用户名: 密码: 验证码:
薄丝织物缝纫平整度与织物结构及性能的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
织物缝纫平整度评价及预测是控制服装缝制外观质量的关键,其核心是:建立准确、全面的缝纫平整度客观评价指标体系;建立织物结构及性能与缝纫平整度主客观评价的关系模型体系。本课题选取有典型代表性的薄丝织物为研究对象,以适合实际应用为前提,通过实验测试和统计分析,对缝纫平整度客观评价方法,织物结构参数、物理力学性能及其与缝纫平整度主客观评价指标的相关性展开研究,建立缝纫平整度客观评价指标体系,确定对缎纹、平纹丝织物缝纫外观质量起关键影响的织物结构参数及物理力学性能指标。在本课题研究基础上的“薄型丝织物缝纫外观质量预测及工艺生成系统研究”已获得浙江省服装工程技术研究中心开放基金资助,项目处于研究中。课题主要研究内容及成果如下:
     1)构建基于尺寸变化的薄丝织物缝纫平整度客观评价指标体系
     分析织物缝纫中产生的缝缩率相同而缩皱程度不同现象产生的原因,针对缝缩形成机理,提出不屈曲收缩率、边缘离面屈曲率及缝迹离面屈曲率等三个用于评价织物缝纫平整度的新客观指标,构建基于尺寸变化的薄丝织物缝纫平整度客观评价指标体系。
     2)薄丝织物缝纫平整度的主客观评价与分析
     选取30种生产常用、有代表性的薄丝织物,测定织物缝纫平整度主、客观评价值。运用多种统计方法,分析经纬向缝纫平整度指标间的关系和差异,探讨缝纫平整度主、客观评价指标间的相关性。采用广义差分法,消除纬向缝迹离面屈曲率对纬向缝纫平整度主观评级值模型中自相关问题,建立薄丝织物缝纫平整度主、客观评价指标间关系模型。研究发现,同种织物的经、纬向缝纫平整度评价指标间为正线性关系,经向缝纫缩皱程度比纬向严重,且平纹试样的缝纫平整度主客观评价指标的经、纬向差异更明显;缝条边缘离面屈曲率倒数及缝迹离面屈曲率与织物缝纫平整度主观评级值关系密切,其中前者与经向缝纫平整度主观评级值呈显著正相关,后者与经向平纹试样及纬向试样缝纫平整度主观评级值为显著负相关。
     3)薄丝织物结构参数和物理力学性能的测试与分析
     测试30种试样的结构参数及物理、力学性能,比较相同纱向两类组织织物结构及性能差异,分析经纬纱向织物结构参数及力学性能的关系和差异,探讨织物结构参数、物理、力学性能间的相关性,并建立3类指标间关系图。研究发现,平纹试样的经向延伸率的离散程度明显高于缎纹试样,但面密度、紧、密度均值明显低于缎纹;织物经向密度、紧度显著高于纬向,缎纹经纬向差异更大,且缎纹试样的经向弯曲刚度、成型性均显著高于纬向;织物结构参数、物理、力学性能间存在多重共线性。
     4)薄丝织物结构参数及物理力学性能与经向缝纫平整度主客观评价的相关性
     通过相关分析、Loess趋势分析、回归分析刷选出对缎纹试样、平纹试样和全体试样经向缝纫平整度主客观评价起关键影响作用的结构、性能指标;分析经向延伸率、经向弯曲刚度与经向缝缩率之间二次函数关系形成机理;通过路径分析,探讨经向延伸率、经向弯曲刚度与经向缝纫平整度主观评级值相关性强、弱差异产生的的原因,建立平纹织物结构和性能对经向缝纫平整度主观评级值影响的路径图;建立织物结构和性能对经向缝纫平整度主客观评价的关系模型和关系图。结果表明:就缎纹试样而言,对经向缝缩率、经向缝迹离面屈曲率有显著影响的织物性能为经向弯曲刚度、剪切刚度,经纬向紧度比值与经向缝条边缘离面屈曲率及缝纫平整度主观评级值为强正线性相关;就平纹试样而言,对经向缝缩率、经向缝迹离面屈曲率有显著影响的织物性能为经向弯曲刚度、延伸率,且经向延伸率通过与经向缝迹离面屈曲率的非线性关系间接作用于缝纫平整度主观评级值,同时对主观评价产生直接正向作用;纬向紧、密度低,经向成型性及延伸率高的织物,经向缝纫时产生的不屈曲收缩率大。
     5)薄丝织物物理力学性能与斜向缝纫平整度客观评价的相关性测试织物厚度、面密度及45度斜向力学性能,测定斜向缝纫平整度主客观评价,用相关分析、回归分析进行数据处理,结果表明:薄丝织物45度斜向缝纫平整度主观评级值都为5级,缝条整体伸长,斜向不屈曲收缩率和缝纫收缩率(缝纫伸长率负数)相近;斜向弯曲刚度、成型性、剪切刚度和斜向延伸率组成的第一主成分,以及面密度为主体的第二主成分对斜向缝迹离面屈曲率有显著影响;斜向成型性小于0.25mm左右、弯曲刚度小于1uN.m左右的薄丝织物,随着上述两个性能的增加,斜向缝纫伸长率快速递减;斜向成型性大于0.25mm左右、弯曲刚度大于1uN.m左右的薄丝织物,随着上述两个性能的增加,斜向缝纫伸长率在大约0%~2.5%区域内波动或缓慢降低。
     本课题的主要创新点如下:
     1)构建基于尺寸变化的薄丝织物缝纫平整度客观评价指标体系,该体系由不屈曲收缩率、边缘离面屈曲率、缝迹离面屈曲率等三个新的客观评价指标及缝缩率组成,具有较好的析因能力,在表征织物缝纫外观平整度上更全面、准确。
     2)构建薄丝织物结构、性能与经向缝纫平整度主客观评价关系模型体系,确定对经向缝纫平整度主客观评价起关键影响的织物结构、性能指标。
     3)建立平纹薄丝织物结构和性能对经向缝纫平整度主观评价影响的路径图,确定织物结构和性能对缝纫平整度主观评价的直接和间接作用。
     课题研究结果可为薄丝织物缝纫外观质量的评价提供新的思路和方法,对于合理选择薄丝绸服装织物,准确制定缝制工艺提供有价值的参考,亦可为薄丝织物缝皱影响机制提供理论依据,填补了按组织结构对织物缝纫平整度进行细分化研究的空白。
Evaluation and prediction of seam smoothness is the key technology to control the quality of garment sewing appearance quality. The core content includes establishing an accurate and comprehensive seam smoothness evaluation system, and building relation model system between fabric structure, performance and seam smoothness evaluation. Thin silk fabrics is selected as the research object, through experimental testing and statistical analysis, research of seam smoothness objective evaluation method, fabric structure, performance, and its correlation with the objective and subjective evaluation of seam smoothness is conducted. The seam smoothness objective evaluation index system is established, the fabric structure, performance which has significant impact on the seam appearance quality of satin, plain silk fabric is discovered, and the relational model is established. Based on the study of this issue, the project named prediction of seam pucker in thin silk fabric and development of sewing parameters design system is being funded by the Opening Foundation of Zhejiang Provincial Research Center of Clothing Engineering Technology and is being study. The main research content and findings are as follows:
