主要是苯和乙烯在分子筛催化剂下通过烷基化反应进行,主要包括气相烷基化法和液相烷基化法。其中,液相烷基化法具有工艺流程简单、操作简便、产品质量优、能耗物耗低等优点,已逐步替代气相烷基化法而成为乙苯生产的主流工艺。
     本文以苯和乙烯液相烷基化为目标反应,围绕分子筛催化材料的研究,开展了层状MWW分子筛的合成、分子筛晶体结构的后处理修饰、物化表征及催化性能等方面的工作,具体分为以下几个部分:
     第一部分、MCM-22分子筛的合成、表征及催化性能的研究。通过对MCM-22分子筛合成条件的详细考察,包括硅铝比、碱度、模板剂用量和种类、晶化助剂、晶化温度及晶化时间等多种因素,成功制备了一系列不同硅铝比的MCM-22分子筛,扩展MCM-22合成范围的限制,并进行了100mL反应釜合成的重复性研究和2L反应釜的放大合成。通常,MCM-22合成过程要使用剧毒的六亚甲基亚胺(HMI)作为模板剂,而且其生产和使用均受到严格控制,我们采用低毒、易得的哌啶(PI)为替代模板剂合成的MCM-22分子筛,具有相当的结晶度、硅铝比和孔容,而且其晶粒尺寸更小、比表面积更大。在苯和乙烯液相烷基化制乙苯的反应中,其催化性能和以HMI为模板剂合成的MCM-22分子筛相当,具有潜在的工业应用价值。
     第二部分、MCM-56分子筛的后处理合成、表征及催化性能的研究。从上述不同硅铝比的MCM-22前驱体出发,采用温和的酸性溶液进行预处理,使MCM-22前驱体的层间模板剂局部脱除,再经过滤、洗涤、烘干及焙烧等步骤后获得MCM-56分子筛。这种后处理合成MCM-56的优点在于通过酸处理可局部脱除MCM-22层间的有机模板剂,扰乱MCM-22分子筛转变为3D的MCM-22分子筛,可极大拓展常规水热无法合成出的MCM-56分子筛的硅铝比范围。与常规MCM-22分子筛相比,后处理MCM-56分子筛的外表面积有明显的提高,在苯和乙烯液相烷基化制乙苯反应中,具有更高的反应活性、乙基苯收率及更优的反应稳定性。
     第三部分、介孔MCM-22分子筛的合成、表征及催化性能的研究。采用硬模板法将炭黑引入到合成母液中,通过合成配比的优化,成功制得了一系列不同硅铝比的MCM-22分子筛,该分子筛以微孔为主、含有4-10nm的介孔孔道,而且所得分子筛具有更大的外表面积,有利于反应物与催化活性中心的接触以及反应产物的快速扩散。在苯和乙烯液相烷基化制乙苯反应中,介孔MCM-22分子筛的乙烯转化率明显提高、乙基苯的选择性和稳定性也有不同程度的提高,显示出微孔-介孔MCM-22分子筛的优越催化性能。
     第四部分、扩孔型MCM-22分子筛的合成、表征及催化性能的研究。以二甲基二乙氧基硅烷(DEDMS)为硅烷化试剂,对MCM-22前驱体进行晶体结构的修饰。为了避免硅烷化过程中脱铝现象的发生,在处理体系中加入醇类试剂,不仅可合成出不同硅铝比的层间12元环的扩孔型IEZ-MCM-22分子筛,而且可有效降低分子筛的脱铝,尽可能地保留分子筛的酸性,在裂解反应中表现为更高的1,3,5-三异丙苯的转化率。
Ethylbenzene is an important petrochemical organic chemicals, and its down-stream products such as engineering plastics, synthetic resin, synthetic rubber are important raw materials which have close relationship with construction industry, auto industry, electron industry and daily necessities. At present, the manufacture of ethylbenzene mainly includes the gas-phase process and liquid-phase process via benzene alkylation with ethylene. The liquid-phase process will gradually replace the gas-phase process in virtue of its advantages, such as simple process, superior product quality, low energy consumption and material consumption.
     The benzene alkylation with ethylene under liquid-phase was chosen as the objective reaction in this dissertation. The synthesis of postsynthetic modification of crystal structure, physical and chemical characterization and catalytic performance were carried out. The work on the investigation for catalytic materials was divided into the following four parts.
     The first part includes synthesis, characterization and catalytic properties of MCM-22zeolite. A detailed investigation on synthesis conditions, such as silica to alumina molar ratio, alkali concentration, template amount and type, crystallization-supporting agent, crystallization temperature and time was carried out. A series of MCM-22zeolite with different silica to alumina molar ratio were synthesized which could expand the range of alumina content in bulk. In addition, repetitiveness in100mL stainless autoclaves and amplification experiments in2L hydrothermal synthesis reactor were carried out. What is more important, the highly toxic hexamethyleneimine whose production and usage are strictly controlled was successfully replaced by piperidine serving as a templating agent in the synthesis of MCM-22. The MCM-22zeolite synthesized using piperdine with low toxicity owns same crystallinity, smaller particle size and larger specific surface area in comparision with that synthesized using hexamethyleneimine, which exhibited good catalytic performance in benzene alkylation with ethylene and showed a potential industrial application.
     The second part includes synthesis, characterization, and catalytic properties of MCM-56zeolite. The MCM-22precursors with different silica to alumina molar ratio were post-treated under mild acid to partially remove template between the MWW layers, then the MCM-56were obtained by further filtration, washing and drying steps. Compared with3D MCM-22zeolite under directly calcined MCM-22precursors, the MCM-56had a larger external surface and a wide range of silica to alumina molar ratio. The MCM-56with higher conversion, selectivity and stability was then superior to3D MCM-22in the liquid-phase benzene alkylation with ethylene.
     The third part includes synthesis, characterization, and catalytic properties of mesoporous MCM-22zeolite. Mesoporous MCM-22zeolite with Si/Al ratios of15-45have been hydrothermally synthesized with the presence of carbon black particles as hard template. In comparison to conventional MCM-22, the mesoporous MCM-22zeolite possesses intercrystal mesopores that are beneficial to increase the accessibility of catalytic sites to bulky molecules by decreasing mass transfer limitations. The mesoporous MCM-22exhibited higher ethylene conversion, higher selectivity to ethylated benzenes and better stability than conventional MCM-22, potentially showing an excellent catalytic performance and serving as a promising solid-acid catalyst in petrochemical industry.
     The fourth part includes synthesis, characterization, and catalytic properties of interlayer expanded MCM-22zeolite (IEZ-MCM-22). The MCM-22precursors were alkoxysilylated with diethoxydimethylsilane under controlled conditions to modify the interlayer structure of MCM-22. The addition of ethanol in the treatment could avoid the dealumination of MCM-22precursors, then the12member ring IEZ-MCM-22was obtained with the retain of alumination as much as possible. The obtained IEZ-MCM-22showed high activity in the cracking of1,35-triisopropylbenene.
引文
[1]徐如人,庞文琴等,分子筛与多孔材料化学,科学出版社,北京,2004.
    [2]C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time[J], Chemical Reviews 2003, 103(3):663-702.
    [3]A. Corma, State of the art and future challenges of zeolites as catalysts[J], Journal of Catalysis,2003,216(1-2):298-312.
