用户名: 密码: 验证码:
基于单一技术及多信息融合技术的猪肉新鲜度无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足消费者在肉品质量和安全方面的要求,对肉品新鲜度进行快速准确检测有着重要意义。反映肉品新鲜度的指标是多方面的,感官评价和理化检测都难以满足快速在线的检测要求,单一无损检测技术又难以实现全面准确的评价。本课题从变质猪肉中筛选出优势致腐菌,将其回接至新鲜肉样模拟猪肉的变质过程,分析猪肉变质过程中新鲜度指标之间的相关性,寻找最能反映新鲜度的指标,并利用近红外光谱技术,高光谱成像技术以及融合近红外光谱、计算机视觉和电子鼻三种技术对猪肉新鲜度进行无损检测,实现猪肉新鲜度的综合准确评价。主要研究内容如下:
     1.猪肉优势致腐菌的筛选测定。微生物是引起肉品腐败变质的主要原因。试验从变质猪肉中优选得到5株优势致腐菌,结合形态、生理生化特征及16S rRNA分子鉴定方法,将其分别鉴定为Bacillus fusiformis J4、 Acinetobacter guillouiae P3、Enterobacter cloacae P5、Pseudomonas koreensis PS1和Brochothrix thermosphacta S5。进一步以TVB-N产量因子YTVB-N/CFU为指标定量分析各优势致腐菌的致腐能力。研究表明P.koreensis PS1对冷却猪肉致腐能力较强,B. fusiformis J4和B.thermosphacta S5致腐能力次之,而A.guillouiae P3和E. cloacae P5致腐能力较弱。通过把这些优势致腐菌定量回接至新鲜肉样,以模拟猪肉的变质过程,为后续无损检测研究提供建模所需要的样本。
     2.新鲜度指标之间的相关性分析。新鲜度是反映肉品品质安全的重要参数,新鲜度的评价具有多个指标。为了寻找最能反映新鲜度的指标,试验将优势致腐菌P. koreensis PS1回接新鲜肉样并于4℃贮藏,定期取样通过感官评价、理化方法和微生物学方法检测反映肉品新鲜度的多个指标,并对新鲜度指标之间的相关性进行分析。结果表明,TVB-N在猪肉变质过程中变化较为明显,并且,TVB-N与总糖、蛋白质、感官评分、弹性、回复性和粘聚性等其它新鲜度指标之间均存在较强的相关性(P<0.01)。研究结果为寻找合适的无损检测技术进行肉品新鲜度的快速准确评价提供依据。
     3.猪肉变质过程新鲜度的近红外光谱技术的快速检测。近红外光谱是一种能直接反映肉品内部化学组分含量的快速检测技术。试验以不同变质程度的猪肉样本为研究对象,对获取的近红外光谱数据,经光谱分析,TVB-N和其它指标(蛋白质、总糖、总脂肪和细菌总数)在近红外光谱区域均有各自的特定吸收谱峰,其强度随猪肉变质程度而发生明显变化;再利用标准正态变量变换(SNV)进行光谱预处理,采用联合区间偏最小二乘法(siPLS)优选与TVB-N等指标相关的波谱区间,并有比较地运用反向传播神经网络(BP-ANN)和siPLS两种方法分别构建TVB-N等指标预测的定量模型。试验结果表明,利用siPLS方法能够优选出与TVB-N等指标高度特异相关的特征波谱,结合BP-ANN或siPLS模型均能对猪肉变质过程中的TVB-N等指标实现同时定量测定,相互之间无明显影响,且BP-ANN模型对各指标的检测性能均优于siPLS模型。该结果为光谱技术应用于肉品新鲜度的快速检测提供依据。
     4.猪肉变质过程新鲜度的高光谱成像技术的无损检测。高光谱成像技术是一种能获得更大信息量的无损检测新技术。本文仍以TVB-N为猪肉新鲜度评价指标,进行了采用高光谱成像技术手段来评价猪肉新鲜度的试验研究。试验以不同变质程度的猪肉样本为研究对象,对采集的高光谱图像数据,首先提取光谱信息进行处理,采用SNV光谱预处理结合siPLS方法优选出177个光谱特征变量;接着,对图像信息进行分析,有比较地采用主成分分析(PCA)和遗传联合区间偏最小二乘法(GA-siPLS)两种万法从海量的高光谱数据中进行降维处理,分别优选特征波长图像,试验结果表明GA-siPLS优选的5个特征波长图像更能表征肉样的TVB-N含量;然后从每个特征波长图像中提取基于灰度统计矩的6个纹理特征参数,共30个图像特征变量;最后,将177个光谱特征变量、30个图像特征变量以及融合两者信息的207(177+30)个特征变量各自进行主成分分析,分别提取合适的主成分因子与肉样TVB-N含量构建BP-ANN定量模型。研究结果表明,207个特征变量的融合模型要优于177个光谱特征变量的单一信息模型,也优于30个图像特征变量的单一信息模型,该融合模型对训练集中样本的交互验证均方根误差(RMSECV)为1.28mg/100g,决定系数(Rc2)为0.922,对预测集中样本的预测均方根误差(RMSEP)为1.60mg/100g,决定系数(RP2)为0.900。该结果为多信息融合技术综合评价肉品新鲜度提供理论依据。
     5.猪肉变质过程新鲜度的多技术信息融合的综合评价。在采用单项技术的基础上,本文进一步利用多技术信息融合综合检测猪肉变质过程的新鲜度。试验利用近红外光谱、计算机视觉和电子鼻三种技术分别获取反映猪肉样本化学组分、颜色、纹理及气味等的特征信息数据,从各种信息数据中分别提取特征变量并进行特征层数据融合,通过主成分分析提取最佳得分向量作为模式识别的输入数据,运用BP-ANN方法建立新鲜度指标TVB-N含量的定量模型。研究结果表明,任意两种技术信息融合的模型均要优于单一技术信息模型,而基于三种技术(近红外光谱、计算机视觉和电子鼻)信息融合的模型对猪肉变质过程的TVB-N含量预测效果最佳,该模型对训练集中样本的交互验证均方根误差(RMSECV)为1.46mg/100g,决定系数(Rc2)为0.984,对预测集中样本的预测均方根误差(RMSEP)为2.73mg/100g,决定系数(Rp2)为0.953。结果表明,基于近红外光谱、计算机视觉和电子鼻三种技术的信息融合模型综合评价猪肉变质过程中的新鲜度是可行的,其模型检测的准确性和稳定性较单一技术或两种技术信息融合模型均有所提高。研究结果为多信息融合技术应用于猪肉质量安全的综合准确评价提供重要的理论依据。
     本研究为利用多技术信息融合对猪肉新鲜度的综合准确评价提供了思路,对保障肉品质量与安全,维护消费者利益,有着重要的现实意义。
Rapid and accurate measurement of meat freshness is very significant in solving the food quality and safety for consumer sake. There are many indexs in assessing the meat freshness, Sensory evaluation and physical-chemical testing can not meet the requirements of rapid on-line detection, and single nondestructive testing technique is also difficult to achieve accurate comprehensive evaluation of meat freshness. In this work, the spoilage bacteria were isolated from the chilled metamorphic pork, and the fresh pork samples inoculated with the spoilage bacteria were stored to spoilage. Then, the pork freshness indicators were detected, the correlation among the pork freshness indicators was further analyzed during bacteria spoiling process. At the same time, the near infrared (NIR) spectroscopy, hyperspectral imaging, and NIR combined with computer vision (CV) and electronic nose (E-nose) were employed for non-destructive detecting the internal and external characteristic indexes of pork freshness, which achieves the comprehensive accurate evaluation of pork freshness. The main points are summarized as follows:
