用户名: 密码: 验证码:
金属硫化物矿山尾矿钝化及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界每年都有数量巨大的尾矿露天堆放或弃置于尾矿库。由于自然风化作用,尾矿中的有毒有害重金属元素会不断释放出来,对周边生态环境造成严重影响,并通过食物链,对人体健康构成威胁。为从源头上控制尾矿自然风化带来的环境影响,本论文以广东韶关大宝山金属硫化物矿山三种尾矿为研究对象,采用表面钝化的方法,在不需要预处理的条件下直接钝化尾矿,从微观水平上阻断尾矿中硫化物矿物的化学氧化途径,阻止或减缓了重金属的释放。在经过大量的测试不同化学物质在尾矿上的钝化效果后,最终筛选出了三种合适的钝化剂,实现了对金属矿山尾矿直接的钝化。并对选择出的各种钝化剂在尾矿表面钝化的成膜机理和包膜状态下尾矿的抗氧化机理进行了研究,同时对钝化膜的环境稳定性进行了探讨。论文主要得到了以下的结果与结论:
     1.通过对不同风化程度的尾矿的基本理化性质进行分析,显示尾矿中的主要元素是Fe、Si、Al,而S含量相对比较小。新鲜尾矿主要成分有石英、针铁矿、赤铁矿与少量石膏、高岭石;风化尾矿的主要成分是针铁矿、石英、赤铁矿,另有少量石膏、高岭石等粘土矿物;尾矿沉积物的主要成分是石英、赤铁矿及少量石膏、伊利石。Cu、Zn和Pb三种重金属在三种尾矿中的总量都很高,Cd的含量相对最低。尾矿的重金属形态分析结果显示,新鲜尾矿重金属主要以硫化物态为主,四种重金属中Cu和Cd潜在活性最高,Zn和Pb的潜在活性相当,比前面两种重金属低。风化尾矿中重金属主要以残渣态为主,四种重金属潜在迁移能力顺序是Cd>Zn>Cu>Pb。尾矿沉积物中重金属也主要以残渣态为主,重金属潜在迁移能力顺序是Zn> Pb>Cd> Cu。三种尾矿进行产酸潜力分析结果显示,三种矿物样品均具有强产酸潜力和极弱的酸中和能力,对环境的潜在污染能力较大。
     2.钝化剂TETA钝化新鲜尾矿、风化尾和矿尾矿沉积物最佳成膜浓度分别为1.5%、1.5%和2%。钝化剂抑制尾矿氧化效果并不是浓度越高越好,超过5%的TETA反而会使得钝化效果变差。钝化剂TETA对尾矿重金属氧化的抑制率都达到75%以上,对新鲜尾矿氧化抑制效果比风化尾矿和尾矿沉积物效果好。主要原因是包膜新鲜尾矿在初始时被氧化释放的铜的浓度比其他两种尾矿高,更容易沉淀覆盖在尾矿表面形成钝化膜。钝化剂TETA抑制尾矿的氧化作用机理主要依靠其N原子亲核性是在尾矿表面包覆形成钝化膜。当遇到氧化剂氧化的时候,钝化膜会以替代性“牺牲”方式来保护尾矿。具体表现在两个方面:一方面TETA通过利用其胺基基团的还原性,和氧化剂进行氧化还原反应来消耗氧化剂,从而减少氧化剂对尾矿的氧化;另一方面,TETA利用自身的碱性和尾矿被氧化出来的H+进行酸碱中和反应,避免体系pH下降过快,并沉淀前期被双氧水氧化出来的重金属离子。金属沉淀物覆盖在尾矿表面,使得尾矿表面第二次形成了钝化膜,从而进一步保护了尾矿,避免其继续被氧化。
     3.油酸和硬脂酸都可以在黄铁矿表面形成钝化膜抑制黄铁矿的氧化。红外光谱分析显示油酸和硬脂酸是利用COOˉ与矿物表面的重金属发生螯合作用,生成难溶于水的钝化膜隔绝水和氧气,从而抑制矿物氧化。同等浓度条件下,油酸的抑制效果比硬脂酸强的多的主要原因是油酸中碳碳双键增大了钝化膜覆盖黄铁矿的表面积。研究表明油酸在黄铁矿表面形成的第一层化学钝化层的基础上,会通过碳碳双键再形成一层物理钝化层,同时碳碳双键还会与黄铁矿表面的硫以物理吸附方式吸附在黄铁矿表面。油酸钾抑制尾矿沉积物的最佳浓度比新鲜和风化尾矿高得多。这主要是因为尾矿沉积物中Ca的含量是其他两种尾矿中的2倍。油酸钾螯合金属选择性较差,容易与尾矿中金属Ca也发生螯合作用,从而导致使用量的增加。钝化剂对尾矿中金属的选择性螯合问题,在以往的研究中鲜有研究者报道,这个问题的提出为研究者以后选择合适的尾矿钝化剂提供了指导和参考作用。
     4.自主合成的新型钝化剂DTC-TETA有效的抑制了黄铁矿在pH=3和pH=6的溶液中的氧化,24h内的抑制率高达98.5%上。对尾矿的对照样品进行柱状淋滤实验发现,尾矿中重金属的释放在前24h是快速释放阶段,主要是尾矿中可交换态重金属离子的释放;第二阶段为慢速释放,主要是矿物有机态重金属和层间重金属离子的释放。钝化剂对三种尾矿在pH=3和pH=6两种柱状淋滤条件下重金属释放都有着很好的抑制效果,抑制率超过90%,抑制效果可以保持30d以上。钝化剂DTC-TETA的钝化机理是通过DTC-TETA中二硫代羧基中的硫与矿物表面上金属以共价键的形式生成稳定的交联网状螯合物附在尾矿表面。这层致密的疏水钝化膜可以隔绝水和氧气从而抑制尾矿中重金属的释放。因为钝化膜是以共价键的形式生成的,所以可以在酸性溶液中长期稳定存在。与已经有报道的其他钝化剂相比,钝化剂DTC-TETA有以下一些优点:1)钝化剂DTC-TETA可以在不需要双氧水预氧化的条件下直接钝化尾矿;2)DTC-TETA以共价键螯合的形式在尾矿表面形成交联网状膜,所以包膜尾矿可以在低pH环境中稳定存在;3)DTC-TETA主要由碳直链结构组成,不含有芳香烃等难降解基团,不会对环境造成二次污染;4)DTC-TETA易溶于水,方便在实际环境中应用;5)已报道的钝化剂主要作用于黄铁矿,对尾矿是否有效果还是未知,而DTC-TETA不仅可以钝化黄铁矿,同时也可以钝化尾矿。