    [4]M.K.. Rubin, P. Chu,Composition of synthetic porous crystalline material, its synthesis and use[P]. USA,4954325,1990.
    [5]M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K.. Rubin, MCM-22:A molecular sieve with two independent multidimensional channel systems[J], Science,1994, 264(5167):1910-1913.
    [6]G.G. Juttu, R. F.Lobo, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites[J], Microporous and Mesoporous Materials,2000,40:9-23.
    [7]S.L. Lawton, M.E. Leonowicz, R.D. Partridge, P. Chu, M.K. Rubin, Twelve-ring pockets on the external surface of MCM-22 crystals[J], Microporous and Mesoporous Materials,1998,23:109-117.
    [8]吴通好,许宁,MCM-22族分子筛的结构及催化性能[J],化学通报,2004,67: 1-21.
    [9]L. Puppe, J. Weisser,Crystalline aluminosilicate PSH-3 and its process of preparation[P]. USA,4439409,1984.
    [10]D.L. Holtermann, R.A. Innes,Alkylation using zeolite SSZ-25[P]. USA,5149894, 1992.
    [11]I.Y. Chan, P.A. Labun, M. Pan, S.Ⅰ. Zones, High-resolution electron microscopy characterization of SSZ-25 zeolite[J], Microporous Materials,1995,3:409-418.
    [12]A.S. Fung, S.L. Lawton, W.J. Roth,Synthetic layered MCM-56, its synthesis and use[P]. USA,5362697,1994.
    [13]A.W. Chester, A.S. Fung, C.T. Kresge, W.J. Roth,Modified MCM-56, its preparation and use[P]. USA,5779882,1998.
    [14]S.L. Lawton, A.S. Fung, Gordon J. Kennedy, L.B. Alemany, C.D. Chang, G.H. Hatzikos, D.N. Lissy, M.K. Rubin, H.-K.C. Timken, S. Steuernagel, D.E. Woessner, Zeolite MCM-49:A three-dimensional MCM-22 analogue synthesized by in situ crystallization[J], Journal of Physical Chemistry,1996,100:3788-3798.
    [15]A.L.S. Marques, J.L.F.M.O. Pastore, Static crystallization of zeolites MCM-22 and MCM-49[J], Microporous and Mesoporous Materials,1999,1999:131-145.
    [16]Y.J. He, G.S. Nivarthy, F. Eder, K. Seshan, J.A. Lercher, Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36[J], Microporous and Mesoporous Materials,1998,25:207-224.
    [17]J. Barth, A. Jentys, E. Iliopoulou, Ⅰ. Vasalos, J. Lercher, Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams[J], Journal of Catalysis,2004,227(1):117-129.
    [18]M.A. Camblor, A. Corma, M.-J. Diaz-Cabanas, Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25[J], Journal of Physical Chemistry,1998,102:44-51.
    [19]T. Hou, L. Zhu, X. Xu, The adsorption of a series of aromatics in ITQ-1 grand canonical Monte Carlo simulations[J], Journal of Molecular Catalysis A:Chemical 2001,171:103-114.
    [20]A. Corma, V. Fornes, J.M. Guil, S. Pergher, T.L.M. Maesen, J.G. Buglass, Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite[J]. Microporous and Mesoporous Materials,2000.38:301-309.
    [21]P. Frontera, F. Testa, R. Aiello, S. Candamano, J.B. Nagy. Transformation of MCM-22(P) into ITQ-2:The role of framework aluminium[J], Microporous and Mesoporous Materials,2007,106(1-3):107-114.
    [22]A. Corma, M. Diazcabanas, M. Moliner, C. Martinez, Discovery of a new catalytically active and selective zeolite (1TQ-30) by high-throughput synthesis techniques[J], Journal of Catalysis,2006,241(2):312-318.
    [23]R. Millini, G. Perego, W.O.P. Jr., G. Bellussi, L. Carluccio, Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules[J], Microporous Materials,1995,1995(4):221-230.
    [24]牛雄雷,谢素娟.徐龙伢,ERB-1分子筛的合成与表征[J],催化学报,2006.27(7):601-605.
    [25]L.M. Rohde, G.J. Lewis, M. Miller, J.G. Moscoso, J.L. Gisselquist, R.L. Patton, S.T. Wilson, D.Y. Jan,Crystalline aluminosilicate zeolitic composition:UZM-8 [P]. USA,6756030,2004.
    [26]钱斌,高焕新,杨德琴,孔德金,以二甲基二乙基氢氧化铵为模板剂UZM-8沸石的合成与表征[J],化学学报,2009,67(22):2579-2584.
    [27]钱斌,陈燕,郑均林,孔德金,水热体系下新型层状UZM-8沸石的合成[J],石油化工,2011,40(1):29-33.
    [28]P. Wu, Y. Liu, M. He, T. Tatsumi, A novel titanosilicate with MWW structure: Catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide[J], Journal of Catalysis,2004,228(1):183-191.
    [29]P. Wu, T. Tatsumi, T. Komatsu, T. Yashima, A novel titanosilicate with MWW structure:Ⅱ. Catalytic properties in the selective oxidation of alkenes[J], Journal of Catalysis,2001,202(2):245-255.
    [30]P. Wu, J. Ruan, L. Wang, L. Wu, Yong Wang, Y. Liu, W. Fan, M. He. O. Terasaki, T. Tatsumi, Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors[J], Journal of the American Chemical Society,2008,130:8178-8187.
    [31]W.J. Roth, J.C. Cheng, M. Kalyanaraman, M.C. Kerby, T.E. HeIton,Hydrocarbon conversion process using EMM-10 family molecular sieve [P]. USA,2009163753, 2009.
    [32]W.J. Roth, D.L. Dorset, G.J. Kennedy, Discovery of new MWW family zeolite EMM-10:Identification of EMM-1 OP as the missing MWW precursor with disordered layers[J], Microporous and Mesoporous Materials,2011,142(1):168-177.
    [33]T.E. Helton, M.J. Vincent,Process of making alkylaromatics using EMM-13 [P]. USA,2011144401,2011.
    [34]W.J. Roth, T.E. Helton, J.C. Cheng, M.J. Brennan,Hydroalkylation of aromatic compounds using EMM-13[P]. USA,2011077438,2011.
    [35]A.Corma, C.Corell, J.Perez-Pariente, Synthesis and characterization of the MCM-22 zeolite[J], Zeolites,1995,15:2-8.
    [36]Y. Wu, X. Ren, J. Wang, Effect of microwave-assisted aging on the static hydrothermal synthesis of zeolite MCM-22[J], Microporous and Mesoporous Materials,2008,116(1-3):386-393.
    [37]凌云,郑玉婷,刘月明,王振东,吴海虹,吴鹏,微波辅助晶化法合成MCM-22分子筛的研究[J],化学学报,2010,68(20):2035-2038.
    [38]S. Inagaki, M. Hoshino, E. Kikuchi, M. Matsukata, Synthesis of MCM-22 zeolite by the vapor-phase transport method[J], Studies in Surface Science and Catalysis, 2002,142:53-60.