     1. Isolation and identification of the dominant spoilage bacteria. Microorganism is the main cause of rottenness of meat.5strains dominant spoilage bacteria were isolated from the chilled metamorphic pork, which were identified as Bacillus fusiformis J4, Acinetobacter guillouiae P3, Enterobacter cloacae P5, Pseudomonas koreensis PS1and Brochothrix thermosphacta S5by the morphology, physiology, biochemistry and16S rRNA molecular biology. Then, the yield factor YTVB-N/CFU of the total volatile basic nitrogen (TVB-N) was used as quantitative indicators to assess the spoilage capability of the different spoilage bacteria. The results showed that P. koreensis PS1has the strongest spoilage capability in chilled pork, B. fusiformis J4and B. thermosphacta S5are the stronger spoilage ability, and A. guillouiae P3and E. cloacae P5are the weakest among them. Then, to provide the modeling experimental samples, the fresh pork samples were inoculated with these spoilage bacteria for simulating the pork metamorphic process and for non-destructive detecting of pork freshness in the later experiment.
     2. Analysis on the correlation among the pork freshness indexes during bacterial spoiling process. Freshness is an important parameter for assessing the quality and safety of meat, which its evaluation have many indicators. In order to find the most indicator for reflecting freshness of meat, in the experiment, the fresh pork samples inoculated with P. koreensis PS1were stored in a refrigerator at4℃, the pork freshness indexes were detected by sensory evaluation, physicochemical methods and microbiological methods, and the correlation of these freshness indexes were analyzed during bacterial spoiling process. The results showed that the changes of TVB-N were significant, furthermore, it is significant difference (P<0.01) between TVB-N and total sugar, protein, sensory score, elasticity, resilience and adhesiveness, etc. And some of the appropriate non-destructive technology could be employed to assess pork freshness.
     3. Rapid detection of pork freshness based on NIR during bacterial spoiling process. NIR can directly reflect the TVB-N conternt and can quickly detect the meat freshness. In this experiment, the pork samples of different freshness were used for study target. First, the different indexes have specific spectrum in the NIR region, and spectrum strength changes obviously with the pork spoilage grade. Then, synergy interval partial least squares (siPLS) was performed to select characteristic spectral variables of different indexes (TVB-N, total sugar, total fat, protein, and TVC) in pork based on NIR spectral data preprocessed by standard normal variate (SNV). The back-propagation neural network (BP-ANN) and siPLS were developed comparatively the quantitative models for predicting the different index. The experimental results showed that the optimum characteristic spectra related to each index can be selected by siPLS. The multi-index in pork can be determined simultaneously by BP-ANN or siPLS model during bacterial spoiling process. And the performance of BP-ANN model on the different indexes is better than siPLS model. The BP-ANN model have better prediction results of the indexes of TVB-N, total sugar, total lipid, and protein, which the determination coefficient (Rp2) are all more than0.850, except as TVC (Rp2=0.717). The results shows NIR can rapidly detect the meat freshness.