Large amounts of tailing were produced and stored in tailing ponds or in piles exposed toair around the world evevry year. Many toxic metals were released from tailings due to theoxidation by O2, which would contaminate the surrounding environment and do harm to thehealth of people through food line. In order to control the oxidation of tailings at sourse, thisstudy took three kinds of metal-sulfide tailing samples, weathered and fresh tailings, andtailing sediments which were obtained from the Dabaoshan sulfur-polymetallic mines in thenorth of Guangdong Province, China as research objects and employed a new kind ofmethods to coat the metal-sulfide tailings without pre-oxidation. The new method couldinhibit or slow down the release of heavy metals from tailing samples by suprresing theoxidation of sulfide minerals in microcosmic level. Three kinds of different coatings wereadopted as coating agents on taling samples at last after testing many chemical materials.The probable mechanisms of the passivation of tailing samples were proposed. We alsoinvestigated the mechanisms of the coatings protecting the coated tailings surface from O2and H2O attack. Stability researches were conducted to examine the duration of coatings inweathering conditions. The main experiments and conclusions are as follows:
     1. In order to get better understanding of tailing samples, the charactization of the physical,chemical and mineralogical properities of three tailing samples were conducted. The tailingsmainly contained the elements of Fe, Si and Al, while he content of S is very low relatively.The main mineral compositions for fresh tailing are quartz, goethite and hematite. Quartz,lead alum, iron alum and gibbsite are the main minerals contained in the weathered tailingssamples. While for tailing sediment samples, the main mineral compositions are quartz andgoethite. All the three tailings samples are rich in Cu, Zn and Pb,but the content of Cd isrelatively lower than other three heavy metals. The distribution and chemical forms of Cu,Pb, Zn, and Cd in three tailings samples were studied based on mineralogical and chemicalanalyses as well as sequential extraction. The potential migration ability of heavy metalswas also disscussed on the basis of the speciation of heavy metals. Cu, Zn, Pb and Cd infresh tailing samples were mainly existed in sufides and the mobility of four heavy metalsfollowed the order: Cu>Cd>Zn>Pb. The dominating chemical forms of Cu, Pb, Zn, and Cdwas residual silicates in weathered tailing samples and the mobility of the four metalsfollowed the order Cd>Zn>Cu>Pb. For the tailing sediments, Cu, Zn, Pb and Cd also existresidual in and the mobility of the four metals followed the order: Zn> Pb>Cd> Cu. Theacid producing potential of three tailing samples was studied using both NAG (net acid generation) and NAPP (net acid producing potential) test. The results indicated that all thethree tailing samples had high acid producing potential and low acid neutralization capacity.
