用户名: 密码: 验证码:
木本植物修复煤矿复垦区重金属迁移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复是近年来发展起来的土壤重金属污染整治的重要手段之一,受到国内外众多学者的关注。本文基于淮南煤矿复垦区的复垦特点,选取大通生态湿地(Datong ecological wetland, DTEW)-.潘一矿复垦区(Panyi mine reclamation area, PYRA)和新庄孜矿复垦区(Xinzhuangzi mine reclamation are, XZRA)为研究对象,分析研究了复垦区土壤重金属污染特点,表明复垦区土壤受到重金属元素的不同程度污染,其中Cd是复垦区土壤重金属污染最主要的诱发因子。在此基础上,筛选不同树种的木本植物,通过趋势模拟与数学建模,探寻重金属在煤矸石—土壤—木本植物系统中的迁移规律。
     (1)通过不同复垦区内同种木本植物对不同重金属的吸收富集能力的研究,表明复垦类型的不同,同种植物发生了不同种群之间的差异和分化,形成了不同生态型,从而影响了同种木本植物对同种重金属的吸收积累能力差异。
     (2)根据不同复垦区内不同时间段采集的复垦煤矸石中的重金属含量,通过趋势分析,探寻煤矸石在覆土状态下重金属释放规律。结果表明覆土状态下煤矸石重金属元素释放规律遵循负指数方程,且以木本植物修复为主的复垦区内煤矸石中重金属释放速率大于以草本植物修复为主的煤矸石中重金属的释放速率,证明了植物根系能够加速复垦煤矸石中重金属元素的释放。
     (3)通过覆土底层土壤中重金属与复土厚度、pH、含水率、总孔度、有机质、速效钾、速效磷和CEC等影响因子的相关性分析,确定主要影响因子,采用多元线性回归,移除异常因子,建立了煤矸石—上层覆土界面之间不同重金属迁移影响因子模型。
     (4)根据木本植物根系吸收、富集土壤中重金属的特点,提出了新的采样布点方案,以探寻重金属在土壤—根区系统中的迁移规律。结果表明:木本植物根系对重金属吸收富集能力强,其迁移能力就较强,且迁移规律沿着根系遵循三次曲线模型;随着根系对重金属的吸收富集能力降低,其迁移能力也逐渐降低,且迁移规律沿着根系由三次曲线模型向直线模型趋势过渡。同时采用克里格方法,建立了具有植物富集特点的不同范围内不同剖面的克里格模型。并通过大量的土壤与木本植物中重金属含量数据,采用趋势拟合的方法,发现重金属在根际土—根区,以及在木本植物系统的分布规律遵循三次曲线模型:y=a3X3+a2x2+a1x+a0,。
     (5)依据木本植物从复垦区土壤中吸收和富集重金属的过程,结合重金属在木本植物体内的积累机理,细化木本植物的生理结构特点,运用药物动力学的“房室模型”思想,建立了木本植物吸收、富集重金属的二室、三室数学模型,以及茎杆的时空模型,即:二室模型:(由土壤进入根系的速率为常数);(土壤中重金属含量为定值);三室模型:茎杆的时空模型:
     (6)论文从采样方法上,根据木本植物根系吸收、富集土壤中重金属的特点,提出了一种确定土壤中重金属迁移趋势的方法和系统。并针对煤矿复垦区特点,系统、全面地探讨了煤矸石—土壤—木本植物系统中的重金属迁移规律,运用药物动力学的思想,从理论上构建了重金属在木本植物系统的迁移模型,从而为定量研究重金属在木本植物系统中的迁移、积累过程和定量计算模型的合理选择提供思路和方法。
Phytoremediation, which had been developed in recent years, was one of the important means of regulating the soil heavy metal pollution, and it had been paid attention to by many scholars at home and abroad. Based on the reclamation characteristics of coal mine reclamation areas in Huainan, the thesis selected Datong ecological wetland (DTEW), Panyi mine reclamation area (PYRA) and Xinzhuangzi mine reclamation area (XZRA) as the research objects and analyzed as well as studied the pollution characteristics of soil heavy metals in reclamation areas. It showed that the soil in reclamation areas was contaminated by heavy metals in different degrees and that Cd was the main inducing factor of soil heavy metal pollution in reclamation areas. On the basis, the thesis, sifting through different species of woody plants, researched the migration law of heavy metals in the coal gangue-soil-woody plants system by means of the trend simulation and mathematical modeling.
     (1) Through the research on the ability of the woody plants in different reclamation areas to absorb and accumulate different heavy metals, it showed the type differences of reclamation. The differences and differentiation occurring among different species happened among the same species, and the different ecotypes were formed, which affected the ability of the same woody plants to absorb and accumulate the same heavy metal.
     (2) According to the content of heavy metals in gangue collected at the different time in different reclamation areas, the thesis, through the trend analysis, studied the desorption law of heavy metals in gangue under the covering soil. The findings revealed the desorption law in this situation followed the negative exponential equation, and they showed the desorption rate of heavy metals in gangue in reclamation areas mainly repaired by woody plants was higher than that of heavy metals in gangue in reclamation areas mainly repaired by herbaceous plants. It proved that plant roots could accelerate the desorption of heavy metals in gangue in reclamation areas.
     (3) Through the analysis of the correlation between heavy metals in the underlayer covering soil and the covering soil thickness, pH, water content, hole degree, organic matter, available potassium, available phosphorus as well as cation exchange capacity, the thesis determined the main factors. Adopting the multiple linear regression, the thesis removed abnormal factors, and it established the influence factor migration models of different heavy metals in the system of gangue and the upper covering soil, such as Cd, Cu, Mn and Pb.