     4. Non-destructive detection of pork freshness based on hyperspectral imaging technique (HSI) during bacterial spoiling process. In the paper, TVB-N was still as the evaluation index of pork freshness, HSI is an emerging non-destructive technique, which can obtain more information for assessing meat freshness. In this experiment, the hyperspectral image data were collected from the pork samples of different freshness. First,177spectral characteristic variables from the hyperspectral data were selected by SNV preprocessing combined with siPLS. Secondly, the characteristic wavelength images from the hyperspectral data were extracted comparatively using principal component analysis (PCA) and the genetic algorithm-synergy interval partial least squares (GA-siPLS) and5characteristic wavelength images by GA-siPLS are more relevant to TVB-N content in pork than PCA. Next,6statistical parameter based on gray statistical moments were extracted from each characteristic wavelength image, amount to30feature variables form image information. Finally, PCA was implemented on177spectra variables,30image variables and207(177+30) variables based on data-fusion, and the top principal components were extracted for developing the TVB-N prediction model using BP-ANN, respectively. The experimental results showed that the model based on data-fusion is superior to others, which was achieved with RMSECV=1.28mg/100g and Rc2=0.922in the training set, RMSEP=1.60mg/100g and Rp2=0.900in the prediction set.
     5. Comprehensive evaluation of pork freshness based on multiple information fusion technology during bacterial spoiling process. Based on single technique for determinating the meat freshness, the study was further theorized that pork freshness during bacterial spoiling process was comprehensively evaluated by integrating NIR, CV and E-nose technology. In this experiment, the pork samples with different freshness were collected for data acquisition (such as chemical composition, color, texture, and odor, etc.) by three different techniques, respectively. Then, the individual characteristic variables from each sensor data were fused in feature level. Next, PC A was implemented on the individual characteristic variables and different data fusion from3different sensors data, and the top principal components were extracted for developing the TVB-N prediction model with BP-ANN, respectively. The experimental results showed that the model based on data fusion of three technologies (NIR, CV and E-nose) is superior to others, which was achieved with RMSECV=1.46mg/100g and Rc2=0.984in the training set, RMSEP=2.73mg/100g and Rp2=0.953in the prediction set. It is feasible to evaluate comprehensively the freshness during pork spoilage by integrating NIR, CV and E-nose technology through this experiment, and the accuracy and robustness of the model from three sensors information fusion were better than the model from single sensors or two sensors information. The study results offered a reference that multi-sensors information was applied to evaluate comprehensive pork quality and safety.
     This research offers a new idea to detect pork freshness based on muti-technique information fusion, and there is also of great significance in ensuring pork quality and safety, as well as safeguarding consumer interests.
引文
[1]张虹.猪肉小档案[J].饮食科学,2007,(06):26.
    [2]中华人民共和国国家统计局.中国统计年鉴[R].北京:中国统计出版社,2012.
    [3]扈麟.冷却猪肉腐败的细菌群体感应研究[D].湖南农业大学,2010.
    [4]M. Ingram, R. Dainty. Changes caused by microbes in spoilage of meats[J]. Journal of Applied Microbiology,2008,34(1):21-39.
    [5]P. Dalgaard. Qualitative and quantitative characterization of spoilage bacteria from packed fish[J]. International Journal of Food Microbiology,1995,26(3):319-333.
    [6]林亚青,房子舒.猪肉新鲜度检测方法综述[J].肉类研究,2011,25(05):62-65.
    [7]赵杰文,孙永海.现代食品检测技术[M].北京:中国轻工业出版社,2008.
    [8]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社,2007.
    [9]Q. S. Chen, J. W. Zhao, M. H. Liu, et al. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,46(3):568-573.
    [10]L. Huang, J. W. Zhao, Y. H. Zhang, et al. Simultaneous multi-component analysis of pork meat during bacterial spoiling process by FT-NIR evaluated with a non-linear algorithm[J]. Analytical Methods,2012,4(11):3816-3823.
    [11]H. Lin, Q. S. Chen, J. W. Zhao, et al. Determination of free amino acid content in Radix Pseudostellariae using near infrared (NIR) spectroscopy and different multivariate calibrations[J]. Journal of Pharmaceutical and Biomedical Analysis,2009,50(5):803-808.
    [12]N. Prieto, R. Roehe, P. Lavin, et al. Application of near infrared reflectance spectroscopy to predict meat and meat products quality:A review[J]. Meat Science,2009,83(2):175-186.
    [13]B. M. Nicolai, K. Beullens, E. Bobelyn, et al. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy:A review[J]. Postharvest Biology and Technology, 2007,46(2):99-118.
    [14]M. Blanco, I. Villarroya. NIR spectroscopy:a rapid-response analytical tool[J]. TrAC Trends in Analytical Chemistry,2002,21(4):240-250.
    [15]刘炜,俞湘麟,孙东东,等.傅立叶变换近红外光谱法快速检测鲜猪肉中肌内脂肪、蛋白质和水分含量[J].养猪,2005,(03):47-50.
    [16]刘魁武,成芳,林宏建,等.可见/近红外光谱检测冷鲜猪肉中的脂肪、蛋白质和水分含量[J].光谱学与光谱分析,2009,29(01):102-105.
    [17]赵杰文,翟剑妹,刘木华,等.牛肉嫩度的近红外光谱法检测技术研究[J].光谱学与光谱分析,2006,26(04):640-642.
    [18]侯瑞锋,黄岚,王忠义,等.用近红外漫反射光谱检测肉品新鲜度的初步研究[J].光谱学与光谱分析,2006,26(12):2193-2196.