    [39]李英霞,陈标华,穆致君,李成岳,王文兴,VPT法制备MCM-22分子筛催化剂颗粒及其烷基化性能[J],化工学报,2004,55(12):2015-2019.
    [40]Z. Mu, Y. Li, B. Chen, C. Li, G. Cao,汽相转移法合成不同硅源的MCM-22分子筛[J],北京化工大学学报(自然科学版),2004,31(2):5-8.
    [41]邹新华,李英霞,李建伟,李成岳,陈标华,凝胶制备对气相合成MCM-22沸石的影响[J],燃料化学学报,2006,34(4):479-482.
    [42]刘星生,金映,李英霞,硅铝胶气相法合成MCM-22分子筛工艺条件的影响[J],化学反应工程与工艺,2007,23(5):416-421.
    [43]刘星生,李英霞,硅铝胶老化温度对气相转移法合成MCM-22分子筛的影 响[J],石油化工. 2011,40(1):34-37.
    [44]I.Guray, J. Warzywoda, N. Bac, A.S. Jr. Synthesis of zeolite MCM-22 under rotating and static conditions[J], Microporous and Mesoporous Materials.1999.31(3): 241-251.
    [45]1. Mochida, S. Eguchi, M. Hironaka, S.-i. Nagao. K. Sakanishi, D.D. Whitehurst. The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine[J], Zeolites,1997,18(2-3):142-151.
    [46]M. Cheng, D. Tan, X. Liu, X. Han, X. Bo, L. LIn, Effect of aluminum on the formation of zeolite MCM-22 and kenyaite[J], Microporous and Mesoporous Materials,2001,42(2-3):307-316.
    [47]刘志城,沈绍典,田博之,孙锦玉,屠波,赵东元,高硅沸石MCM-22的静态法合成[J],科学通报,2004,49(4):325-330.
    [48]王保玉.李牛,吴建梅,项寿鹤.高硅铝比MCM-22分子筛的合成[J],石油学报(石油加工),2006,增刊:245-249.
    [49]G.S. Kumar, S. Saravanamurugan, M. Hartmann, M. Palanichamy, V. Murugesan, Synthesis, characterisation and catalytic performance of HMCM-22 of different silica to alumina ratios[J], Journal of Molecular Catalysis A:Chemical,2007,272(1-2): 38-44.
    [50]赵国良,滕加伟,许宁,唐颐,谢在库,杨为民,陈庆龄,高硅MCM-22分子筛的合成及其C4烯烃裂解性能[J],高等学校化学学报,2005,26(6):1140-1142.
    [51]夏建超.孔德金,杨德琴,唐颐,陈庆龄,高硅MCM-22型分子筛的合成及催化性能[J],化学反应工程与工艺,2008,24(4):337-341.
    [52]G. Xu, X. Zhu, X. Niu, S. Liu, S. Xie, X. Li, L. Xu, One-pot synthesis of high silica MCM-22 zeolites and their performances in catalytic cracking of 1-butene to propene[J], Microporous and Mesoporous Materials,2009,118(1-3):44-51.
    [53]A.Corma, C. Corell, J. Perez-Pariente, J.M. Guil, R. Guil-Lopez. S. Nicolopoulos, J.G. Calbet, M. Vallet-Regi, Adsorption and catalytic properties of MCM-22:The influence of zeolite structure[J], Zeolites,1996,16:7-14.
    [54]刘中清,工一萌,傅军,何鸣元,静态水热晶化法高效合成MCM-22分子筛 [J],催化学报,2002,23(5):439-442.
    [55]牛雄雷,谢素,李宏冰,姜天英,徐龙伢,分子筛合成中六亚甲基亚胺与环己胺二元胺的模板作用[J],催化学报,2005,26(10):851-855.
    [56]吴雪红,李懿桐,蒋晶洁,魏树权,采用二元模板剂合成MCM-22分子筛的研究[J],化学工程师,2009,4:18-19.
    [57]B. Giuseppe, G. Perego, C.M. Gabrile, G. Aldo,Synthetic, crystalline, porous material containing oxides of silicon and boron[P]. EUR,0293032,1988.
    [58]D. Nuntasri, P. Wu, T. Tatsumi, High selectivity of MCM-22 for cyclopentanol formation in liquid-phase cyclopentene hydration[J], Journal of Catalysis,2003, 213(2):272-280.
    [59]S.-H. Lee, C.-H. Shin, D.-K. Yang, S.-D. Ahn, I.-S. Nam, S.B. Hong, Reinvestigation into the synthesis of zeolite MCM-22 using N,N,N,N',N',N'-hexamethyl-1,5-pentanediaminium and alkali metal cations as structure-directing agents[J], Microporous and Mesoporous Materials,2004,68(6): 97-104.
    [60]B. Han, S.-H. Lee, C.-H. Shin, P.A. Cox, S.B. Hong, Zeolite synthesis using flexible diquaternary alkylammonium ions (CnH2n+1)2HN+(CH2)5N+H(CnH2n+1)2 with n=1-5 as structure-directing agents[J], Chemistry of Materials,2005,17(3):477-486.
    [61]R. Aiello, F. Crea, F. Testa, G. Demortier, P. Lentz, M. Wiame, Synthesis and characterization of aluminosilicate MCM-22 in basic media in the presence of fluoride salts[J], Microporous and Mesoporous Materials,2000,35-36:585-595.
    [62]Y. Wu, X. Ren, Y. Lu, J. Wang, Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis[J], Microporous and Mesoporous Materials,2008,112(1-3):138-146.
    [63]D. Vuono, L. Pasqua, F. Testa, R. Aiello, A. Fonseca, T.I. Koranyi, J.B. Nagy, Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites[J], Microporous and Mesoporous Materials,2006,97(1-3):78-87.
    [64]Y. Wu, X. Ren, Y. Lu, J. Wang, Rapid synthesis of zeolite MCM-22 by acid-catalyzed hydrolysis of tetraethylorthosilicate[J], Materials Letters,2008,62(2): 317-319.
    [65]Y. Wu. J. Wang. P. Liu. Wei Zhang. J. Gu, X. Wang. Framework-substituted lanthanide MCM-22 zeolite:Synthesis and characterization[J]. Journal of the American Chemical Society.2010.132:17989-17991.
    [66]Y. Cheng. M. Lu. J. Li. X. Su, S. Pan, C. Jiao. M. Feng. Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions[J], Journal of Colloid Interface Science,2012,369(1):388-394.
    [67]N. Kumar, L.E. Lindfors, Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane[J], Applied Catalysis A:General,1996,147:175-187.
    [68]W.J. Roth, D.L. Dorset, Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks[J], Microporous and Mesoporous Materials,2011,142(1):32-36.
    [69]A. Corma, U. Diaz, T. Garcia, G. Sastre, A. Velty, Multifunctional hybrid organic-inorganic catalytic materials with a hierarchical system of well-defined micro-and mesopores[J], Journal of the American Chemical Society,2010,132(42): 15011-15021.
    [70]L. Wang, Y. Wang, Y. Liu, L. Chen, S. Cheng, G. Gao, M. He, P. Wu, Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J], Microporous and Mesoporous Materials,2008,113(1-3):435-444.
    [71]B. Wang, J. Wu, N. Li, Z. Yuan, S. Xiang, Rapid synthesis of MCM-36 zeolite under ultrasonic treatment[J], Chinese Journal of Catalysis,2007,28(5):398-400.