     2. Research was conducted to investigate the optimum concentration of TETA. Theconclusions were as follows: when the concentration of TETA was1.5%, the effect of filmwas the best for fresh and weathered tailing samples; when the concentration of TETA was2%, the effect of film is the best for tailing sediment. The effect of TETA was not positiverelation with the concentration of TETA. When TETA concentration was more than5%, theeffect of passivation began to be weak. TETA was able to suppress the oxidation of all thethree tailing samples. After the coated tailing samples were oxidized24h by H2O2, themetals production were reduced more than75%for all of the three tailing, especially for Cuand Zn. However, the oxidation extent of the coated fresh tailing sample was less than thatof coated weathered tailing and coated tailing sediment. The main reason for this was thatthe concentration of Cu2+was relatively high at the beginning of the metal releasing from thecoated fresh tailing. So the Cu2+could more easier to form precipitate on the fresh tailingsurface than other two tailing samples. This could be seemed as the second passivating layer.As for the passivation mechamism of TETA, the first step was TETA coated on the tailingsurface. When the coated tailing samples were oxidized by H2O2, TETA could takeadvantage of amine groups to react with H2O2. Redox reaction could consume oxidant toreduce the oxidation of tailing. On the other hand, TETA would take acid-baseneutralization reaction with H+released from tailing sampes and form precipitate on thetailing surface to protect the tailing samples from O2attack.
     3. Both of the coating oleic acid and stearic acid could inhibit the oxidation of pyrite.The major mechanism of coating formation was the chelation. The carboxylic group of oleicacid and stearic acid could chelate with heavy metal on the mineral surface. And the chelateproduct covered with the mineral surface to inhibit the pyrite oxidation. However, theinhibition rate of oleic acid was much higher than that of stearic acid at the same experimentcondition. The main reason was the effect of the carbon-carbon double bond in oleic acidmolecule. The passivating layer had been formed on the surface of pyrite after theinteraction of oleic acid or stearic acid, and this layer was very steady in the solution. Ourstudies showed that the physical coating layer of oleic acid would form on the surface ofchemical passivation layer by carbon-carbon double bond. At the meantime, physicaladsorption would react between carbon-carbon double bond and the sulfur of pyrite, whichwould increase the surface area of the passivation layer on pyrite surface. The potassiumoleate also was used as a passivator to suppress the oxidation of mineral. Compared with oleic acid,the optimum concentration of potassium oleate was much greater. The reasonwas the poor chelate selectivity of potassium oleate with metals. For example, the potassiumoleate could chelate with Ca~(2+)in the tailing samples. And this would result in the increaseddoasage of potassium oleate when used it as the coating for tailing samples.
     4. Sodium triethylenetetramine-bisdithiocarbamate (DTC-TETA) was synthesized of as acoating for pyrite and tailing surfaces to suppress ARD production at source. Leachingexperiments showed decreased Fe leaching by99.8%and98.5%upon pyrite exposure to pH6.0and3.0solutions, respectively. Column leaching also decreased by>90%for Cu, Zn, Cd,Pb, and Fe metals at pH6.0and3.0solutions for a period of30days in fresh and weatheredtailing samples. The probable mechanisms of the passivation of pyrite and tailing sampleswere also proposed. Unlike most of other coatings, DTC-TETA was covalently coordinatedto metals and formed a cross-linked hydrophobic passivating layer on the pyrite or tailingsurface to inhibit the release of metals in acidic solutions. Compared to other coating agents,DTC-TETA has the following advantages. First, in previous studies, dithiocarbamates havebeen used as chelating agents to bind heavy metals. DTC-TETA can directly coat thesurface of pyrite without using H2O2for initial surface oxidation. Second, the DTC-TETAligand is thought to utilize terminal sulfur groups to facilitate effective and covalentcoordination to iron atoms in pyrite so that the ligand can work well under very low pH.Third, DTC-TETA is composed mainly of straight chain carbons and poses no foreseeablethreat to the environment. Fourth, DTC-TETA is efficient for engineering applicationsbecause it easily dissolves in water and avoiding using other organic solvents to increase itscost. Fifth and last, most coating experiments have been conducted on pyrite or pyrrhotitesamples. The compatibility of these coatings with mineral wastes in tailing ponds is not yetclear. DTC-TETA has effect on inhibiting the oxidation of pyrite and sulfide tailing samples.
引文
[1]王京彬,周学禹,王静纯,等.我国有色金属矿山资源实况与建议[J].世界有色金属,2001,12(5):32-35.