    [19]J. Br(?)ndum, L. Munck, P. Henckel, et al. Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy[J]. Meat Science,2000,55(2):177-185.
    [20]N. Barlocco, A. Vadell, F. Ballesteros, et al. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy[J]. Animal Science,2006,82(1):111.
    [21]G. H. Geesink, F. H. Schreutelkamp, R. Frankhuizen, et al. Prediction of pork quality attributes from near infrared reflectance spectra[J]. Meat Science,2003,65(1):661-668.
    [22]J. R. Cai, Q. S. Chen, X. M. Wan, et al. Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy[J]. Food Chemistry 2011,126 (3),1354-1360.
    [23]蔡健荣,万新民,陈全胜.近红外光谱法快速检测猪肉中挥发性盐基氮的含量[J].光学学报,2009,29(10):2808-2812.
    [24]刘兆丰.基于近红外光谱技术的猪肉新鲜度快速预测与识别[D].浙江工商大学,2012.
    [25]马世榜,彭彦昆,徐杨,等.可见/近红外光谱结合变量选择方法检测牛肉挥发性盐基氮[J].江苏大学学报(自然科学版),2013,34(01):44-48.
    [26]E. N. Malamas, E. G. M. Petrakis, M. Zervakis, et al. A survey on industrial vision systems, applications and tools[J]. Image and Vision Computing,2003,21(2):171-188.
    [27]D. Story, M. Kacira, C. Kubota, et al. Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments[J]. Computers and Electronics in Agriculture, 2010,74(2):238-243.
    [28]T. Brosnan, D. W. Sun. Improving quality inspection of food products by computer vision-a review[J]. Journal of Food Engineering,2004,61(1):3-16.
    [29]Y. Al Ohali. Computer vision based date fruit grading system:Design and implementation[J]. Journal of King Saud University-Computer and Information Sciences,2011,23(1):29-36.
    [30]D. Wu, D. W. Sun. Colour measurements by computer vision for food quality control-A review[J]. Trends in Food Science & Technology,2013,29(1):5-20.
    [31]G. P. Moreda, J. Ortiz-Canavate, F. J. Garcia-Ramos, et al. Non-destructive technologies for fruit and vegetable size determination-A review[J]. Journal of Food Engineering, 2009,92(2):119-136.
    [32]陆秋琰.基于计算机视觉的牛肉颜色自动分级技术研究[D].南京农业大学,2008.
    [33]郭培源,曲世海,毕松.基于直方图变换的猪肉新鲜度检测技术[J].微计算机信息,2008,24(6):241-243.
    [34]孙永海,赵锡维,鲜于建川.基于计算机视觉的冷却牛肉新鲜度评价方法[J].农业机械学报,2004,35(01):104-107.
    [35]K. Chen, X. Sun, C. Qin, et al. Color grading of beef fat by using computer vision and support vector machine[J]. Computers and Electronics in Agriculture,2010,70(1):27-32.
    [36]M. R. Chandraratne, D. KulasiriS. Samarasinghe. Classification of lamb carcass using machine vision:Comparison of statistical and neural network analyses[J]. Journal of Food Engineering, 2007,82(1):26-34.
    [37]孙永海,孙钟雷,李宇.基于遗传组合网络的肉用人工嗅觉系统[J].吉林大学学报(工学版),2007,37(05):1209-1213.
    [38]石志标,佟月英,陈东辉,等.牛肉新鲜度的电子鼻检测技术[J].农业机械学报,2009,(11):184-188.
    [39]柴春祥,施婉君,蔡悦,等.电子鼻检测鸡肉新鲜度的研究[J].食品科学,2009,30(02):170-173.
    [40]顾赛麒,王锡昌,刘源,等.电子鼻检测不同贮藏温度下猪肉新鲜度变化[J].食品科学,2010,31(06):172-176.
    [41]K. M. Horvath, Z. Seregely, I. Dalmadi, et al. Estimation of bacteriological spoilage of pork cutlets by electronic nose[J]. Acta Microbiol Immunol Hung,2007,54(2):179-94.
    [42]O. S. Papadopoulou, C. C. Tassou, L. Schiavo, et al. Rapid Assessment of Meat Quality by Means of an Electronic Nose and Support Vector Machines[J]. Procedia Food Science, 2011,1(0):2003-2006.
    [43]X. Hong, J. Wang, Z. Hai. Discrimination and prediction of multiple beef freshness indexes based on electronic nose[J]. Sensors and Actuators B:Chemical,2012,161(1):381-389.
    [44]R. Lu, Y. R. Chen. Hyperspectral imaging for safety inspection of food and agricultural products[J]. Pathogen Detection and Remediation for Safe Eating, Proc. SPIE,1999,3544: 121-133.
    [45]刘木华,赵杰文,郑建鸿,等.农畜产品品质无损检测中高光谱图像技术的应用进展[J].农业机械学报,2005,36(09):139-143.
    [46]D. F. Barbin, G. ElMasry, D. W. Sun, et al. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging[J]. Innovative Food Science & Emerging Technologies,2013,17(0):180-191.
    [47]S. Kucheryavskiy. A new approach for discrimination of objects on hyperspectral images[J]. Chemometrics and Intelligent Laboratory Systems,2013,120:126-135.
    [48]J. W. Zhao, Q. S. Chen, J. R. Cai, et al. Automated tea quality classification by hyperspectral imaging[J]. Applied Optics,2009,48(19):3557-3564.