     (4) According to the characteristics of woody plant roots in absorbing and accumulating heavy metals in the soil, the thesis put forward a new sampling scheme in order to study the migration law of heavy metals in the soil-root interface system. The findings could be revealed in the two aspects. On one hand, if the ability of woody plants to absorb and accumulate heavy metals was great, their migration ability was great accordingly, and the migration law followed the cubic curve model along the roots; if the ability of this kind was reduced with roots, their migration ability was gradually weak as well, and the migration law made the transition from a cubic curve model to a linear model. At the same time, the thesis, using the Kriging method, established Kriging models with different profiles at different stages, which had the characteristics of plant accumulation. Through a large number of heavy metal content data in the soil and woody plants, the thesis, using the trend fitting approach, found that the distribution law of heavy metals in the rhizosphere soil-the root zone as well as in the woody plants system followed a cubic curve model:y=a3X3+a2X2+a1x+ao.(5)According to the process during which woody plants absorbed and accumulated heavy metals in the reclamation areas, the thesis, combined with the accumulation mechanism of heavy metals in woody plants, refined the physiological structure characteristics of woody plants. By using the thought about the pharmacokinetic compartment model, it established a two-compartment mathematical model and a three-compartment mathematical model reflecting how woody plants absorbed and accumulated heavy metals, and it built the space-time model about stems as well. They were as follows:
     Two-compartment mathematical model:
     Note: The migration rate of heavy metals (The rate at which heavy metals migrate from the soil to the roots was a constant).
     Note: The content of heavy metals in soil was a fixed value. Three-compartment mathematical model: Space-time model about stems:
     (6) According to the characteristics of woody plant roots in absorbing and accumulating heavy metals in the soil, in terms of methodology, the thesis brought forth a method and system for determination of heavy metals migration trends in soil. Based on the characteristics of the coal mine reclamation areas, it fully and systematically discussed the migration law of heavy metals in the gangue soil-woody plant system, and it, using the thought about pharmacokinetics, established a migration model of heavy metals in the woody plants system theoretically, thus providing ideas and methods for the quantitative study of the migration and accumulation of heavy metals in woody plants system as well as the reasonable selection of the quantitative calculation models.
引文
[1]谢和平我国煤炭科学产能不宜超过38亿t[J].能源技术与管理,2011(6):1
    [2]常静.煤矸石综合利用的探讨[J].科技信息,2011(21):40-41
    [3]王巧妮,陈新生,等.我国采煤塌陷地复垦的现状、问题和原因分析[J].能源环境保护,2008,22(5):49-53.
    [4]吴德富,王本敏.采煤塌陷区环境整治与矿区可持续发展[J].西部探矿工程,2004,96(5):177-178
    [5]林振山,王国祥.矿区塌陷地改造与构造湿地建设—以徐州煤矿矿区塌陷地改造为[J].自然资源学报,2005,20(5):790-795
    [6]周军,张启兵.淮北煤矿区地表塌陷的环境效应及对策[J].能源环境保护,2008,22(5):35-37
    [7]何斌,杜成信.煤矿塌陷区综合整治利用与资源性城市可持续发展[J].煤矿环境保护,2001,15(6):9-11
    [8]李大全.对淮南采煤塌陷区灾害防治与土地综合利用的思考[J]..工程与建设,2008,22(4):451-452
    [9]Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants[J]. Mining Environmental Management,1995(9):4-8.
    [10]蒋德明,黄会一,张春兴,等.木本植物对土壤镉污染物吸收蓄积能力及其种间差异[J].城市环境与城市生态,1992,5(1):26-30.
    [11]董霁红,卞正富,王贺封.矿山充填复垦地重金属含量对比研究[J].中国矿业大学学报,2007,36(4):531-536.
    [12]Szcaepanska J, Twardowska I. Coal mine spoil tips as a large area source of water contamination[A]. Rainbow, ed. Reclamation, treatment and utilization of coal mining wastes. Rotterdam:Balkema,1987(3):267-280
    [13]Panov B S, Dudik A M, Shevchenko O A, et al. On pollution of the biosphere in industrial areas:the example of the donets coal basin[J]. International Journal of Coal Geology, 1999(40):199-210
    [14]崔龙鹏,白建峰,史永红,等.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):898-904
    [15]王心义,杨建,郭慧霞.矿区煤矸石堆放引起的土壤重金属污染研究[J].煤炭学报,2006,31(6):808-812
    [16]张锂,韩国才,陈慧,等.黄土高原煤矿区煤矸石中重金属对土壤污染的研究[J].煤炭学报,2008,33(10):1142-1146
    [17]王卓理,马建华,耿鹏旭,等.平顶山市煤矿塌陷区复垦土壤重金属分布及污染分[J].农业环境科学学报,2009,28(4):668-672
    [18]魏婷婷,陈萍,姚多喜,等.煤矿复垦区土壤肥力状况分析与评价-以新庄孜矿为[J].安徽农业科学,2010,38(18):9694-9695
    [19]YAO Duoxi, MENG Jun, ZHANG Zhiguo. Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area[J]. Journal of Coal Science & Engineering (China),2010,16(3):316-319
    [20]提福晓.煤矸石充填塌陷区对环境的影响分析[J].污染防治技术,1993(1):22-25
    [21]崔龙鹏.淮南煤矿塌陷区煤矸石填充复垦及其对环境的影响[J].安徽地质,1998,8(3):58-61
    [22]律文智.采煤塌陷区水体重金属去除技术研究—以唐山市南部塌陷区为例[D].河北:河北理工大学,2007.
    [23]龙安华,倪才英,宋玉斌.土壤重金属污染的植物修复评价及展望[J].江苏环境科技,2005,18(3):43-45
    [24]Chaneyl R.L. Phytoremediation of soil metals [J]. Current Opinions Biotechnology,1997,8
    [25]Barbara McEwan. Greening Up After Mining[J]. Environment,1982,24(3):40-42
    [26]M.T.Mentla. Diagnoses of the rehabilitation of opencast coal mines on the Highveld of South Africa [J]. South African Journal of Science,1995(5):210-215.