    [2]周连碧.矿山复垦与生态恢复[J].有色金属工业,2004,(6):19-21
    [3]张淑会,薛向欣,刘然,等.尾矿综合利用现状及其展望[J].矿冶工程,2005,25(3):44-47
    [4]王亚平,鲍征宇,侯书恩.尾矿库周围土壤中重金属存在形态特征研究[J].岩矿测试,2000,19(1):7-13
    [5]吴德礼,朱申红,王铮.国内外矿山尾矿综合利用现状与思考[J].青岛建筑工程学院学报,2001,22(4):84-87
    [6]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备,2001,2(2):41-46
    [7] Bussière B., Benzaazoua M., Aubertin M., et al. A laboratory study of covers made oflow-sulphide tailings to prevent acid mine drainage[J]. Environ Geol,2004,45(5):609-622
    [8] Akcil A., Koldas S. Acid Mine Drainage (AMD): causes, treatment and case studies[J]. JClean Prod,2006,14(12):1139-1145
    [9] Benner S. G., Blowes D. W., Ptacek C. J. A full‐scale porous reactive wall for preventionof acid mine drainage[J]. Ground Water Monit R,1997,17(4):99-107
    [10] Sánchez J., López E., Santofimia E., et al. Acid mine drainage in the Iberian Pyrite Belt(Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmentalimplications[J]. Appl Geochem,2005,20(7):1320-1356
    [11] Johnson D. B., Hallberg K. B. Acid mine drainage remediation options: a review[J]. SciTotal Environ,2005,338(1-2):3-14
    [12]刘志勇,陈建中,康海笑,等.酸性矿山废水的处理研究[J].云南环境科学,2004,23(1):152-156
    [13] Bhattacharya A., Routh J., Jacks G., et al. Environmental assessment of abandoned minetailings in Adak, V sterbotten district (northern Sweden)[J]. Appl Geochem,2006,21(10):1760-1780
    [14]林初夏,卢文洲,吴永贵,等.大宝山矿水外排的环境影响: Ⅱ.农业生态系统[J].生态环境,2005,14(2):169-172
    [15]葛朝华,韩发.广东大宝山矿床喷气-沉积成因地质地球化学特征[M].北京:科学技术出版社,1987
    [16]秦建桥,夏北成,周绪,等.粤北大宝山矿区尾矿场周围土壤重金属含量对土壤酶活性影响[J].生态环境,2008,17(4):1503-1508
    [17] Zhuang P., McBride M. B., Xia H., et al. Health risk from heavy metals via consumptionof food crops in the vicinity of Dabaoshan mine, South China[J]. Sci Total Environ,2009,407(5):1551-1561
    [18]邹晓锦,仇荣亮,周小勇,等.大宝山矿区重金属污染对人体健康风险的研究[J].环境科学学报,2008,28(7):1406-1412
    [19] Zhao H., Xia B., Fan C., et al. Human health risk from soil heavy metal contaminationunder different land uses near Dabaoshan Mine, Southern China[J]. Sci Total Environ,2012,417(15):45-54
    [20] Kleinmann R. L. P., Crerar D., Pacelli R.. Biogeochemistry of acid mine drainage and amethod to control acid formation[J]. Min Eng,1991,33(3):672-679
    [21] Skousen J. G., Ziemkiewicz P. F.. Acid mine drainage control and treatment[M]. WestVirginia University and the National Mine Land Reclamation Center,1996
    [22] Buzzi D. C., Viegas L. S., Rodrigues M. S., et al. Water recovery from acid minedrainage by electrodialysis [J]. Min Eng,2013,40(2):82-89
    [23]刘云.黄铁矿氧化机理及表面钝化行为的电化学研究[D].华南理工大学2011
    [24] Egiebor N. O., Oni B. Acid rock drainage formation and treatment: a review[J].Asia-Pac J Chem,2007,2(1):47-62
    [25] Zheng L., Dang Z., Zhu C., et al. Removal of cadmium (II) from aqueous solution bycorn stalk graft copolymers[J]. Bioresource Technol,2010,101(15):5820-5826
    [26] Zheng L., Dang Z., Yi X., et al. Equilibrium and kinetic studies of adsorption of Cd (II)from aqueous solution using modified corn stalk[J]. J Hazard Mater,2010,176(1):650-656
    [27] Mays P., Edwards G. Comparison of heavy metal accumulation in a natural wetland andconstructed wetlands receiving acid mine drainage[J]. Ecol Eng,2001,16(4):487-500
    [28] Nicholson R. V., Gillham R. W., Cherry J. A., et al. Reduction of acid generation in minetailings through the use of moisture-retaining cover layers as oxygen barriers[J]. Can GeotechJ,1989,26(1):1-8
    [29] Evangelou V.. Potential microencapsulation of pyrite by artificial inducement of ferricphosphate coatings[J]. J Environ Qual,1995,24(3):535-542