    [49]M. Taghizadeh, A. Gowen, P. Ward, et al. Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films[J]. Innovative Food Science & Emerging Technologies,2010,11(3):423-431.
    [50]B. Park, K. C. Lawrence, W. R. Windham, et al. Hyperspectral imaging for detecting fecal and ingesta contaminants on poultry carcasses[J]. Transactions of the Asae,2002,45 (6):2017-2026.
    [51]张雷蕾,李永玉,彭彦昆,等.基于高光谱成像技术的猪肉新鲜度评价[J].农业工程学报,2012,28(07):254-259.
    [52]陶斐斐,张雷蕾,王伟,等.冷却猪肉表面菌落总数的快速无损检测方法研究[J].光谱学与光谱分析,2010,30(12):3405-3409.
    [53]F. F. Tao, Y. K. Peng, Y. Y. Li, et al. Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique[J]. Meat Science, 2012,90(3):851-857.
    [54]王伟,彭彦昆,张晓莉.基于高光谱成像的生鲜猪肉细菌总数预测建模方法研究[J].光谱 学与光谱分析,2010,(02):411-415.
    [55]张雷蕾,李永玉,彭彦昆等.基于高光谱成像技术的猪肉新鲜度评价[J].农业工程学报,2012,(07):254-259.
    [56]M. Kamruzzaman, G ElMasry, D. W. Sun, et al. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression[J]. Innovative Food Science & Emerging Technologies,2012,16:218-226.
    [57]M. Kamruzzaman, G. ElMasry, D. W. Sun, et al. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis[J]. Analytica Chimica Acta,2012,714:57-67.
    [58]G. ElMasry, D. W. Sun, P. Allen. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef[J]. Journal of Food Engineering,2012,110(1):127-140.
    [59]Y. Li, L. Zhang, Y. Peng, et al, Hyperspectral imaging technique for determination of pork freshness attributes[C]. Sensing for Agriculture and Food Quality and Safety Ⅲ, Proc. SPIE 2011,8027:80270H.
    [60]D. Barbin, G. Elmasry, D. W. Sun, et al. Near-infrared hyperspectral imaging for grading and classification of pork[J]. Meat Science,2012,90(1):259-268.
    [61]D. F. Barbin, G. ElMasry, D. W. Sun, et al. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging[J]. Food Chemistry,2013,138(2-3):1162-1171.
    [62]D. F. Barbin, G. ElMasry, D. W. Sun, et al. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging[J]. Food Chemistry,2013,138(2-3):1162-1171.
    [63]X. B. Zou, J. W. Zhao. Apple quality assessment by fusion three sensors[C]. Sensors, IEEE,2005: 389-392.
    [64]T. P. Banerjee, S. Das. Multi-sensor data fusion using support vector machine for motor fault detection[J]. Information Sciences,2012,217(0):96-107.
    [65]B. V. Dasarathy. Information fusion in the realm of medical applications-A bibliographic glimpse at its growing appeal[J]. Information Fusion,2012,13(1):1-9.
    [66]B. Khaleghi, A. Khamis, F. O. Karray, et al. Multisensor data fusion:A review of the state-of-the-art[J]. Information Fusion,2013,14(1):28-44.
    [67]S. Buratti, D. Ballabio, G. Giovanelli, et al. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue[J]. Analytica Chimica Acta,2011,697(1-2):67-74.
    [68]赵杰文,张燕华,陈全胜,等.光谱和成像融合技术检测猪肉中挥发性盐基氮[J].激光与光电子学进展,2012,49(06):184-189.
    [69]黄懿,李小昱,王为,等.多源信息融合技术的猪肉新鲜度检测方法研究[J].湖北农业科学,2011,(12):2536-2540.
    [70]周炜.基于多源信息融合技术的猪肉新鲜度无损检测方法研究[D].华中农业大学,2009.
    [71]郭培源,毕松,袁芳.猪肉新鲜度智能检测分级系统研究[J].食品科学,2010,(15):68-72.
    [72]G. Peiyuan, B. Song, C. Tianhua, et al., The fresh classification of pork detection based on multi-data fusion[C]. in Control Conference (CCC),2010 29th Chinese,2010:2735-2738.
    [73]D. A. Luzuriaga. Application of computer vision and electronic nose technologies for quality assessment of color and odor of shrimp and salmon[D]. University of Florida, U.S.A.,1999.
    [74]F. Korel, D. A. LuzuriagaM. O. Balaban. Quality evaluation of raw and cooked catfish (Ictalurus punctatus) using electronic nose and machine vision[J]. Journal of Aquatic Food Product Technology,2001,10(1):3-18.
    [1]M. Ingram, R. Dainty. Changes caused by microbes in spoilage of meats[J]. Journal of Applied Microbiology,2008,34(1):21-39.
    [2]C. O. Gill, J. Bryant. The contamination of pork with spoilage bacteria during commercial dressing, chilling and cutting of pig carcasses[J]. International Journal of Food Microbiology, 1992,16(1):51-62
    [3]E. Borch, M. L. Kant-Muermans, Y. Blixt. Bacterial spoilage of meat and cured meat products [J]. International Journal of Food Microbiology,1996,33(1):103-120.