    [27]Dancer W S et al. Nitrogen accumulation in Kaolin mining wastes in corn wall2.Forage legumes [J]. Plant Soil,1997(48):303-314
    [28]李树志,周锦华,张怀新,等编.矿区生态破坏防治技术[M].北京:煤炭工业出版社,1998
    [29]刘国华,舒洪岚.矿区废弃地生态恢复研究进展[J].江西林业科技,2003(2):20-25.
    [30]李晋川,王文英,卢崇恩.安太堡露天煤矿新垦土地植被恢复的探讨[J].河南科学,1999(17):92-95
    [31]苏铁成.矸石山复垦造林树种选择的试验研究[J].林业科技通讯,1998(1):24-26
    [32]王文英,李晋川,卢崇恩,等.矿区废弃地植被重建技术[J].山西农业科学,2002,30(3):82-86
    [33]郑敏.抚顺西露天煤矿山地质环境治理项目调查研究[J].地质技术经济管理,2004,26(6):50-55
    [34]丁青坡,王秋兵,魏忠义,等.抚顺矿区不同复垦年限土壤的养分及有机碳特性研究[J].土壤通报,2007,38(4):262-267
    [35]徐双民.神府东胜煤矿沉陷区沙棘生态修复试验[J].国际沙棘研究与开发,2007,5(3):8-10
    [36]黄山,郭传友,石常友,等.淮北煤矿废弃地自然定居植物及其对生态系统的影响[J].淮北煤炭师范学院学报(自然科学版),2007,28(3):43-47
    [37]王新,吴燕玉,梁仁禄,等.各种改性剂对重金属迁移积累影响的研究[J].应用生态学报,1994,5(1):89-941
    [38]Lepp NW. Effects of heavy metal pollution plants.London[J]. Applied Science publishers, 1981:25-29
    [39]余国营.不同形态Cd及其与Zn的相互作用对小麦生长发育的影响[J].生态学报,1992,12(1):92-96
    [40]吴雁华.京南地区土壤重金属污染特征与杨树修复效应[D].中国地质大学(北京),2005.5
    [41]Punshon T, Lepp N W, Dickinson N M. Resistance to copper toxicity in some British willows[J]. Journal of Geochemical Exploration,1995,52:259-266
    [42]Pulford ID, Watson C. Phytoremediation of heavy metal-contaminated land by trees-a review[J]. Environment International,2003,29:529-540
    [43]Granel T, Robinson B, Mills T, et al. Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation[J]. Australian Journal of Soil Research,2002, 40(8):1331-1337
    [44]Hammer D,Kayser A.Keller C.Phytoextraction of Cd and Zn with Salix viminalis in field trials[J]. Soil Use and Management,2003,19(3):187-192
    [45]Cobbett C. Heavy metals and plants-model systems and hyperaccumulators[J]. New Phytologist,2003,159 (2):289-293
    [46]Samecka-Cymerman A, Stepien D, Kempers A J. Efficiency in removing pollutants by constructed wetland purification systems in Poland[J]. Journal of Toxicology and Environmental Health. Part A,2004,67(4):265-275
    [47]Laureysens I, Temmerman L D, Hastir T, et al. Clonal variation in heavy metal accumulation andbiomass production in a poplar coppice culture. Ⅱ. Vertical distribution and phytoextraction potential[J]. Environmental Pollution,2005,133(3):541-551
    [48]Tlustos P, Szakova J, Vyslouiilova M, et al. Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils[J]. Central European Journal of Biology,2007,2(2):254-275
    [49]Kuzovkina YA, Quigley MF. Willows beyond wetlands:uses of Salix L. species for environmental projects[J]. Water, Air, and Soil Pollution,2005(162):183-204
    [50]Zalesny JA, Zalesny Jr.RS, Coyle DR, et al. Growth and biomass of Populus irrigated with landfill leachate[J]. Forest Ecology and Management.2007,248(3):143-152
    [51]Zalesny JA, Zalesny Jr.RS, Wiese AH, et al. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection[J]. International Journal of Phytoremediation,2007,9(6):513-530
    [52]Zalesny Jr.RS, Bauer EO. Selecting and utilizing Populus and Salix for landfill covers:Implications for leachate irrigation[J]. International Journal of Phytoremediation,2007,9(6): 497-511
    [53]Weih M and Nordh N. Characterising willows for biomass and phytoremediation:growth, nitrogen and water use of 14 willow clones under different irrigation and fertilization regimes[J]. Biomass and Bioenergy,2002,23(6):397-413
    [54]Mirck J, Isebrands JG, Verwijst T, et al. Development of short-rotation willow coppice systems for environmental purposes in Sweden[J]. Biomass and Bioenergy,2005,28:219-228
    [55]Laureysens I, Blust R, Temmerman L D, et al. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture:Ⅰ. Seasonal variation in leaf, wood and bark concentrations[J]. Environmental Pollution,2004,131(3):485-494
    [56]余国营,吴燕玉,王新.杨树落叶前后重金属元素内外迁移循环规律研究[J].应用生态学报,1996,7(2):201-208
    [57]刘云国,李欣,徐敏,等.土壤重金属镉污染的植物修复与土壤酶活性[J].湖南大学学报(自然科学版),2002,29(4):108-113
    [58]陈岩松,吴若菁,庄捷,等.木本植物重金属毒害及抗性机理[J].福建林业科技,2007,34(1):50-55
    [59]高晋华.土壤重金属污染的植物修复技术[J].科技情报开发与经济,1999(6):64-65
    [60]郭艳丽,台培东,冯倩,等.沈阳张士灌区常见木本植物镉积累特征[J].安徽农业科学,2009,37(7):3205-3207
    [61]李雄,徐迪民,赵由才,等.生活垃圾填埋场封场后种植植物中重金属迁移研究[J].环境污染与防治,2006,28(9):641-670
    [62]王庆仁,刘秀梅,董艺婷,等.典型重工业区与污灌区植物的重金属污染状况及特[J].农业环境保护,2002,21(2):115-118
    [63]童方平,龙应忠,杨勿享,等.锑矿区构树富集重金属的特性研究[J].中国农学通报2010,26(14):328-331
    [64]栾以玲,姜志林,吴永刚.栖霞山矿区植物对重金属元素富集能力的探讨[J].南京林业大学学报(自然科学版),2008,32(6):69-72
    [65]Lasat MM. Phytoextraction of metals from contaminated soil:a review of plant/soil/metal interaction and assessment of pertinent agronomic issues[J]. Journal of Hazadous Substance Research,2000,2(5):1-22.