    [30] Nyavor K., Egiebor N., Fedorak P.. Suppression of microbial pyrite oxidation by fattyacid amine treatment[J]. Sci Total Environ,1996,182(1-3):75-83
    [31]万淑娟.一株氧化亚铁硫杆菌的分离鉴定及表面钝化剂三乙烯四胺(TETA)抗生物氧化机理的研究[D].华南理工大学2010
    [32]阳正熙.矿区酸性废水的成因及其防治[J].世界采矿快报,1999,15(10):42-45
    [33] Romano C. G., Ulrich M. K., Jones D. R., et al. Effectiveness of various cover scenarioson the rate of sulfide oxidation of mine tailings[J]. J Hydrol,2003,271(1):171-187
    [34] Peppas A., Komnitsas K., Halikia I.. Use of organic covers for acid mine drainagecontrol[J]. Miner Eng,2000,13(5):563-574
    [35] Doye I., Duchesne J. Neutralisation of acid mine drainage with alkaline industrialresidues: laboratory investigation using batch-leaching tests[J]. Appl Geochem,2003,18(8):1197-1213
    [36] Benzaazoua M., Marion P., Picquet I., et al. The use of pastefill as a solidification andstabilization process for the control of acid mine drainage[J]. Miner Eng,2004,17(2):233-243
    [37] Alpers C., Blowes D., Nordstrom D., et al. Secondary minerals and acid mine-waterchemistry[J]. Environ Geochem,1994,193(4):230-235
    [38] Moreira W., Giannetti B., Bonilla S., et al. Use of pyrite as an attenuation strategy forions mercury traping[A]. In Proceedings of the VI Southern Meeting on MineralTechnology[C],2001;521-526
    [39] Belzile N., Maki S., Chen Y. W., et al. Inhibition of pyrite oxidation by surfacetreatment[J]. Sci Total Environ,1997,196(2):177-186
    [40] Matlock M. M., Howerton B. S., Atwood D. A. Covalent coating of coal refuse to inhibitleaching[J]. Adv Environ Res,2003,7(2):495-501
    [41] Elsetinow A. R., Strongin D. R., Borda M. J., et al. Characterization of the structure andthe surface reactivity of a marcasite thin film[J]. Geochim Cosmochim Ac,2003,67(5):807-812
    [42] Evangelou V., Zhang Y.. A review: pyrite oxidation mechanisms and acid mine drainageprevention[J]. Crit Rev Env Sci Tec,1995,25(2):141-199
    [43] Schoonen M., Borda M., Strongin D. R. Influence of light on the oxidation of pyrite:Developing a mechanistic model[J]. Abs Am Chem Soc,2003,225915-916
    [44] Taylor B. E., Wheeler M. C., Nordstrom D. K. Stable isotope geochemistry of acid minedrainage: Experimental oxidation of pyrite[J]. Geochim Cosmochim Ac,1984,48(12):2669-2678
    [45]兰叶青.源头控制废矿堆中黄铁矿氧化的研究[D].南京农业大学1999
    [46] Pugh C., Hossner, L., Dixon, J.. Oxidation rate of iron sulfides as affected by surface area,morphology, oxygen concentration, and autotrophic bacteria[J]. Soil Sci,1984,137(5):309-314.
    [47] Chandra A., Gerson A.. The mechanisms of pyrite oxidation and leaching: Afundamental perspective [J]. Surf Sci Rep,2010,65(9):293-315
    [48] Sracek O., Gélinas P., Lefebvre R., et al. Comparison of methods for the estimation ofpyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada[J]. J GeochemExplor,2006,91(1):99-109
    [49]张明亮.煤矸石产酸潜力及粉煤灰与马粪堆肥吸附重金属研究[D].中国矿业大学(北京)2010
    [50] Hu G., Johansen D.K., Wedel S., et al. Decomposition and oxidation of pyrite[J]. ProgEnerg Combust,2006,32(3):295-314
    [51] Rimstidt J. D., Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of thereaction mechanism[J]. Geochim Cosmochim Ac,2003,67(5):873-880
    [52] Janzen M. P., Nicholson R. V., Scharer J. M.. Pyrrhotite reaction kinetics: Reaction ratesfor oxidation by oxygen, ferric iron, and for nonoxidative dissolution[J]. GeochimCosmochim Ac,2000,64(9):1511-1522
    [53]张哲.金属硫化物矿山尾矿生物氧化的抑制研究[D].华南理工大学2010