    [4]Y. Jiang, F. Gao, X. L. Xu, et al. Changes in the Composition of the Bacterial Flora on Tray-Packaged Pork during Chilled Storage Analyzed by PCR-DGGE and Real-Time PCR[J]. Journal of Food Science,2011,76(1):M27-M33.
    [5]M. Y. Li, G. H. Zhou, X. L. Xu, et al. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE[J]. Food Microbiology,2006,23(7):607-611.
    [6]彭勇.冷却猪肉常见腐败微生物致腐能力的研究[D].中国农业大学,2005.
    [7]傅鹏,李平兰.冷却猪肉初始菌相分析与冷藏过程中的菌相变化规律研究[J].食品科学,2006,27(11):119-124.
    [8]马俪珍,南庆贤,戴瑞彤.冷却猪肉中腐败菌的分离、初步鉴定与初始菌相分析[J].天津农学院学报,2005,12(3):39-43.
    [9]沈萍,陈向东.微生物学实验(第4版)[M].北京:高等教育出版社,2007.
    [10]黎园园,董庆利,梁娜,等.解冻猪肉中优势腐败菌致腐能力研究[J].食品科学,2011,32(5):123-127.
    [11]M. H. Brown. Meat Microbiology[M]. Applied Science Publishers Ltd., U.K.,1982.
    [12]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [13 T. C. Olofsson, S. Ahrne, G. Molin. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique[J]. International Journal of Food Microbiology,2007,118(3):233-240.
    [14]祝莹,董英肖香.镇江肴肉中腐败菌的初步分离鉴定[J].中国食品学报,2011,11(2):197-201.
    [15]GB/T4789.2食品卫生微生物学检验菌落总数测定[S].北京:中国标准出版社,2010.
    [16]GB/T 5009.44肉与肉制品卫生标准的分析方法[S].北京:中国标准出版社,2003.
    [17]D. P. Qualitative and quantitative characterization of spoilage bacteria from packed fish.[J]. International Journal of Food Microbiology 1995,26:319-333.
    [18]许振伟,许钟,杨宪时,等.大黄鱼腐败菌腐败能力分析与特定腐败菌鉴别[J].上海海洋大学学报,2010,19(4):547-552.
    [19]R. H. Dainty, C. M. Hibbard. Aerobic metabolism of Brochothrix thermosphacta growing on meat surface and in laboratory media[J]. Journal of Applied Microbiology,2008,48(3):387-396.
    [1]黎园园,董庆利,梁娜,等.解冻猪肉中优势腐败菌致腐能力研究[J].食品科学,2011,32(05):123-127.
    [2]彭勇.冷却猪肉常见腐败微生物致腐能力的研究[D].中国农业大学,2005.
    [3]黎园园,董庆利,梁娜,等.解冻猪肉中优势腐败菌致腐能力研究[J].食品科学, 2011,32(5):123-127.
    [4]廖宜涛.基于图像与光谱信息的猪肉品质在线无损检测研究[D].浙江大学,2011.
    [5]刘兴余,金邦荃,詹巍,等.猪肉质构的仪器测定与感官评定之间的相关性分析.食品科学,2007(04):245-248.
    [6]GB/T 5009.44肉与肉制品卫生标准的分析方法[S].北京:中国标准出版社,2003.
    [7]GB/T 9695.31肉制品总糖含量测定[S].北京:中国标准出版社,2008.
    [8]GB/T 9695.7肉与肉制品总脂肪含量测定[S].北京:中国标准出版社,2008.
    [9]GB/T 5009.5食品中蛋白质的测定[S].北京:中国标准出版社,2010.
    [10]GB/T4789.2食品卫生微生物学检验菌落总数测定[S].北京:中国标准出版社,2010.
    [11]GB 2707鲜(冻)畜肉卫生标准[S].北京:中国标准出版社,2005.
    [12]GB/T 9959.2分割鲜、冷猪瘦肉[S].北京:中国标准出版社,2008.
    [13]于英杰.牛肉新鲜度检验指标的研究[D].吉林大学,2006.
    [1]GB 2707鲜(冻)畜肉卫生标准[S].北京:中国标准出版社,2005,
    [2]侯瑞锋,黄岚,王忠义,等.用近红外漫反射光谱检测肉品新鲜度的初步研究[J].光谱学与光谱分析,2006,(12):2193-2196.
    [3]蔡健荣,万新民,陈全胜.近红外光谱法快速检测猪肉中挥发性盐基氮的含量[J].光学学报,2009,(10):2808-2812.
    [4]J. R. Cai, Q. S. Chen, X. M. Wan, et al. Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy[J]. Food Chemistry,2011,126(3):1354-1360.
    [5]赵强,张工力,陈星旦.多元散射校正对近红外光谱分析定标模型的影响[J].光学精密工程,2005,(01):53-58.
    [6]刘魁武,成芳,林宏建,等.可见/近红外光谱检测冷鲜猪肉中的脂肪、蛋白质和水分含量[J].光谱学与光谱分析,2009,29(01):102-105.
    [7]孙晓明,卢凌,张佳程,等.牛肉化学成分的近红外光谱检测方法的研究[J].光谱学与光谱分析,2011,31(2):379-383.
    [8]R.J. Barnes, M.S. DhanoaJ. L. Susan. Standard Normal variate Transformation and D-trending of Near Infrared Diffuse Reflectance Spectra[J]. Applied Spectroscopy,1989,43(5):772-777.
    [9]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析,2000,20(02):134-142.