    [66]骆永明.金属污染土壤的植物修复[J].土壤,1999(5):261-26
    [67]Baker AJM. Metal tolerance [J]. New Phytol.1987,106(suppl):93-111
    [68]Meharg AA, Macnair MR. Suppression of the high affinity phosphate up-take system: mechanism of tolerance in Holcus Ianatus L [J]. J Exp Bot.1992,43:529-527
    [69]Dai Lingfen, Gao Hong, Xia Jianrong. Tolerance to heavy metal Cd and detoxification of Synechococcus cedrorum [J]. Chin J Appl Environ Biol.1998,4(3):192-195
    [70]Nies DH, Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zine and cobalt in Alcaligences eutrophus [J]. J Bacteriol.1989,171:896-900
    [71]Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant and Soil.1987,101:15-20
    [72]Yang Jurong, Bao Ziping, Zhang Suqin. The distribution and binding of Cd and Pb in plant cell. China Environmental Science.1993,13(4):263-268
    [73]Grill E, Winnacker EL, Zenk MH. Phytochelints:The principal heavy metal complexing peptides of higher plants [J]. Science.1985(230):674-676
    [74]林琦.重金属污染十壤植物修复的根际机理[D].浙江大学,2002.5.1
    [75]Lasat M.M., Baker A.J.M and Kochian L.V. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumuiator and nonaccumulator species of Thlaspi [J]. Plant Pysiology.1996(112):1715-1722
    [76]Baker A.J.M. Reeves R.D. and Hajar A.S.M. Heavy metala ccumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens.J. & C. Presl (Brassicaceae) [J]. New Phytologist,1994,127:61-68
    [77]Salt D.E. and Kramer U. Mechanisms of metal hyperaccumulation in plants. In: Phytoremediation of toxic metals:Using plants to clear up the environment. Raskin H, and Ensley B.D.(eds) [J]. John Wiley & Sons. Inc.2000:231-246
    [78]Gabbrielli R., Mattioni C. and Vergnano O. Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator[J]. J. Plant Nutr.,1991(14):1067-1080
    [79]Myrna J. Simpson.Philippe C. E. Johnson. Identification of mobile aliphatic serptive domains in soil humin by solid state 13C nuclear magnetic resonance Environmental[J]. Toxicology and Chemistry,200625(1):52-57
    [80]Sun Hongwei, Zhou Zunlong. Impacts of charcoal characteristics on sorption of Polycycfic aromatic hydrocarbons[J]. Chemosphere,2008
    [81]Pan Bo, Xing Baoshan, et al. Effect of physical forms of soil organic matter on phenanthrene sorption[J]. Chemosphere,2007(68):1262-1269
    [82]吴双桃,吴晓芙,胡曰利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-160
    [83]陈文德,贤伟,彭培好.马尾松林对土壤重金属的修复进程[J].林业科学,2008,44(5):6-10
    [84]Keller A, Von Steiger B, Van der S E A T M, et al. A stochastic empirical model for regional heavy-metal balances in agroecosystems [J]. J. Enciron. Qual.2001(30):1976-1989
    [85]Steven N. Whiting, Martin R. Broadley, P hilip J. White. Applying a solute transfer model to phytoextraaction:Zinc acquistition by Thlaspi caerulescens [J]. Plant and Soil.2003(249):45-46
    [86]T. Sterckemanl, J. Perriguey、M. Cael, C. Schwartz, et al. Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: Consequences for the assessment of the soil quanlity and capacity factors [J]. Plant and Soil.2004(262):289-302
    [87]LI Fa-yun, FU Bao-rong, WANG Xiao-ju. Cadmium and Zinc Transfer from soil to Plant: Potential Use of Two Mathmatical Models [J]. Journal of Liaoning University (Natural Sciences Edition).2004,31(3):193-198
    [88]李海华,张杰.重金属铅在农田生态系统中的富集迁移模型研究[A].全国铅污染监测与控制治理技术交流研讨会,2006:268-271
    [89]何凤,李瑞敏,王轶,等.河南黄淮平原土壤-小麦系统中重金属Cr响应关系研究[J].地球与环境.2008,36(4):309-314
    [90]陈文德,李贤伟,彭培好.马尾松林对土壤重金属的修复进程[J].林业科学,2008,44(5):6-10.
    [91]周海红,张志杰,王士龙.重金属在农田生态系统中迁移的建模研究.农业环境保护,2001,20(5):315-318
    [92]淮南市地名委员会办公室.淮南市民手册[Z].2007.