     1) Establishing seam smoothness objective evaluation system of thin silk fabrics based on the dimensional changes
     The reasons for the differences between seam smoothness subjective evaluation and seam shrinkage rate is analyzed. Based on seam shrinkage formation mechanism, three new objective evaluation indexes, including no buckling seam shrinkage rate, seam edge buckling rate, and seam line buckling rate, are proposed. Thus the seam smoothness objective evaluation system of thin silk fabric is established.
     2) Objective and subjective evaluation and analysis of seam smoothness of thin silk fabrics
     Thirty kinds of garment production representative thin silk fabrics are selected. Subjective and objective evaluation value of seam smoothness is obtained through sewing experiment. Using a variety of statistical methods, the differences of seam smoothness evaluation between warp and weft samples are examined, the relationship between subjective and objective seam smoothness evaluation is analyzed. The generalized difference method is applied to eliminate the self related issues in the regression model of no buckling seam shrinkage rate of weft direction to the seam smoothness of subjective rating value. The relation model between seam smoothness subjective and objective evaluation is established. The results indicate that significant positive linear correlation lies between the warp and weft seam smoothness evaluation of the same fabric, warp seam pucker is more serious than weft. The reciprocal of seam edge buckling rate shows significant positive linear correlation with seam smoothness subjective evaluation, and seam line buckling rate shows significant negative linear correlation with seam smoothness subjective evaluation of weft samples and warp plain samples.
     3) Testing and analysis of the structure and properties of thin silk fabrics
     Structural parameters, physical and mechanical properties of thin silk fabric sample are tested. The difference of structure parameters, properties between satin and plain samples with same yarn direction is compared. The relationship and difference between warp and weft structural parameters and mechanical properties are analyzed. The correlation among structural parameters, physical and mechanical properties is discussed and the relationship diagram of three types of properties is drawn. The results indicate that the degree of dispersion of the warp plain sample elongation is significantly higher than the satin sample, while its weight, weave tightness and density of the satin sample are significantly lower than plain sample. The warp weave tightness and density are significantly higher than weft. The warp bending rigidity and formability of satin sample are significantly higher than the weft. Structural parameters, physical and mechanical properties show multicollinearity.