    [54] Nicholson R. V., Scharer J. M. Laboratory studies of pyrrhotite oxidation kinetics[A]. InACS Symposium Series[C],1994;14-30
    [55] Aydogan, S.. Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acidmedium[J]. Chem Eng J,2006,123(3):65-70
    [56] Corkhill C., Vaughan, D.. Arsenopyrite oxidation–A review[J]. Appl Geochem,2009,24(12):2342-2361
    [57] Lázaro I., Cruz R., González I., et al. Electrochemical oxidation of arsenopyrite in acidicmedia[J]. Int J Miner Process,1997,50(1):63-75
    [58]朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报,2005,25(3):414-422
    [59]陈天虎,崔龙鹏.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志,2002,21(003):298-302
    [60] Janzen M.P., Nicholson R.V., Scharer J.M. Pyrrhotite reaction kinetics: reaction rates foroxidation by oxygen, ferric iron, and for nonoxidative dissolution[J]. GeochimCosmochim Ac,2000,64(9):1511-1522
    [61] Gleisner M., Herbert R. B.. Sulfide mineral oxidation in freshly processed tailings: batchexperiments[J]. J Geochem Explor,2002,76(3):139-153
    [62] Long H., Dixon D.. Pressure oxidation of pyrite in sulfuric acid media: a kinetic study[J].Hydrometallurgy,2004,73(3-4):335-349
    [63] Mazumdar A., Goldberg T., Strauss H.. Abiotic oxidation of pyrite by Fe(III) in acidicmedia and its implications for sulfur isotope measurements of lattice-bound sulfate insediments[J]. Chem Geo,2008,253(1-2):30-37
    [64] Sracek O., Gélinas P., Lefebvré R., et al. Comparison of methods for the estimation ofpyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada[J]. J GeochemExplor,2006,91(1-3):99-109
    [65] Hu G., Dam J.K., Wedel S., et al. Decomposition and oxidation of pyrite[J]. Prog EnergCombust,2006,32(3):295-314
    [66] Singer P. C., Stumm W.. Acidic mine drainage: the rate-determining step[J]. Science,1970,167(3921):1121-1123
    [67] Lalvani S. B., DeNeve B. A., Weston, A.. Passivation of pyrite due to surfacetreatment[J]. Fuel,1990,69:1567-1569
    [68]郑仲,蔡昌凤.煤矿酸性矿井水形成机理的研究进展[J].资源环境与工程,2007,21(3):323-327
    [69] Guevremont J. M., Elsetinow A. R., Strongin, D. R., et al. Structure sensitivity of pyriteoxidation: Comparison of the (100) and (111) planes[J]. Am Mineral,1998,83(11):1353-1356
    [70] Guevremont J. M., Strongin D. R., Schoonen M. A.. Photoemission of adsorbed xenon,X-ray photoelectron spectroscopy, and temperature-programmed desorption studies of H2O onFeS2(100)[J]. Langmuir,1998,14(6):1361-1366
    [71] Reedy B. J., Beattie J. K., Lowson R. T.. A vibrational spectroscopic O18tracer study ofpyrite oxidation[J]. Geochim Cosmochim Ac,1991,55(6):1609-1614
    [72]乐长高,姜国芳,刘云海.氧化亚铁硫杆菌生物冶金的新进展[J].生物技术,2003,13(3):45-47
    [73] Jensen A. B., Webb C.. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: areview[J]. Process Biochem,1995,30(3):225-236
    [74] Bald F., Clark T., Pollack S., et al. Leaching of pyrites of various reactivities byThiobacillus ferrooxidans[J]. Appl Environ Microb,1992,58(6):1853-1856
    [75] Kleinmann R. L., Crerar D. A.. Thiobacillus ferrooxidans and the formation of acidity insimulated coal mine environments[J]. Geomicrobiol J,1979,1(4):373-388
    [76] Fowler T., Holmes P., Crundwell F.. On the kinetics and mechanism of the dissolution ofpyrite in the presence of Thiobacillus ferrooxidans[J]. Hydrometallurgy,2001,59(2-3):257-270
    [77]张东晨,张明旭,陈清如,等.煤炭脱硫菌磁化培育及磁生物效应机理的研究[J].煤炭学报,2005,30(4):484-488
    [78] Sasaki K., Tsunekawa M., Ohtsuka T., et al. The role of sulfur-oxidizing bacteriaThiobacillus thiooxidans inpyrite weathering[J]. Colloid Surface A: Physicocheml Eng Asp,1998,133(3):269-278