    [10]J. Y. Chen, C. Iyo, F. Terada, et al. Effect of multiplicative scatter correction on wavelength selection for near infrared calibration to determine fat content in raw milk[J]. Journal of near infrared spectroscopy,2002,10(4):301-308.
    [11]陈全胜,郭志明,赵杰文,等.基于净分析物预处理算法的绿茶中儿茶素的近红外光谱定量分析[J].红外与毫米波学报,2009,28(05):357-361.
    [12]S. Jhya, T. Matsuoka. Non-destructive deter-mination of acerbic ratio of tomato juice using near infrared spectroscopy [J]. International Journal of Food Science and Technology, 2004,39:425-430.
    [13]H. Lin, J. Zhao, L. Sun, et al. Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis[J]. Innovative Food Science & Emerging Technologies,2011,12(2):182-186.
    [14]Y. A. Woo, H. J. Kim, J. Cho, et al. Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques[J]. Journal of Pharmaceutical and Biomedical Analysis,1999,21 (2):407-413.
    [15]T. Isaksson, T. N(?)s. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy[J]. Applied Spectroscopy,1988,42(7):1273-1284.
    [16]L. N(?)rgaard, A. Saudland, J. Wagner, et al. Interval partial least-squares regression (iPLS):a comparative chemometric study with an example from near-infrared spectroscopy [J]. Applied Spectroscopy,2000,54(3):413-419.
    [17]Q. S. Chen, J. W. Zhao, M. H. Liu, et al. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,46(3):568-573.
    [18]Q. S. Chen, J. R. Cai, X. M. Wan, et al. Application of linear/non-linear classification algorithms in discrimination of pork storage time using Fourier transform near infrared (FT-NIR) spectroscopy[J]. LWT-Food Science and Technology,2011,44(10):2053-2058.
    [19]H. Zhang, B. Kong, Y. L. Xiong, et al. Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4℃[J]. Meat Science,2009,81(4):686-692.
    [20]G. T(?)gersen, T. Isaksson, B. N. Nilsen, et al. On-line NIR analysis of fat, water and protein in industrial scale ground meat batches[J]. Meat Science,1999,51:97-102.
    [21]P. R. Oliveira, R. A. F. Romero. Improvements on ICA mixture models for image pre-processing and segmentation[J]. Neurocomputing,2008,71(10):2180-2193.
    [22]李彦周,闵顺耕,刘霞.主成分分析在近红外定量分析校正集样本优选中的应用[J].分析化学,2007,35(09):1331-1334.
    [23]段焰青,者为,李青青,等.用光谱主成分分析选择烟草近红外模型校正集样品[J].激光与红外,2008,38(07):662-665.
    [1]R. Lu, Y. R. Chen. Hyperspectral imaging for safety inspection of food and agricultural products[J]. Pathogen Detection and Remediation for Safe Eating, Proc. SPIE,1999,3544: 121-133.
    [2]A. Gowen, C. O'Donnell, P. Cullen, et al. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[J]. Trends in Food Science & Technology, 2007,18(12):590-598.
    [3]J. W. Zhao, Q. Ouyang, Q. S. Chen, et al. Detection of Bruise on Pear by Hyperspectral Imaging Sensor with Different Classification Algorithms[J]. Sensor Letters,2010,8(4):570-576.
    [4]S. C. Yoon, B. Park, K. C. Lawrence, et al. Development of real-time line-scan hyperspectral imaging system for online agricultural and food product inspection[J]. Sensing for Agriculture and Food Quality and Safety II, Proc. SPIE,2010,7676:7076J.
    [5]A. Del Fiore, M. Reverberi, A. Ricelli, et al. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis[J]. International Journal of Food Microbiology, 2010,144(1):64-71.
    [6]G. Elmasry, D. F. Barbin, D. W. Sun, et al. Meat Quality Evaluation by Hyperspectral Imaging Technique:An Overview[J]. Crit Rev Food Sci Nutr,2012,52(8):689-711.
    [7]吴建虎,彭彦昆,陈菁菁,等.基于高光谱散射特征的牛肉品质参数的预测研究[J].光谱学 与光谱分析,2010,30(7):1815-1819.
    [8]M. Kamruzzaman, G. ElMasry, D.-W. Sun, et al. Prediction of some quality attributes of lamb meat using near-infrared hyperspcctral imaging and multivariate analysis[J]. Analytica Chimica Acta,2012,714:57-67.
    [9]G. ElMasry, D. W. Sun, P. Allen. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef[J]. Journal of Food Engineering,2012,110(1):127-140.
    [10]D. Barbin, G. Elmasry, D. W. Sun, et al. Near-infrared hyperspectral imaging for grading and classification of pork[J]. Meat Science,2012,90(1):259-268.
    [11]Y. Y. Li, L. L. Zhang, Y. K. Peng, et al. Hyperspectral imaging technique for determination of pork freshness attributes[J]. Sensing for Agriculture and Food Quality and Safety Ⅲ, Proc. SPIE, 2011,8027:80270H.
    [12]J. Qiao, N. Wang, M. O. Ngadi, et al. Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique[J]. Meat Science,2007,76(1):1-8.
    [13]H. V. D. Polder G;Wam G. Calibration and characterization of imaging spectrographs [J].[J]. Near Infrared Spectroscopy,2003,11 (3):193-210.