    [93]李月林,查良松.淮南煤矿塌陷区生态恢复研究[J].资源开发与市场,2008,24(10):899-901
    [94]阎伍玖.淮南采煤塌陷区环境综合整治分析[J].中国煤炭,2007,33(6):26-29
    [95]朱志勇.淮南市潘集采煤塌陷区生态恢复和土地资源保护[J].安徽农业科学,2005,33(4):695-696
    [96]Yu X, Gu J. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees[J]. Ecotoxicology,2007,17(3):143-152
    [97]张治国,姚多喜,郑永红.煤矿塌陷复垦区6种菊科植物土壤重金属污染修复潜力研究[J].煤炭学报,2010,35(10):1742-1747
    [98]徐良骥,严家平,高永梅.煤矿塌陷区覆土造地综合研究—以新庄孜矿为例[J].煤田地质与勘探,2007,35(1):56-58
    [99]Forstner U.Lecture Notes in Earth Sciences [M].Berlin:Springer Verlag,1989,107-109
    [100]Hakanson L.An ecological risk index for aquatic pollution control- A sediment ecological approach[J]. Water Research,1980,14:975-1000
    [101]Quevauviller P. Operationally-defined extraction procedures for soil and sediment analysis. Part3:New CRMs for trace-element exnaetable contents [J]. TrAC Trends in Analytical Chemistry,2002,21(11):774-785
    [102]Zhang MK, He ZL, Calvert D v, et al. Extractability and Mobility of Copper and Zinc Accumulated in Sandy Soils [J]. Pedosphere,2006,16(1):43-49
    [103]Mertens J, Vervaeke P, Meers E, et al. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment[J]. Environ. Sci. Technol.,2006,40(6):1962-1968
    [104]Utmazian MNDS, Wenzel WW. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils[J]. Journal of Plant Nutrition and Soil Science,2007,170(2):265-272
    [105]Vandecasteele B, Meers E, Vervaeke P, et al. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contramination levels[J]. Chemosphere, 2005(58):995-1002
    [106]Vandecasteele B, Quataert P and Tack FMG. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea[J]. Environmental Pollution, 2005,135(2):303-312
    [107]邵群.新庄孜矿塌陷区煤矸石中重金属迁移对覆土影响[J].煤田地质与勘探,2007,35(6):34-36
    [108]蔡峰,刘泽功,林柏泉,等.淮南矿区煤矸石中微量元素的研究[J].煤炭学报,2008,33(8):892-897
    [109]李松,崔龙鹏,胡友彪,等.煤矸石中有害微量元素的静态淋溶试验研究[J].上海环境科学,2004,23(5):193-197
    [110]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.7
    [111]戴树桂,刘小琴,徐鹤.土壤的植物修复技术进展[J].上海环境科学,1998,17(9):25-27
    [112]王校常,施卫明,曹志洪.重金属的植物修复一绿色清洁的污染治理技术[J].核农学报,2000,14(5):315-320
    [113]黄长干,张莉,余丽萍,等.德兴铜矿铜污染状况调查及植物修复研究[J].江西农业大学学报,2004,26(4):629-632
    [114]Rossell W, Keller C, Boschi K. Phytoextraction capacity of trees growing on metals contaminated soil[J]. Plant and soil,2003(256):265-272
    [115]SELL J, KAYSER A, SCHULIN R, et al. Contribution of ectomycorrgizal fungi to cadmium outake of poplars and willows from heavyily pollutied soil [J]. Plant and Soil,2005, 277:245-253.
    [116]MALAJ, MACHOVAP, CVRCKOVA H, et al. Aspen micropropagation:use for pytoremedation of soils [J]. Journal of Fprest Science,2006,52(3):101-107
    [117]蒋德明,黄会一,张春兴,等.木本植物对土壤镉污染物吸收蓄积能力及其种间差异[J].城市环境与城市生态,1992,5(1):26-30
    [118]龙新宪.东南景天对锌的耐性和超积累机制研究[D].浙江大学博士学位论文,2002,5.
    [119]M. N. Kuznetsov, S. M. Motyleva,et al.Zeolite Effect on Heavy Metal Content in Grey Forest Soil in Conditions of Technogenic Pollutionl[J]. Russian Agricultural Sciences,2009,35(3): 179-181
    [120]G. Brunetti, P. Soler-Rovira, et al. Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy[J]. Plant Soil, 2009(318):285-298.
    [121]S.G. Doroshkevich, A.B. Badmaev. Accumulation of Heavy Metals in the Soil-Plant SystemUnder the Application of Increasing Doses of Sewage Sediments[J]. Contemporary Problems of Ecology,2008,3(1)
    [122]J. Pandey, Usha Pandey.Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India [J].Environ Monit Assess,2009,148:61-74
    [123]宋巧书,吴欢,黄胜勇.重金属在土壤-农作物中的迁移转化规律研究[J].广西师范学报,1999,16:86-91
    [124]Lombi E., Zhao F.J., Dunham S.J.,et al. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist,2000,145:11-20
    [125]戴树桂.环境化学[M].北京:高等教育出版社,2006
    [126]陈英旭,陈新才,于明革.土壤重金属的植物污染化学研究进展[J].环境污染与防治,2009,31(12):42-47
    [127]Nelson A T. Use of Biominitoring of Control Toxics in the US, EPA/600/R-3-157 Fish hysiology, Toxicology, and Water Quality Management[J]. Processings of all International Symposium Sacramento, California,USA, Sep.1993:18-19
    [128]McCarty, L.S.,and D. Mackay. Enhancing ecotoxicological odeling and assessment, body residues and modes ofaction[J]. Environmental Science and Technology,1993(7):1719-1728
    [129]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004
    [130]Hardiman R. t Jacoby B., Banin A. Factors affecting the distribution ofcadmium, copper and lead and their effect upon yield and zinc content in bush beans (Phaseolus vulgafis L.) [J]. Plant Soil,1984,81:17-27
    [131]Pierzynski, G M., Sims, et al. Soils and environ-mental quality[M]. CRC press,2005.