    [72]S. Maheshwari, C. Martinez, M. Teresa Portilla, F.J. Llopis, A. Corma, M. Tsapatsis, Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36[J], Journal of Catalysis.2010,272(2):298-308.
    [73]X. Zhu, S. Liu, Y. Song. L. Xu, Post-treatment with ammonium hexafluorosilicate:An effective way to synthesize high silica MCM-22 zeolite[J], Catalysis Communications,2005,6(11):742-746.
    [74]J. Xia, D. Mao, W. Tao, Q. Chen, Y. Zhang. Y. Tang, Dealumination of HMCM-22 by various methods and its application in one-step synthesis of dimethyl ether from syngas[J], Microporous and Mesoporous Materials,2006,91(1-3):33-39.
    [75]M.E. Davis, Ordered porous materials for emerging applications[J], Nature,2002, 417(6891):813-821.
    [76]J. D.Kushnerick, D.O. Marler, J.P. McWilliams,Process for preparing short chain alkyl aromatic compounds[P]. USA,4992606,1991.
    [77]C. Ercan, F.M. Dautzenberg, C.Y. Yeh, H.E. Barner, Mass-transfer effects in liquid-phase alkylation of benzene with zeolite catalysts[J], Industrial & Engineering Chemistry Research,1998,37:1724-1728.
    [78]J.C. Cheng, T.F. Deghan, J.S. Beck, Y.Y. Huang, M. Kalyanarman, J.A. Kowalski, C.A. Loehr, D.N. Mazzone, A comparison of zeolites MCM-22, beta, and usy for liquid phase alkylation of benzene with ethylene[J], Science and Technology in Catalysis,1998.
    [79]C. Perego, P. Ingallina, Recent advances in the industrial alkylation of aromatics: New catalysts and new processes[J], Catalysis Today,2002,73:3-22.
    [80]黄望旗,乙苯生产技术进展[J],精细石油化工进展,2005,6(7):43-49.
    [81]程志林,赵训志,邢淑建,乙苯生产技术及催化剂研究进展[J],工业催化,2007,15(7):4-9.
    [82]T.F.D. Jr., C.M. Smith, C.R. Venkat, Alkylation of aromatics with ethylene and propylene recent developments in commercial processes[J], Applied Catalysis A: General,2001,221:283-294.
    [83]杜泽学,阂恩泽,异丙苯生产技术进展[J],石油化工,1999,28:562-564.
    [84]白桦,异丙苯生产技术新进展及市场前景分析[J],杭州化工,2007,37(1):8-13.
    [85]孟伟娟,陈标华,李英霞,李成岳,曹.钢,BETA和MCM-22沸石在丙烯与苯烷基化反应中的催化性能[J],石油学报(石油加工),2003,19(5):47-52.
    [86]A. Corma, V. Gonzalez-Alfaro, A.V. Orchilles, Catalytic cracking of alkanes on MCM-22 zeolite. Comparison with ZSM-5 and beta zeolite and its possibility as an FCC cracking additive[J], Applied Catalysis A:General,1995,129:203-215.
    [87]A. Corma, M. Davis, V. Fornes, V. Gonzalez-Alfaro, R. Lobo, A.V. Orchilles, Cracking behavior of zeolites with connected 12-and 10-Member ring channels:The influence of pore structure on product distribution [J], Journal of Catalysis,1997,167: 438-446.
    [88]马广印,刘中清.傅军.何鸣元.含MCM-22分子筛催化剂的裂化反应性能研究[J],石油炼制与化工,2005.36(11):11-15.
    [89]孙长勇,宋一兵,方奕文.高分散Mo/HMCM-22催化剂制备及其甲烷芳构化性能[J].广东化工,2010.37(6):26-28.
    [90]H.-K. Min, M.B. Park, S.B. Hong, Methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites[J], Journal of Catalysis,2010,271 (2):186-194.
    [91]P. Wu. T. Komatsu, T. Yashitna, Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts[J], Microporous and Mesoporous Materials,1998,22(1-3):343-356.
    [92]M.A. Asensi, A. Corma, A. Martinez, Skeletal isomerization of 1-butene on MCM-22 zeolite catalyst[J], Journal of Catalysis,1996,158:561-569.
    [93]黄小鸿,张光林,商永臣,杨笑春,张文祥,吴通好,积碳对MCM-22分子筛催化剂上1-丁烯骨架异构化反应的影响[J],石油化工,2006,35(4):314-318.
    [94]商永臣,张文祥,贾明君,潘维成,蒋大振,吴通好,MCM-22分子筛的酸性及在1-丁烯骨架异构化反应中的催化性能[J],催化学报,2005,26(6):517-520.
    [95]A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J], Chemical Reviews 1995,95:559-614.
    [96]K. Tanabe, W. F.Holderich, Industrial application of solid acid-base catalysts[J], Applied Catalysis A:General,1999,181:399-434.
    [97]李玉平.潘瑞丽,李晓峰,窦涛,谢克昌,微孔-介孔复合分子筛的合成研究进展[J],石油化工.2005,34(2):188-194.
    [98]刘洪涛,李福祥,微孔-介孔复合分子筛的合成研究进展[J],应用化工,2012,41(5):875-879.
    [99]R.F. Lobo, M. Tsapatsis, C.C. Freyhardt, S. Khodabandeh, P. Wagner, C.-Y. Chen, K.J. Balkus, S.I. Zones. M.E. Davis, Characterization of the extra-large-pore zeolite UTD-1[J], Journal of the American Chemical Society,1997,119(36):8474-8484.
    [100]T. Muuoz, K.J. Balkus, Preparation of oriented zeolite UTD-1 membranes via pulsed laser ablation[J], Journal of the American Chemical Society,1999,121(1): 139-146.
    [101]M. Yoshikawa, P. Wagner, M. Lovallo, K. Tsuji, T. Takewaki, C.-Y. Chen, L.W. Beck, C. Jones, M. Tsapatsis, S.I. Zones, M.E. Davis, Synthesis, characterization, and structure solution of CIT-5, a new, high-Silica, extra-large-pore molecular sieve[J], The Journal of Physical Chemistry B,1998,102(37):7139-7147.
    [102]J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates[J], Journal of the American Chemical Society,1992,114(27):10834-10843.
    [103]J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Perez-Ramirez, Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J], The Journal of Physical Chemistry B,2004,108:13062-13065.
    [104]J.C. Groen, L.A.A. Peffer, J. Perez-Ramirez, Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J], Microporous and Mesoporous Materials,2003,60(1-3):1-17.
    [105]J. Groen, On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium[J], Microporous and Mesoporous Materials,2004, 69(1-2):29-34.
    [106]S. Abello, A. Bonilla, J. Perez-Ramirez, Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J], Applied Catalysis A:General,2009,364(1-2):191-198.
    [107]范峰,凌凤香,王少军,杨春雁,秦.波,等级孔β沸石的制备与表征[J],工业催化,2012,20(7):6-11.
    [108]申宝剑,覃正兴,高雄厚,林枫,周淑歌,沈文,王宝杰,赵红娟,刘宏海,碱处理脱硅与提高Y型分子筛硅铝比——矛盾的对立与统一[J],催化学报,2012,33(1):152-163.