    [79] Walsh F., Mitchell R.. pH-Dependent succession of iron bacteria[J]. Environ Sci Technol,1972,6(9):809-812
    [80] Beck J. V., Brown, D.. Direct sulfide oxidation in the solubilization of sulfide ores byThiobacillus ferrooxidans[J]. J Bacteriol,1968,96(4):1433-1434
    [81] Silverman M. P., Lundgren D. G.. Studies on the chemoautotrophic iron bacteriumFerrobacillus ferrooxidans II. Manometric studies[J]. J Bacteriol,1959,78(3):326-331
    [82] Lalvani S. B., DeNeve B. A., Weston A. Prevention of pyrite dissolution in acidicmedia[J]. Corrosion,1991,4755-61
    [83] Nyavor K., Egiebor, N. O. Control of pyrite oxidation by phosphate coating[J]. Sci TotalEnviron,1995,162(2-3):225-237
    [84] Doye I., Duchesne J.. Neutralisation of acid mine drainage with alkaline industrialresidues: laboratory investigation using batch-leaching tests[J]. Appl Geochem,2003,18(8):1197-1213
    [85] Huminicki D., Rimstidt J. D.. Iron oxyhydroxide coating of pyrite for acid minedrainage control[J]. Appl Geochem,2009,24(9):1626-1634
    [86] Shelp G. S., Chesworth W., Spiers G.. The amelioration of acid mine drainage by an insitu electrochemical method.I. Employing scrap iron as the sacrificial anode[J]. ApplGeochem,1995,10(6):705-713
    [87]魏榕,黄健.酸性矿山废水的污染与处理研究[J].能源与环境,2006,231-33
    [88] Siriwardane H. J., Kannan R. S., Ziemkiewicz P. F.. Use of waste materials for controlof acid mine drainage and subsidence[J]. Journal of environmental engineering,2003,129(10):910-915
    [89] Demers I., Bussière B., Benzaazoua M., et al. Column test investigation on theperformance of monolayer covers made of desulphurized tailings to prevent acid minedrainage[J]. Miner Eng,2008,21(4):317-329
    [90] Utgikar V., Chen, B. Y., Tabak, H. H., et al. Treatment of acid mine drainage: I.Equilibrium biosorption of zinc and copper on non-viable activated sludge[J]. Int BiodeterBiodegr,2000,46(1):19-28
    [91] Hallberg R. O., Granhagen J. R., Liljemark A.. A fly ash/biosludge dry cover for themitigation of AMD at the falun mine[J]. Chem Erde-Geochem,2005,65:43-63
    [92]贝尔,王迪.用复合土覆盖酸性废石堆控制排水的评估[J].国外金属矿山,1996,21(8):48-54.
    [93] Alpers C. N., Blowes D. W.. Environmental geochemistry of sulfide oxidation: developedfrom a symposium sponsored by the Division of Geochemistry, Inc., at the204th NationalMeeting of the American Chemical Society, Washington, DC, August23-28,1992[M]. OxfordUniversity Press, USA,1994.
    [94] Perdicakis M., Geoffroy S., Grosselin N., et al. Application of the scanning referenceelectrode technique to evidence the corrosion of a natural conducting mineral: pyrite.Inhibiting role of thymol[J]. Electrochim Acta,2001,47(1):211-216
    [95]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,32(4):36-39
    [96]张哲,党志,舒小华.硫化物矿山尾矿生物氧化作用的抑制研究[J].环境工程学报,2010,4(5):1191-1195
    [97]张哲,杨琛,党志,等.硫化物矿山尾矿缓释抑菌剂滴丸的制备及性能测试[J].中国环境科学,2012,32(6):1087-1092
    [98]潘科,李正山.矿山酸性废水治理技术及其发展趋势[J].四川环境,2007,26(5):83-86
    [99]罗凯,张建国.矿山酸性废水治理研究现状[J].资源环境与工程,2005,19(1):45-49
    [100]向武.酸性矿山废水处理技术及其进展[J].有色金属矿产与勘察,1998,7(4):251-253
    [101] Georgopoulou Z., Fytas K., Soto H., et al. Feasibility and cost of creating aniron-phosphate coating on pyrrhotite to prevent oxidation[J]. Environ Geol,1996,28(2):61-69
    [102]兰叶青,周刚,刘正华,等.废矿堆中黄铁矿氧化控制新技术—有机盐包膜法[J].环境化学,2000,19(5):454-454
    [103] Evangelou V. P.. Pyrite microencapsulation technologies: Principles and potential fieldapplication[J]. Ecol Eng,2001,17(2-3):165-178