    [132]田毅,张玉龙.过磷酸钙对土壤中铅的形态及其生物有效性的影响[J].沈阳农业大学学报,2007,38(3):327-330
    [133]余贵芬,蒋新,孙磊等.有机物质对土壤镉有效性的影响研究综述[J].生态学,2002,22(5):770-775
    [134]郑明霞,黄斌,陈明等.土壤中铬对油菜生物有效性的研究[J].有色金属,2007,59(2):95-99
    [135]柴世伟,温琰茂,张云霓等.广州市郊区农业土壤重金属生物有效性[J].城市环境与城市生态,2003,16(6):123-125
    [136]Brues DJ, De Gruikter JJ, Walvcort DJJ, et al. Mapping the Probaility of Exceeding Critical Threshold for Cadmium Concentrations in Soils in the Netherlands [J]. J Environ Qual, 2002,31(6):1875-1884
    [137]Cahoon LB, Ensign SH, Spatial and Temporal Variability in Excessive Soil Phosphorus Levels in Eastern North Carolina [J].Nutr Cycl Agroecosyst,2004,69(2):111-125
    [138]Holmgren GGS, Meyer MW, Chaney RL, et al..Cadmium, lead, Zinc, Copper and Nickel in Agricultural Soils of the United States of America [J].J Environ Qual,1993,22(2):335-348
    [139]Lark RM, Ferguson RB. Mapping Risk of Soil Nutrient Deficiency or Excess by Disjuctive and Indicator Kriging [J].Geoderma,2004,118(1):39-53
    [140]White JG, Welch RM, Norvell WA. Soil zinc map of the USA using geostatistics and geographic information systems [J].Soil Sci Soc Am J,1997,61(1):185-194
    [141]Chen Fusheng, Zeng Dehui, Chen Guangsheng. Effect of Land Use Change on Spatial Distribution Pattern of Soil Total Nitrogen in Keerqin Sandy Land [J]. Chin J Appl Ecol,2004, 15(6):953-957
    [142]Hu Kelin, Zhang Fengrong, Lu Yizhong, et al. Spatial Distribution of Concentrations of Soil Heavy Metals in Daxing County, Beijing [J]. Acta Sci Circ,2004,24(3):463-468
    [143]Guo Xudong, Fu Bojie,Ma Keming, et al. Spatial Variability of Soil Nutrients Based on Geostatistics Combined with GIS—A case Study in Zunhua City of Hebei Province [J]. Chin J Appl Ecol,2000,11(4):557-563
    [144]Jiang Yong, Zhang Yuge, Liang Wenju, et al. Spatial Variability of Soil Nutrients in Cultivated Surface Soil of Sujiatun District, Shenyang City [J]. Chin J Appl Ecol,2003,14(10): 1673-1676
    [145]Liang WJ, Li Q, Jiang Y, et al. The effect of cultivation on the spatial distribution of nematode trophic groups in black soil [J]. Pedosphere,2003,13(2):97-102
    [146]Meul M, Van Meirvenne M. Kriging soil texture under different types of nonstationarity [J]. Geoderma,2003,112(3):217-233
    [147]Wu J, Norvell WA, Hopkins DG, et al. Improved prediction and mapping of soil copper by kriging with auxiliary data for cation exchange capacity [J]. Soil Sci Soc Am J,2003,67(3): 919-927
    [148]Andronikov SV, Davidson DA, Spiers RB. Variability in contamination by heavy metals: Sampling implication [J]. Water Air Soil Poll,2000,120(1):29-45
    [149]Cattle J A, McBrantney A B, Minasny B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination [J]. Journal of Environmental Quality,2002,31: 1576-158
    [150]Paz-Gonzalez A, Castro M T T, Vieira S R. Geostatistical analysis of heavy metal in a one hectare plot under natural vegetation in a serpentine area [J]. Canadian Journal of Soil Science, 2002,81(3):469-479
    [151]Goovaerts P, Webster R, Dubois J P. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics [J]. Environmental and Ecological Statistics,1997(4): 31-48-
    [152]Juang K,Chen Y, Lee D. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils [J]. Environmental Pollution,2004(127):229-238
    [153]李毅,于文焰,潘渝,等.覆膜与不覆膜条件下的地温场特性研究[J].水土保持学报,2002,16(S1):121-124
    [154]李毅,刘建军.土壤空间变异性研究方法[J].石河子大学学报:自然科学版,2000(4):75-81
    [155]龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15·
    [156]白红军,余国营,王国平.地统计学在湿地土壤养分空间异质性研究中的应用[J].农业环境保护,2001,20(5):311-314
    [157]朱益玲,刘洪斌,江希流.江津市紫色土中N、P养分元素区域空间变异性研究[J].环境科学,2004,25(1):138-143
    [158]刘付程,史学正,潘贤章,等.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学,2003,23(1):77-81
    [159]苏伟,聂宜民,胡晓洁,等.农田土壤微量元素的空间变异及Kriging估值[J].华中农业大学学报,2004,23(2):222-226·
    [160]赵玉杰,师荣光,白志鹏,等.山东淄博玉米产区土壤坤含量空间变异研究[J].环境科学,2006(8):207-212·
    [161]雷天赐,黄圭成,雷义均,等.地质统计学在湖南省鼓锣坪Cu、Pb、Zn元素空间分布格局研究中的应用[J].桂林理工大学学报,2010,30(4):501-506
    [162]郭旭东,傅伯杰,马克明,等.基于G1S和地统计学的土壤养分空间变异性特征研[J].应用生态学,2000,11(4):557-563
    [163]樊燕,武伟,刘洪斌.土壤重金属与土壤理化性质的空间变异及研究[J].西南师范大学学报(自然科学版),2007,32(4):58-63
    [164]姜勇,李琪,张晓珂,等.利用辅助变量对污染土壤锌分布的克里格估值[J].应用生态学报,2006,17(1):97-101
    [165]王卫光,薛绪掌,耿伟.河套灌区地下水位的空间变异性及其克里格估值[J].灌溉排水学报,2007,26(1):18-21
    [166]张旭臣,卢全海.空问变异函数的数学模型及参数反演[J].科学技术与工程,2010,18(10):4370-4375
    [167]Fayiga A.A rsenic Up take by Two Hyperaccumulator Ferns from Four A resenic Contaminated Soil [J]. Water, Air and soil Pollution,2005,168(14):71-89.
    [168]魏树,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72
    [169]H.马斯纳.高等植物的矿质营养[M].北京农业大学出版社,1991
    [170]吴启堂.一个定量植物吸收土壤重金属的原理模型[J].土壤学报,1994,31(1):68-76
    [171]姜启源.数学模型第3版[M].高等教育出版社(北京),2003,08.