    [109]祁晓岚,陈雪梅,孔德金,郑均林,袁晓红,杨德琴,介孔丝光沸石的制备及其对重芳烃转化反应的催化性能[J],催化学报,2009,30(12):1197-1202.
    [110]V. Patzelova, Texture of deep bed treated Y zeolites[J], Zeolites,1987,7: 240-242.
    [111]S. Cartlidge, H.-U. Nissen, R. Wessicken, Ternary mesoporous structure of ultrastable zeolite CSZ-1 [J]. Zeolites.1999.9:346-349.
    [112]Y. Sasaki. T. Suzuki. Y. Takamura, A. Saji. H. Saka. Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera[J], Journal of Catalysis,1998,178:94-100.
    [113]C. Choi-Feng, J.B. Hall. B.J. Huggins, R.A. Beyerlein. Electron microscope investigation of mesopore formation and aluminum migration in USY catalysts[J]. Journal of Catalysis,1992,140:395-405.
    [114]A.H. Janssen, A.J. Koster, K.P. de Jong, On the shape of the mesopores in zeolite Y:A three-dimensional transmission electron microscopy study combined with texture analysis[J], The Journal of Physical Chemistry B,2002,106(46): 11905-11909.
    [115]刘肖飞,赵瑞玉.刘晨光,基于水热处理的介孔钛硅分子筛的合成及表征[J],石油学报(石油加工),2007,23(6):80-86.
    [116]Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-modified zeolites: Preparation, characterization, and applications[J], Chemical Reviews 2006,106: 896-910.
    [117]C.J.H. Jacobsen, C. Madsen, J. Houzvicka, Ⅰ.Schmidt, A. Carlsson, Mesoporous zeolite single crystals[J], Journal of the American Chemical Society,2000,122: 7116-7117.
    [118]Ⅰ. Schmidt, A. Boisen. E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, C.J.H. Jacobsen, Carbon nanotube templated growth of mesoporous zeolite single crystals[J], Chemistry of Materials 2001,13:4416-4418.
    [119]K. Zhu, K. Egeblad, C.H. Christensen, Mesoporous Carbon Prepared from Carbohydrate as Hard Template for Hierarchical Zeolites[J], European Journal of Inorganic Chemistry,2007,2007(25):3955-3960.
    [120]A.H. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P. de Jong, Exploratory study of mesopore templating with carbon during zeolite synthesis[J], Microporous and Mesoporous Materials,2003.65(1):59-75.
    [121]Y, Tao, H. Kanoh, K. Kaneko, ZSM-5 monolith of uniform mesoporous channels[J], Journal of the American Chemical Society,2003.125(20):6044-6045.
    [122]Y. Tao, H. Kanoh, K. Kaneko, Uniform mesopore-donated zeolite Y using carbon aerogel templating[J], The Journal of Physical Chemistry B 2003,107: 10974-10976.
    [123]B. Zhang, S.A. Davis, S. Mann, Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films[J], Chemistry of Materials, 2002,14(3):1369-1375.
    [124]H. Zhu, Z. Liu, Y. Wang, D. Kong, X. Yuan, Z. Xie, Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal [J], Chemistry of Materials 2008,20(3):1134-1139.
    [125]B.T. Holland, L. Abrams, A. Stein, Dual templating of macroporous silicates with zeolitic microporous frameworks[J], Journal of the American Chemical Society, 1999,121(17):4308-4309.
    [126]T. Remy, L. Ma, M. Maes, D.E. De Vos, G.V. Baron, J.F.M. Denayer, Vapor-phase adsorption and separation of ethylbenzene and styrene on the metal-organic frameworks MIL-47 and MIL-53(A1)[J], Industrial & Engineering Chemistry Research,2012,51(45):14824-14833.
    [127]http://www.ihs.com/products/chemical/planning/ceh/ethylbenzene.aspx, in, 2013.
    [128]王俭,禾火,苯乙烯生产和国内外市场分析[J],精细化工原料及中间体,2009(6):33-37.
    [129]钱伯章,我国苯乙烯市场分析[J],精细化工原料及中间体,2008(9):45-46.
    [130]钱伯章,我国苯乙烯市场分析[J],精细化工原料及中间体,2012(1):42-43.
    [131]高滋,沸石催化和分离技术,中国石化出版社,北京,2009.
    [132]王玉庆,乙苯/苯乙烯的技术现状及发展[J],石油化工,2001,30(6):479-485.
    [133]Z. Qi, R. Zhang, Alkylation of benzene with ethylene in a packed reactive distillation column[J], Industrial & Engineering Chemistry Research,2004,43: 4105-4111.
    [134]张春宇,周玮,马中义,赵胤,李正,乙苯工艺技术及催化剂的应用研究进 展[J].化工科技,2012,30(3):71-74.
    [135]杨为民,孙洪敏,陈庆龄,苯与乙烯气相烷基化制乙苯用分子筛催化剂的研制[J],精细石油化工进展.2002,3(4):12-14.
    [136]杨为民,孙洪敏,陈庆龄,ZSM-5沸石催化剂上苯与乙烯气相烷基化反应工艺条件研究[J],精细石油化工进展,2002,3(3):1-3.
    [137]孙洪敏,杨为民,廖宝星,郑久成,AB-97型气相烷基化制乙苯催化剂的研制及工业应用[J],化学反应工程与工艺,2006,22(3):206-211.
    [138]张凤美,王瑾,黄志渊,何呜元,苯和乙烯液相烷基化合成乙苯的研究及其新工艺的开发[J],石油炼制与化工,2000,31(5):37-41.
    [139]郝小明,张风美,王瑾,液相循环法生产乙苯的研究开发及工业应用[J],化工进展,2003,22(9):920-924.
    [140]靳柏林,支剑华,孙春霞,兰州石化AEB型催化剂在液相分子筛制乙苯中的工业化应用[J],甘肃科技,2011,27(7):28-31.
    [141]宦明耀,孙洪敏,张斌,李和兴,杨为民,改性ZSM-5催化剂上苯与FCC干气中乙烯气相烷基化反应[J],化学反应工程与工艺,2008,24(5):395-399.
    [142]陈福存,朱向学,谢素娟,曾.蓬,郭志军,安杰,王清遐,刘盛林,徐龙伢,催化干气制乙苯技术工艺进展[J],催化学报,2009,30(8):817-824.
    [143]L. Xu, J. Liu, Q. Wang, S. Liu, W. Xin, Y. Xu, Coking kinetics on the catalyst during alkylation of fcc off-gas with benzene to ethylbenzene[J], Applied Catalysis A: General,2004,258(1):47-53.
    [144]Y. Song, S. Liu, QingxiaWang, L. Xu, Y. Zhai, Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene[J], Fuel Processing Technology,2006,87(4):297-302.
    [145]李淑红,稀乙烯制乙苯工艺技综述[J],炼油技术与工程,2010,40(5):1-5.
    [146]马献波,干气制乙苯/苯乙烯节能降耗的制约因素及对策[J],炼油技术与工程,2010,40(6):19-21.
    [147]Y.-F. Shi, Y. Gao, W.-K. Yuan, Benzene-thylene alkylation in near-critical regions[J], Industrial & Engineering Chemistry Research.2001,40:4253-4257.