    [104] Stiller A. H., Renton J. J., Rymer T. E.. An experimental evaluation of the use of rockphosphate (apatite) for the amelioration of acid-producing coal mine waste[J]. Mining Scienceand Technology,1989,9(3):283-287
    [105] Baker K. A., Fennessy M. S., Mitsch W. J.. Designing wetlands for controlling coalmine drainage: an ecologic-economic modelling approach[J]. Ecol Econ,1991,3(1):1-24
    [106] Huang X., Evangelou V.. Iron phosphate coating: A novel approach to controlling pyriteoxidation[J]. Pedosphere,1997,7(2):103-110
    [107] Vandiviere M., Evangelou V.. Comparative testing between conventional andmicroencapsulation approaches in controlling pyrite oxidation[J]. J Geochem Explor,1998,64(1):161-176
    [108]兰叶青,周钢,刘正华,等.不同条件下黄铁矿氧化行为的研究[J].南京农业大学学报,2000,23(1):81-84
    [109] Lan Y., Huang X., Deng B.. Suppression of pyrite oxidation by iron8-hydroxyquinoline[J]. Arch Environ Con Tox,2002,43(2):168-174
    [110] Lalvani S., DeNeve B., Weston A.. Prevention of pyrite dissolution in acidic media[J].Corrosion,1991,47(1):55-61
    [111]兰叶青,黄骁,胡霭堂.有机难溶盐膜抑制黄铁矿氧化的研究[J].环境科学学报,1999,19(4):405-409
    [112] Cai M. F., Dang Z., Chen Y. W., et al. The passivation of pyrrhotite by surfacecoating[J]. Chemosphere,2005,61(5):659-667
    [113] Chen Y. W., Li Y. R., Cai M. F., et al. Preventing oxidation of iron sulfide minerals bypolyethylene polyamines[J]. Miner Eng,2006,19(1):19-27
    [114] Zhang X., Borda M. J., Schoonen M. A. A., et al. Pyrite oxidation inhibition by across-linked lipid coating[J]. Geochem T,2003,4(2):8-11
    [115] Zhang X., Michael J. B., Schoonen M. A. A., et al. Adsorption of phospholipids onpyrite and their effect on surface oxidation[J]. Langmuir,2003,19(21):8787-8792.
    [116]蔡锦辉,吴明光,汪雄武,等.广东大宝山多金属矿山环境污染问题及启示[J].华南地质与矿产,2005,4:50-54.
    [117]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,23(6):1172-1176
    [118]付善明.广东大宝山金属硫化物矿床开发的环境地球化学效应[D].广州:中山大学2007
    [119]邹晓锦,仇荣亮,黄穗虹.大宝山矿区重金属污染对作物的生态毒性研究[J].农业环境科学学报,2007,26(10):479-483
    [120]周永章,付善明,张澄博.华南地区含硫化物金属矿山生态环境中的重金属元素地球化学迁移模型—重点对粤北大宝山铁铜多金属矿山的观察[J].地学前缘,2008,15(5):248-255
    [121]杨小强,张轶男,张澄博,等.矿山重金属污染土壤的磁化率特征及其意义[J].中山大学学报,2006,45(4):98-102
    [122]林初夏,黄少伟,童晓立,等.大宝山矿水外排的环境影响: Ⅲ.综合治理对策[J].生态环境,2005,14(002):173-177
    [123] Zhuang P., Zou B., Li N., et al. Heavy metal contamination in soils and food cropsaround Dabaoshan mine in Guangdong, China: implication for human health[J]. EnvironGeochem Hlth,2009,31(6):707-715
    [124]刘赣生,邓全秀,吴坤银.广东大宝山矿儿童少年HBV感染及标志物分布监测分析[J].广东卫生防疫,1995,21(4):73-74
    [125]陈炳辉,韦慧晓,周永章.粤北大宝山多金属矿山的生态环境污染原因及治理途径[J].中国矿业,2006,15(6):40-42
    [126]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13(1):6-8.
    [127]付善明,周永章,赵宇鴳,等.广东大宝山铁多金属矿废水对河流沿岸土壤的重金属污染[J].环境科学,2007,28(4):805-812
    [128]吴永贵,林初夏,童晓立, et al.大宝山矿水外排的环境影响: Ⅰ.下游水生生态系统[J].生态环境,2005,14(2):165-168
    [129] Dold B.. Speciation of the most soluble phases in a sequential extraction procedureadapted for geochemical studies of copper sulfide mine waste[J]. J Geochem Explor,2003,80(1):55-68
    [130]束文圣,招文锐.几种矿业废物的酸化潜力[J].中国环境科学,1999,19(005):402-405
    [131]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,17(1):89-92
    [132]卢瑛,龚子同,张甘霖.南京城市土壤中重金属的化学形态分布[J].环境化学,2003,22(2):131-136.
    [133]朱继保.粤北凡口铅锌矿尾矿风化作用及其环境效应[D].中国科学院研究生院(广州地球化学研究所)2004
    [134] Cotton F.A.,Wilkinson G.. Advanced Inorganic Chemistry[M].4th ed. New York:John Wiley&Sons, Inc.,1980
    [135] Liu B. R.. Chelating Flotation Reagents[M]. Beijing: Metallurgical Industy Press,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700