    [14]陈全胜,张燕华,万新民,等.基于高光谱成像技术的猪肉嫩度检测研究[J].光学学报,2010,(09)
    [15]李江波,饶秀勤,应义斌.农产品外部品质无损检测中高光谱成像技术的应用研究进展[J].光谱学与光谱分析,2011,(08):2021-2026.
    [1]P. Liu, K. Tu. Prediction of T VB-N content in eggs based on ele ctronic nose[J]. Food Control, 2012,23(1):177-183.
    [2]X. Z. Hong, J. WangZ. Hai. Discrimination and prediction of multiple beef freshness indexes based on electronic nose[J]. Sensors and Actuators B:Chemical,2012,161(1):381-389.
    [3]V. Y. Musatov, V. V. Sysoev, M. Sommer, et al. Assessment of meat freshness with metal oxide sensor microarray electronic nose:A practical approach[J]. Sensors and Actuators B:Chemical, 2010,144(1):99-103.
    [4]E. Llobet, N. El Barbri, N. El Bari, et al. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat[J]. Sensors, 2008,8(1):142-156.
    [5]B. Khaleghi, A. Khamis, F. O. Karray, et al. Multisensor data fusion:A review of the state-of-the-art[J]. Information Fusion,2013,14:28-44.
    [6]简小刚,贾鸿盛,石来德.多传感器信息融合技术的研究进展[J].中国工程机械学报,2009,7(02):227-232.
    [7]刘鹏.基于多传感器融合无损检测鸡蛋品质的研究[D].南京农业大学,2011.
    [8]黄懿,李小昱,王为,等.多源信息融合技术的猪肉新鲜度检测方法研究[J].湖北农业科学,2011,(12):2536-2540.
    [9]L. Gil-Sanchez, J. Soto, R. Martinez-Manez, et al. A novel humid electronic nose combined with an electronic tongue for assessing deterioration of wine[J]. Sensors and Actuators A:Physical, 2011,171(2):152-158.
    [10]陈全胜,赵杰文,蔡健荣,等.基于近红外光谱和机器视觉的多信息融合技术评判茶叶品质[J].农业工程学报,2008,24(03):5-10.
    [11]S. Buratti, D. Ballabio, S. Benedetti, et al. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression models[J]. Food Chemistry,2007,100(1):211-218.
    [12]D. Cozzolino, H. E. Smyth, K. A. Lattey, et al. Combining mass spectrometry based electronic nose, visible-near infrared spectroscopy and chemometrics to assess the sensory properties of Australian Riesling wines[J]. Analytica chimica acta,2006,563(1):319-324.
    [13]Q. S. Chen, J. W. Zhao, Z. Chen, et al. Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools[J]. Sensors and Actuators B-Chemical,2011,159(1):294-300.
    [14]赵杰文,张燕华,陈全胜,等.光谱和成像融合技术检测猪肉中挥发性盐基氮[J].激光与光电子学进展,2012,(06):184-189.
    [15]J. R. Cai, Q. S. Chen, X. M. Wan, et al. Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy[J]. Food Chemistry 2011,126(3):1354-1360.
    [16]P. Wiegand, R. PellE. Comas. Simultaneous variable selection and outlier detection using a robust genetic algorithm[J]. Chemometrics and Intelligent Laboratory Systems, 2009,98(2):108-114.
    [17]R. Leardi, M. B. Seasholtz, R. J. Pell. Variable selection for multivariate calibration using a genetic algorithm:prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data[J]. Analytica Chimica Acta,2002,461(2):189-200.
    [18]H. Lin, J. W. Zhao, L. Sun, et al. Stiffness measurement of eggshell by acoustic resonance and PLS models[J]. Journal of Food Engineering,2011,103 (4):351-356.
    [19]A. Materka, M. Strzelecki. Texture analysis methods-a review[J]. Technical University of Lodz, Institute of Electronics, COST B,1998,11:9-11.
    [20]P. Y. Guo, M. Bao, Pattern recognition to lamb freshness based on much data merging[C]. Mechatronics and Automation (ICMA),2011 International Conference,2011:1583-1587.
    [21]P. Y. Guo, S. Bi, T. H. Chen, et al., The fresh classification of pork detection based on multi-data fusion[C]. Control Conference (CCC),2010 29th Chinese,2010:2735-2738.
    [22]朱瑶迪,邹小波,黄晓玮,等.猪肉贮藏过程中挥发性成分的研究[J].食品工业科技,2012,33(24):374-378.
    [23]F. Korel, D. LuzuriagaM. O. Balaban. Objective quality assessment of raw tilapia (Oreochromis niloticus) fillets using electronic nose and machine vision[J]. Journal of Food Science, 2001,66(7):1018-1024.
    [24]D. A. Luzuriaga. Application of computer vision and electronic nose technologies for quality assessment of color and odor of shrimp and salmon[D]. University of Florida, U.S.A.,1999.
    [25]L. Huang, J. W. Zhao, Y. H. Zhang, et al. Simultaneous multi-component analysis of pork meat during bacterial spoiling process by FT-NIR evaluated with non-linear algorithm[J]. Analytical Methods,2012,4:3816-3823.
    [26]M. Kamruzzaman, G. ElMasry, D.-W. Sun, et al. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression[J]. Innovative Food Science & Emerging Technologies,2012,16:218-226.
    [27]K. Horvath, Z. Seregely, E. Andrassy, et al. A preliminary study using near infrared spectroscopy to evaluate freshness and detect spoilage in sliced pork meat[J]. Acta Alimentaria, 2008,37(1):93-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700