    [148]G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, Liquid-phase alkylation of benzene with light olefins catalyzed by β-zeolites[J], Journal of Catalysis,1995,157:227-234.
    [149]Y. Du, H. Wang, S. Chen, Study on alkylation of benzene with ethylene over β-zeolite catalyst to ethylbenzene by in situ IR[J], Journal of Molecular Catalysis A: Chemical,2002,179:253-261.
    [150]A.N. Ebrahimi, A.Z. Sharak, S.A. Mousavi, F. Aghazadeh, A. Soltani, Modification and optimization of benzene alkylation process for production of ethylbenzene[J], Chemical Engineering and Processing:Process Intensification,2011, 50(1):31-36.
    [151]高俊华,胡津仙,李文怀,王建国,分子筛结构及磷改性对催化苯与乙醇烷基化反应性能的影响[J],石油炼制与化工,2008,39(10):25-29.
    [152]高俊华,张立东,胡津仙,李文怀,王建国,不同HZSM-5催化剂上苯与乙醇的烷基化反应[J],石油学报(石油加工),2009,25(1):59-66.
    [153]高俊华,张立东,胡津仙,李文怀,王建国,改性ZSM-5上苯与乙醇烷基化反应条件的考察及再生评价[J],化工进展,2008,27(11):1800-1804.
    [154]K. Liu, S. Xie, G. Xu, Y. Li, S. Liu, L. Xu, Effects of NaOH solution treatment on the catalytic performances of MCM-49 in liquid alkylation of benzene with ethylene[J], Applied Catalysis A:General,2010,383(1-2):102-111.
    [155]K. Liu, S. Xie, S. Liu, G. Xu, N. Gao, L. Xu, Catalytic role of different pore systems in MCM-49 zeolite for liquid alkylation of benzene with ethylene[J], Journal of Catalysis,2011,283(1):68-74.
    [156]K.S. Wong, T. Vazhnova, S.P. Rigby, D.B. Lukyanov, Temperature effects in benzene alkylation with ethane into ethylbenzene over a PtH-MFI bifunctional catalyst[J], Applied Catalysis A:General,2013,454:137-144.
    [157]L.M. Chua, T. Vazhnova, T.J. Mays, D.B. Lukyanov, S.P. Rigby, Deactivation of PtH-MFI bifunctional catalysts by coke formation during benzene alkylation with ethane[J], Journal of Catalysis,2010,271(2):401-412.
    [158]J. Gao, L. Zhang, J. Hu, W. Li, J. Wang, Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol[J], Catalysis Communications,2009, 10(12):1615-1619.
    [159]Y. Li, B. Xue, X. He, Catalytic synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate over HZSM-5[J]. Catalysis Communications.2009. 10(5):702-707.
    [160]Y. Li. B. Xue, X. He. Synthesis of ethylbenzene by alkylation of benzene with diethyl carbonate over parent MCM-22 and hydrothermally treated MCM-22[J], Journal of Molecular Catalysis A:Chemical,2009,301(1-2):106-113.
    [161]Y. Li, Y. Yang, Synthesis of ethylbenzene by alkylation of benzene with diethyl oxalate over HZSM-5[J], Fuel Processing Technology,2009,90(10):1220-1225.
    [162]Y. Zhang, Z. Du, E. Min, Effect of acidity and structures of supported tungstophosphoric acid on its catalytic activity and selectivity in liquid phase synthesis of ethylbenzene[J], Catalysis Today,2004,93-95:327-332.
    [163]K.J.A. Raj, E.J.P. Malar, V.R. Vijayaraghavan, Shape-selective reactions with AEL and AFI type molecular sieves alkylation of benzene, toluene and ethylbenzene with ethanol,2-propanol, methanol and t-butanol[J], Journal of Molecular Catalysis A: Chemical,2006,243(1):99-105.
    [164]C.H. Christensen, K.. Johannsen, I. Schmidt, C.H. Christensen, Catalytic benzene alkylation over mesoporous zeolite single crystals:Improving activity and selectivity with a new family of porous materials[J], Journal of the American Chemical Society,2003,125:13370-13371.
    [1]M.K. Rubin, P. Chu,Composition of synthetic porous crystalline material, its synthesis and use[P]. USA,4954325,1990.
    [2]M.E. Leonowicz. J.A. Lawton, S.L. Lawton, M.K. Rubin, MCM-22:A molecular sieve with two independent multidimensional channel systems[J], Science,1994, 264(5167):1910-1913.
    [3]Ⅰ. Mochida, S. Eguchi, M. Hironaka, S.-i. Nagao, K. Sakanishi, D.D. Whitehurst, The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine[J], Zeolites,1997,18(2-3):142-151.
    [4]Ⅰ.Guray, J. Warzywoda, N. Bac, A.S. Jr, Synthesis of zeolite MCM-22 under rotating and static conditions[J], Microporous and Mesoporous Materials,1999,31(3): 241-251.
    [5]Y. Wu, X. Ren, Y. Lu, J. Wang, Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis[J], Microporous and Mesoporous Materials,2008,112(1-3):138-146.
    [6]刘志城,沈绍典,田博之,孙锦玉,屠波,赵东元,高硅沸石MCM-22的静态法合成[J],科学通报,2004,49(4):325-330.
    [7]曹静,高焕新,具有MWW结构的MCM-22沸石的合成研究[J],石油化工,2005,34(增刊):333-335.
    [8]Y. Wu, Xiaoqian Ren, Y. Lu, J. Wang, Rapid synthesis of zeolite MCM-22 by acid-catalyzed hydrolysis of tetraethylorthosilicate[J], Materials Letters,2008,62(2): 317-319.
    [9]C. Delitala, M.D. Alba, A.Ⅰ. Becerro, D. Delpiano, D. Meloni, E. Musu, I. Ferino, Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural, morphological and textural characterisation[J], Microporous and Mesoporous Materials,2009,118(1-3):1-10.
    [10]G. Xu, X. Zhu, X. Niu, S. Liu, S. Xie, X. Li, L. Xu, One-pot synthesis of high silica MCM-22 zeolites and their performances in catalytic cracking of 1-butene to propene[J], Microporous and Mesoporous Materials,2009,118(1-3):44-51.
    [11]S. Xie, Q. Wang, L. Xu, W. Chen, J. Bai, L. Lin, Synthesis of MCM-22 type zeolite and its catalytic performance for cumene production [J], Chinese Journal of Catalysis,1999,20(6):583-584.
    [12]S.-H. Lee, C.-H. Shin, D.-K. Yang, S.-D. Ahn, I.-S. Nam, S.B. Hong, Reinvestigation into the synthesis of zeolite MCM-22 using N,N,N,N',N',N'-hexamethyl-1,5-pentanediaminium and alkali metal cations as structure-directing agents[J], Microporous and Mesoporous Materials,2004,68(6): 97-104.
    [13]B. Han. S.-H. Lee, C.-H. Shin. P.A. Cox. S.B. Hong, Zeolite synthesis using flexible diquaternary alkylammonium ions (CnH2n+1)2HN+(CH2)5N+H(CnH2n+1)2 with n=1-5 as structure-directing agents[J], Chemistry of Materials.2005,17(3):477-486.