    [172]Barbara McEwan.Greening Up After Mining[J]. Environment,1982,24(3):40-42
    [173]M.T.Mentla.Diagnoses of the rehabilitation of opencast coal mines on the Highveld of South Africa[J]. South African Journal of Science.1995,5
    [174]Schoenmuth BW, Pestemer W.Dendroremediation of trinitrotoluene (TNT).Part 1: Literature overview and research concept [J]. Environ. Sci. Pollut. Res.2004,11(4):273-278
    [175]Wenzel WW,Kirchbaumer N,Prohaska T.et al.Arsenic fractionation in soils:using an improved sequential extraction procedure [J]. Analytica Chimica Acta,2001,436(2):309-323
    [176]Blaser P, Zimmermann S, Luster J.et al.Critical examination of trace element enrichments and depletions in soils: As,Cr,Cu,Ni,Pb,and Zn Swiss forest soils [J]. The Science of the Total Envionment,2000,249(1-3):257-280
    [177]Wagner G, Lischer P, Theocharopoulos S.et al.Quantitave evaluation of the CEEM soil sampling intercomparison [J].The Science of the Total Environment,2001,264(1-2):73-101
    [178]Tsakou A, Roulia M, Christodoulakis NS.Growth parameters and heavy metal accumulation in poplar tree culture utilizing water and sludge from a sewage treatment plant[J]. Bulletin of Environmental Contamination and Toxicology,2003,71:330-337
    [179]Ye Z H, Shu W S, Zhang Z Q.et al.Evaluation of major constrain on vegetation of lead/zinc mine tailings using bioassay techniques [J]. Chemosphere,2002,47:1103-1111
    [180]Kramer U, Chardonnens AN.The use of transgenic plants in the bioremediation of soils contaminated with trace elements.Appli.Microbiol.Biotechnol [J].2001(55):66-72
    [181]莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护.2002,21(1):9-12
    [182]刘晓丽,梁冰,薛强.地下水环境中有机污染物迁移转化动力学模型的研[J].工程勘测,2003(1):24-28
    [183]薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,11(1):90-93
    [184]李韵珠,李保国.土壤溶质运移[M].北京科学出版社,1998
    [185]Xue Qiang, Liang Bing, Wang Huiyun, et al. Effects of trace elements leaching from coal mine spoil on soil water environment pollution[J]. Journal of Trace Elements in Biology and Medicine,2006,20(2):97-104
    [186]Bhuiyan M, Parvez L, Islam M A, et al. Heavy metal pollution of coal mine affected agricultural soils in the northern part of Bangladesh [J]. Journal of Hazardous Materials,2010, 173(1-3):384-392
    [187]Hajiboland R. An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium [J]. Plant Soil Environ.,2005.,51(4):156-164
    [188]Pierzynski GM, Schnoor JL, Youngman A.et al. Poplar trees for phytostabilization f abandoned zinc-lead smelter [J]. Pract. Periodical of Haz, Toxic, and Radioactive Waste Mgmt., 2002,6(3):177-183
    [189]孙长安,尹忠东,周心澄.煤矸石山重金属元素研究进展[J].中国水土保持科学,2006,4(suup):91-94
    [190]Vandecasteele B, Meers E, Vervaeke P.et al. Growth and trace metal accumulation of two salix clones on sediment-derived soils with increasing contamination levels [J].Chemosphere, 2005,58(8):995-1002
    [191]Salati S, Quadri G Tambone F, et al. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil [J]. Environmental Pollution, 2010,158(5):1899-1906
    [192]Jinxiang YANG, Mingxu ZHANG, Duoxi YAO Liangmin, etl. Construction of Heavy Metal Accumulation Model in Soil-woody Plants System[A].2011 International Symposium on Water Resource and Environmental Protection.2011,5:1664-1666
    [193]BiasioliM, Grcman H, Kralj T, et al. Potentially toxic elements contamination in urban soils:a comparison of three European cities [J]. Journal of Environmental Quality,2007(36):70-79
    [194]Meers S, Van Slycken S, Adriaensen K, et al. THe use of bio-energy crops(Zea mays)for' phytoattenuation' of heavy metals on moderately contaminated soils: A field experiment[J]. Chemosphere,2010,78(1):35-41
    [195]Lee C S, Moon J S, Cho Y C. Effects of soil amelioration and tree planting on restoration of and air-pollution damaged forest in South Korea [J]. Water, Air & Soil Pollution,2007,179: 239-254
    [196]Jinxiang YANG, Mingxu ZHANG. Migration law of heavy metals in coal gangue. Advances in Intelligent and Soft Computing [J],2011, Vol.106:675-678
    [197]Sastre J, Sahuquillo A, Vidal M,et al., Determination of Cd, Cu, Pb and Zn in environmental samples:microwave-assisted total digestion versus aqua regia and nitric acid extraction [J]. Analytica Chimica Acta,2002,462:59-72
    [198]阮心玲,张甘霖,赵玉国,等.基于高密度采样的土壤重金属分布特征及迁移速率[J].环境科学,2006,27(5):1021-1025
    [199]Browning L, MurphyW M, Manepally C. Reactive transportmodel for the ambient unsaturated hydro-geochemical system atYuccaMountain Nevada [J]. Computers and Geosciences, 2003,29(3):247-263.