    [14]G.G. Juttu, R. F.Lobo. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites[J]. Microporous and Mesoporous Materials,2000,40:9-23.
    [15]B. Onida, F. Geobaldo, F. Testa, F. Crea, E. Garrone, FTIR investigation of the interaction at 77 K of diatomic molecular probes on MCM-22 zeolite[J], Microporous and Mesoporous Materials,1999,30(1-3):119-127.
    [16]C. Perego, P. Ingallina, Recent advances in the industrial alkylation of aromatics: New catalysts and new processes[J], Catalysis Today,2002,73:3-22.
    [17]N. Kumar, L.E. Lindfors. Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane[J], Applied Catalysis A:General,1996,147:175-187.
    [18]A. Corma, M. Davis, V. Fornes, V. Gonzalez-Alfaro, R. Lobo, A.V. Orchilles, Cracking behavior of zeolites with connected 12- and 10-Member ring channels:The influence of pore structure on product distribution[J], Journal of Catalysis,1997,167: 438-446.
    [19]P. Wu, T. Komatsu, T. Yashima, Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts[J], Microporous and Mesoporous Materials,1998,22(1-3):343-356.
    [20]A.Corma, C.Corell, J.Perez-Pariente, Synthesis and characterization of the MCM-22 zeolite[J], Zeolites,1995.15:2-8.
    [21]刘中清,王一萌,傅军,何鸣元,静态水热晶化法高效合成MCM-22分子筛[J],催化学报.2002,23(5):439-442.
    [22]R. Millini, G. Perego, W.O.P. Jr.. G. Bellussi, L. Carluccio, Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules[J], Microporous Materials,1995,1995(4):221-230.
    [23]B. Giuseppe, G. Perego, C.M. Gabrile, G. Aldo,Synthetic, crystalline, porous material containing oxides of silicon and boron[P]. EUR,0293032,1988.
    [24]D. Nuntasri, P. Wu, T. Tatsumi, High selectivity of MCM-22 for cyclopentanol formation in liquid-phase cyclopentene hydration[J], Journal of Catalysis,2003, 213(2):272-280.
    [25]张斌,王振东,孙洪敏,杨为民,吴鹏,以哌啶为模板剂的MCM-22分子筛合成[J],化学反应工程与工艺,2013,29(1):19-23.
    [26]L. Wang, Y. Wang, Y. Liu, L. Chen, S. Cheng, G. Gao, M. He, P. Wu, Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J], Microporous and Mesoporous Materials,2008,113(1-3):435-444.
    [27]D. Meloni, S. Laforge, D. Martin, M. Guisnet, E. Rombi, V. Solinas, Acidic and catalytic properties of H-MCM-22 zeolites 1. Characterization of the acidity by pyridine adsorption[J], Applied Catalysis A:General,2001,215:55-66.
    [1]傅军,刘中清,何鸣元,MWW结构分子筛的研究进展[J],石油化工,2002,31(7):574-578.
    [2]许宁,吴通好,王东阳,吴鹏,阚秋斌,孙家锺,层状分子筛MCM-56的合成及表征[J],高等学校化学学报,2001,22:1898-1900.
    [3]A.S. Fung, S.L. Lawton, W.J. Roth,Synthetic layered MCM-56, its synthesis and use[P]. USA,5362697,1994.
    [4]W.J. Roth, MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis[J], Studies in Surface Science and Catalysis,,2005,158:19-26.
    [5]S.L.A.冯,S.L.劳顿,W.J.罗思,合成多层材料材料MCM-56,它的合成方法及它的用途[P].中国,94192390.8,1998.
    [6]G.G. Juttu, R. F.Lobo, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites[J], Microporous and Mesoporous Materials,2000,40:9-23.
    [7]张钰,赵飞,李正,赵胤,邓广金,邢海军,MCM-56分子筛催化苯与丙烯液相烷基化反应性能[J],高等学校化学学报,2009,30(7):1380-1385.
    [8]杨柳,张凤美,李中柱,MCM-22、MCM-49和MCM-56分子筛的表征[J],工业催化,2006,14(3):63-67.
    [9]刘月明,吴鹏,汪玲玲,王勇,何鸣元,一种MCM-56分子筛的合成方法[P].中国,200610148803.7,2009.
    [10]王剑,朱学栋,刘子玉,朱子彬,MCM-56分子筛的合成及表征[J],上海市化学化工学会2008年度学术年会论文集,2012:63-64.
    [11]A. Corma, U. Diaz, V. Fornes, J.M. Guil, J.Martinez-Triguero, E.J. Creyghton, Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2[J], Journal of Catalysis,2000,191(1):218-224.
    [12]G.J. Kennedy, S.L. Lawton, M.K. Rubin,29Si MAS NMR studies of a high silica form of the novel molecular sieve:MCM-22[J], Journal of the American Chemical Society,1994,116:11000-11003.
    [13]M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, MCM-22:A molecular sieve with two independent multidimensional channel systems[J]. Science.1994. 264(5167):1910-1913.
    [14]M.A. Camblor, C. Corell. A. Corma, M.-J. Diaz-Cabanas. S. Nicolopoulos. J.M. Gonzalez-Calbet, M. Vallet-Regi. A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22[J], Chemistry of Materials,1996,8(10):2415-2417.
    [15]M. Hunger, S. Ernst, J. Weikamp, Multinuclear solid-state n.m.r. investigation of zeolite MCM-22[J], Zeolites,1995,15:188-192.
    [16]G.J. Kennedy, S.L. Lawton, A.S. Fung, M.K. Rubin, S. Steuernagel, Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49[J], Catalysis Today,1999,49:385-399.
    [17]W. Kolodziejski, C. Zicovich-Wilson, C. Corell, J. Perez-Pariente, A. Corma, 27A1 and 29Si MAS NMR study of zeolite MCM-22[J], Journal of Physical Chemistry, 1995,99:7002-7008.
    [18]D. Ma, F. Deng, R. Fu, X. Han, X. Bao, MAS NMR studies on the dealumination of zeolite MCM-22[J], Journal of Physical Chemistry,2001,105:1770-1779.
    [19]B. Onida, F. Geobaldo, F. Testa. F. Crea. E. Garrone, FTIR investigation of the interaction at 77 K of diatomic molecular probes on MCM-22 zeolite[J], Microporous and Mesoporous Materials,1999,30(1-3):119-127.
    [20]Z. Sobalik, Z. Tvaruzkova, B. Wichterlova, V. Fila, S. Spatenka, Acidic and catalytic properties of Mo/MCM-22 in methane aromatization:an FTIR study[J], Applied Catalysis A:General,2003,253(1):271-282.
    [21]J. Fu, C. Ding, Study on alkylation of benzene with propylene over MCM-22 zeolite catalyst by in situ IR[J], Catalysis Communications,2005,6(12):770-776.
    [22]K. Okumura, M. Hashimoto, T. Mimura, M. Niwa, Acid properties and catalysis of MCM-22 with different A1 concentrations[J], Journal of Catalysis,2002.206(1): 23-28.
    [23]X. Sun, Q. Wang, L. Xu, S. Liu, The role of acid strength of zeolites in liquid-phase alkylation of benzene with ethylene[J], Catalysis Letters,2004,94(1-2): 75-79.
    [24]A.W. Chester, A.S. Fung, C.T. Kresge, W.J. Roth,Modified MCM-56. its preparation and use[P]. USA,5779882,1998.
    [25]J.C. Cheng, T.F. Deghan, J.S. Beck, Y.Y. Huang, M. Kalyanarman, J.A. Kowalski, C.A. Loehr, D.N. Mazzone, A comparison of zeolites MCM-22, beta, and usy for liquid phase alkylation of benzene with ethylene[J], Science and Technology in Catalysis,1998.
    [26]W.S. Borghard, N.A. Collins, P.P. Durand, T.L. Hilbert, J.C. Trewella,Benzene conversion in an improved gasloine upgranding process[P]. USA,5865987,1999.
    [27]A. Corrna, M. Diazcabanas, M. Moliner, C. Martinez, Discovery of a new catalytically active and selective zeolite (ITQ-30) by high-throughput synthesis techniques[J], Journal of Catalysis,2006,241(2):312-318.
    [28]Y. Wang, Y. Liu, L. Wang, H. Wu, X. Li, Mingyuan He, P. Wu, Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56[J], Journal of Physical Chemistry C 2009,113:18753-18760.
    [1]S. van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Generation, characterization, and impact of mesopores in zeolite catalysts[J], Catalysis Reviews,2003,45(2): 297-319.
    [2]Y. Wan, D. Zhao, On the controllable soft-templating approach to mesoporous silicates[J], Chemical Reviews 2007,107(7):2821-2860.
    [3]K. Egeblad, C.H. Christensen, M. Kustova, C.H. Christensen, Templating mesoporous zeolites[J], Chemistry of Materials 2008,20:946-960.
    [4]X. Meng, F. Nawaz, F.-S. Xiao, Templating route for synthesizing mesoporous zeolites with improved catalytic properties[J], Nano Today,2009,4(4):292-301.
    [5]刘洪涛,李福祥,微孔-介孔复合分子筛的合成研究进展[J],应用化工,2012,41(5):875-879.
    [6]C.J.H. Jacobsen, C. Madsen, J. Houzvicka, Ⅰ. Schmidt, A. Carlsson, Mesoporous zeolite single crystals[J], Journal of the American Chemical Society,2000,122: 7116-7117.
    [7]H. Zhu, Z. Liu, Y. Wang, D. Kong, X. Yuan, Z. Xie, Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal [J], Chemistry of Materials 2008,20(3):1134-1139.
    [8]Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-modified zeolites: Preparation, characterization, and applications[J], Chemical Reviews 2006,106: 896-910.
    [9]Y. Wang, Y. Liu, L. Wang, H. Wu, X. Li, Mingyuan He, P. Wu, Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56[J], Journal of Physical Chemistry C 2009.113:18753-18760.
    [10]S. Mintova. M. Holzl. V. Valtchev, B. Mihailova. Y. Bouizi. T. Bein. Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica[J], Chemistry of Materials.2004.16(25):5452-5459.
    [11]M.A. Camblor. A. Corma, M.-J. Diaz-Cabanas, Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25[J], Journal of Physical Chemistry,1998,102:44-51.
    [12]M. Cheng. D. Tan, X. Liu, X. Han, X. Bo, L. Lin, Effect of aluminum on the formation of zeolite MCM-22 and kenyaite[J], Microporous and Mesoporous Materials,2001,42(2-3):307-316.
    [13]C.H. Christensen, K. Johannsen, I. Schmidt, C.H. Christensen, Catalytic benzene alkylation over mesoporous zeolite single crystals:Improving activity and selectivity with a new family of porous materials[J], Journal of the American Chemical Society, 2003,125:13370-13371.
    [14]Z. Zhao, Y. Liu, H. Wu, X. Li, M. He, P. Wu, Hydrothermal synthesis of mesoporous zirconosilicate with enhanced textural and catalytic properties with the aid of amphiphilic organosilane[J], Microporous and Mesoporous Materials,2009, 123(1-3):324-330.
    [1]M.E. Davis, Ordered porous materials for emerging applications[J], Nature,2002, 417(6891):813-821.
    [2]A. Corma, V. Martinez-Soria, E. Schnoeveld, Alkylation of benzene with short-chain olefins over MCM-22 zeolite:Catalytic behaviour and kinetic mechanism[J], Journal of Catalysis,2000,192(1):163-173.
    [3]Z. Tian, Z. Qin, M. Dong, G. Wang, J. Wang, A comparative study on the alkylation of benzene with propene over HBeta zeolites in different phases[J], Catalysis Communications,2005,6(6):385-388.
    [4]B. Zhang, Y. Ji, Z. Wang, Y. Liu, H. Sun, W. Yang, P. Wu, Liquid-phase alkylation of benzene with ethylene over postsynthesized MCM-56 analogues[J], Applied Catalysis A:General,2012,443-444:103-110.
    [5]P. Wu, T. Komatsu, T. Yashima, Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts [J], Microporous and Mesoporous Materials,1998,22(1-3):343-356.
    [6]M.A. Camblor, A. Corma, M.-J. Diaz-Cabanas, Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25[J], Journal of Physical Chemistry,1998,102:44-51.
    [7]S.L. Lawton, A.S. Fung, Gordon J. Kennedy, L.B. Alemany, C.D. Chang, G.H. Hatzikos, D.N. Lissy, M.K. Rubin, H.-K.C. Timken, S. Steuernagel, D.E. Woessner, Zeolite MCM-49:A three-dimensional MCM-22 analogue synthesized by in situ crystallization[J], Journal of Physical Chemistry,1996,100:3788-3798.
    [8]Y.J. He, G.S. Nivarthy, F. Eder, K. Seshan, J.A. Lercher, Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36[J], Microporous and Mesoporous Materials,1998,25:207-224.
    [9]A.S. Fung, S.L. Lawton, W.J. Roth,Synthetic layered MCM-56, its synthesis and use[P]. USA,5362697,1994.
    [10]R. Millini, G. Perego, W.O.P. Jr., G. Bellussi, L. Carluccio, Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules[J], Microporous Materials,1995,1995(4):221-230.
    [11]P. Frontera, F. Testa, R. Aiello, S. Candamano, J.B. Nagy, Transformation of MCM-22(P) into ITQ-2:The role of framework aluminium[J], Microporous and Mesoporous Materials,2007,106(1-3):107-114.
    [12]W.J. Roth, D.L. Dorset, G.J. Kennedy, Discovery of new MWW family zeolite EMM-10:Identification of EMM-10P as the missing MWW precursor with disordered layers[J], Microporous and Mesoporous Materials,2011,142(1):168-177.
    [13]P. Wu..1. Ruan, L. Wang. L. Wu, Yong Wang. Y. Liu, W. Fan, M. He. O. Terasaki, T. Tatsumi. Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors[J], Journal of the American Chemical Society,2008,130:8178-8187.
    [14]S. Inagaki, H. Imai, S. Tsujiuchi, H. Yakushiji, T. Yokoi, T. Tatsumi, Enhancement of catalytic properties of interlayer-expanded zeolite A1-MWW via the control of interlayer silylation conditions[J], Microporous and Mesoporous Materials. 2011,142(1):354-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700