    [200]隋红建,吴璇,崔岩山.十壤重金属迁移模拟研究的现状与展望[J].农业工程学报,2006,22(6):197-200
    [201]http://www.yp900.com/ypbw/lcyx/ypbw-1302-996009F2374006606F4C0B0FDA878A. htm
    [202]谢凯锋.基于Excel软件的三室模型药物静脉滴注个体给药方案设计[D].广东药学院,2010,4
    [203]http://www.med66.com/new/11a146a2009/20091124qiji133248.shtml
    [201]Liu B C, Liu W. Study ofheatandmoisture transfer in soilwith a dry surface layer [J]. International Journal of Heat and MassTransfer,2005,48(22):4579-4589
    [202]Selvaraju N, Pushpavanam S. Adsorption characteristics on sand and brick beds [J]. ChemicalEngineering Journal,2009,47(3):130-138
    [203]Jinxiang YANG, Mingxu ZHANG. Research on Effect of Woody Plants Remediation Heavy Metal [J]. Advances in Intelligent and Soft Computing,2011, Vol.106:679-683
    [204]李宏艳,王金生,滕彦国,等.土壤中重金属迁移数值仿真与参数灵敏度分析[J].系统仿真学报,2007,19(4):720-724
    [205]徐伟,杨京平,王米,等.利用Vensim建立水稻田氮素迁移动态模拟模型及其验证分析[J].浙江大学学报(农业与生命科学版),2008,34(6):649-654
    [206]陈威,杨亦霖,张爱国,等.非饱和土壤中重金属污染物迁移机理分析[J].安徽大学学报(自然科学版),2010,34(5):98-103
    [207]赵颖,梁冰,薛强,等.土壤水环境中污染物运移双点吸附解吸动力学模型[J].岩土力学,2007,28(12):2574-2577
    [208]梁冰,赵颖,薛强,等.土壤中污染物迁移转化规律的数值模拟研究[J].岩土力学,2008,29(9):2373-2377
    [209]何用,李义天.重金属迁移转化模型研究[J].水科学进展,2004,15(5):576-583
    [210]周海红,张志杰,王士龙.重金属在农田生态系统中迁移的建模研究[J].农业环境保护,2001,20(5):315-318
    [211]董霁红,卞正富,于敏,等.矿区充填复垦土壤重金属分布特征研究[J].中国矿业大学学报,2010,39(3):335-340
    [212]胡舸,王维.土壤污染物运移轨迹模拟研究[J].环境化学,2010,29(4):574-577
    [213]高彬,王海燕.土壤Cd、Zn活度模型及其控制相研究[J].广西林业科学,2003,32(3):125-128
    [214]Salt D E, Kramaer U. MeChanisms of metal hyper-accmulation Plants In. RaskinH and Ensle B D.Phyto-remediation of toxic metals [J].Using planis to clear up the environment, Johe wiley & Sons.Inc.2000.231-246
    [215]马伟芳.植物修复重金属-有机物复合污染河道疏浚底泥的研究[D].天津大学,2006:81-82
    [216]张渭滨.数学物理方程[M].清华大学出版社(第1版),2007
    [217]黄熙泰,于自然,李翠凤.现代生物化学[M].化学工业出版社(第2版),2005
    [218]曹裕松,李志安,邹碧.根际环境的调节与重金属污染土壤的修复[J].生态环境,2003,12(4):493-.497
    [219]Hu Liming, LoM C, Meegoda JN, NumericalAnalysis and CentrifugeModeling of LNAPLs Transport in Subsurface System [J]. Progress inNaturalScience,2006,16(4):416-424
    [220]SogaK, Kawabata J, KechavarziC et al., Centrifuge Modeling of Nonaqueous Phase Liquid Movement and Entrapment in Unsaturated Layered Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(2):173-182
    [221]YANG Jin-xiang, ZHANG Zhi-guo, CHEN Yongchun,etl. The Study on Soil Improvement by Greening Tree Species in Coal Mine Reclamation Area, Proceedings of the 3RD International Conference on Environmental Technology and Knowledge Transfer,2010.5:221-224
    [222]冯效毅,滕洁,刘春阳.污染物在土壤中运移模型的研究进展[J].环境检测管理与技术,2006,18(3):30-34
    [223]叶常明.农药在土壤中归趋模型的研究进展[J].环境化学,2005,24(1):1-5
    [224]李洪,李鑫钢,黄国强,等.降雨蒸发条件下渗流区污染物迁移的数值模拟[J].化学工程,2007,35(9):51-54
    [225]林治庆,黄会一.木本植物对汞耐性的研究[J].生态学报,1989,9(4):315-319
    [226]刘晓丽,梁冰,薛强.地下水环境中有机污染物迁移转化动力学模型的研究[J].工程勘察,2003(1):24-28
    [227]李景印,高太忠,郭玉凤.磁河有机污染物在饱和土壤中迁移转化试验研究[J].环境科学研究,2002,3(15):49-52
    [228]宋新山,吴应琳,陈栋.基于MATLAB的对流弥散方程的不稳定源解[J].环境科学与技术,2008,11(31):31-34
    [229]傅晓良.污染物质在土壤中传输的研究[D].浙江大学博士论文,2004,78-145
    [230]薛强,王惠芸,梁冰.煤研石淋溶重金属运移过程的水动力学模型及应用[J].辽宁工程技术大学学报,2005,24(5):763-766
    [231]Ji Pu-hui, SunTie-heng, Song Yu-fang, et al. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L [J]. Environmental Pollution,2011,159(3):762-768
    [232]Giacheai G, Sebastiani L. Metal accumulation in poplar plant grown with industdal wastes [J]. Chemosphere.2006,64(3):446-454
    [233]Nabulo G, Oryem-origa H, Diamond M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda [J]. Environmental Research,2006,101(1):42-52
    [234]Mirza N, Mahmood O, Pervez A, et al. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater [J]. Bioresource Technology,2010,101(15):5815-5819
    [235]Gupta AK, Sinha S. Chemical fraetionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var TSS grown Oil soil amended with tannery sludge:Selection of single extractonts [J]. Chemosphcre,2006,64(1):161-173
    [236]Kumar SR, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India [J]. Eeotoxicology and Environmental Safety,2007,66(2): 258-266
    [237]Tymchyshyn M. Xu Chun-ban. Liquefaction of biomass in hot-compressed water for the production ofphenolic compounds [J]. Bioresource Technology,2010,101(7):2483-2490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700