     4) Correlation between fabric structural parameters, physical and warp mechanical properties and seam smoothness evaluation of thin silk fabrics
     Correlation analysis, loess trend analysis and regression analysis is used to select the fabric indexes closely related to the subjective and objective evaluation of warp seam smoothness. The mechanism of quadratic function relationship between warp extensibility, warp bending rigidity and warp seam shrinkage rate is analyzed. Reasons arising the different correlation degree with warp seam smoothness subjective rating value between warp extensibility and warp bending rigidity are discussed. The roadmap of impact from plain fabric structure and performance on warp seam subjective evaluation is built. The relation models and relation diagrams between fabric structure, performance and warp seam evaluations are developed. The results show that
     As satin sample is concerned, warp bending rigidity, shearing rigidity and tightness ratio of warp and weft have significant impact on warp seam shrinkage and seam bending rate, meanwhile, shearing rigidity and tightness ratio of warp and weft show high positive linear correlate with seam edge bending rate. As plain sample is concerned, warp extensibility and warp bending rigidity have significant impact on warp seam shrinkage and seam bending rate. Furthermore, warp extensibility, which has indirect impact on subjective evaluation of seam smoothness through the nonlinear relation with warp seam bending rate, also show direct impact on subjective evaluation. Meanwhile, fabric with lower weft density and tightness, or higher formability and extensibility show larger no buckling seam shrinkage rate.
     5) Correlation between the physical and mechanical properties and oblique seam smoothness objective evaluation of thin silk fabrics
     Fabric thickness, weight and oblique mechanic properties are measured, oblique seam smoothness evaluation are tested. The data are processed with correlation analysis and regression analysis. The results show that45degree seam smoothness subjective rate of thin silk fabric is5degree, fabric stripes are extended, and oblique no bucking shrinkage rate and seam shrinkage rate (the negative of seam elongation rate) are very similar. The first principal component composed of oblique bending rigidity; formability, shearing rigidity and extensibility, and the second principal component mainly composed of weight have significant impact on oblique seam buckling rate. For the thin silk fabric with oblique formability lower than0.25mm and bending rigidity lower than luN.m, the oblique seam elongation rate decrease rapidly following with increasing of these two properties, on the other hand, for those with oblique formability higher than0.25mm and bending rigidity higher than luN.m, it decreasing very slowly from approximately2.5%to0%, or fluxes in this area.
     The main innovations of the topics are as follows:
     1) Seam smoothness objective evaluation system of thin silk fabrics based on the dimensional changes is established. The system composed of three new objective evaluation indexes, including no buckling seam shrinkage rate, seam edge buckling rate, and seam line buckling rate, shows good factorial ability, more comprehensive and accurate to feature the seam appearance quality.
     2) The relationship model system of fabric structure, performance and warp seam smoothness evaluation is established. The fabric structure, performance index which has significant impact on seam smoothness evaluation is determined.
     3) The roadmap of impact from plain fabric structure and performance on warp seam subjective evaluation is built. The direct and indirect impact of fabric structure and performance on seam smoothness subjective evaluation is discovered.
     Research results can provide new ideals and methods of evaluating seam appearance quality, offer valuable reference for a reasonable choice of thin silk apparel fabrics, accurate formulation the sewing process, and provide theoretical base for seam pucker formation mechanism of thin silk fabric. Furthermore, the study can fill the blank of segmentation research on seam smoothness according to texture variation of fabric.
引文
[1]Dorkin C M C,Chamberlain N H, Seam pucker, Its cause and prevention[R], Clothing Institute Technological report,1961, NO10.
    [2]孙金阶.服装缝纫质量影响因素初探[J].西北纺织工学院学报,2000,14(1):30-34.
    [3]De Boos A G, The objective measurement of finished fabric[M]//Brady P R (ed.). Finishing and wool fabric properties-A guide to the theary and practice of finishing woven wool fabrics. CSIRO, IWS,1997:44.
    [4]Anon. Garment manufacturing and appearance problems associate with fabric properties, FAST User's Manual, p.17.
    [5]Taylor J L,Clarke F J. Physics of seam pucker[J]. Textile Ind,1967,25 (9):131, 141-143,233.
    [6]Zorowski C F,Patel G C. Seam puckering as mechanical instability phenomenon [J]. J Eng. for Industry,1970,92 (1):17-22.
    [7]Ajiki I. Analysis of seam structure by a mechanical model[J]. Jpn Res Assn Textile End-Uses,1986,27 (5):208-212.
    [8]Ajiki I. Stitch tightening and compressional property of seamed fabrics for a lockstitch sewing machine[J]. Jpn Res Assn Txtile End-Uses,1988,29 (3):106-110.
    [9]Stylios G,Lloyd D W. The mechanism of seam pucker in structurally jammed woven fabrics[J]. Int J Clo Sci Tech,1989,1 (1):5-11.
    [10]Stylios G,Lloyd D W. A technique for identification of seam pucker due to structural jamming in woven textiles[J]. Int J Clo Sci Tech,1989,1(2):25-27.
    [11]Amirbayat J. An energy approach to the instability problem of overfeed seams: part 1:theoretical analysis [J]. Int J Clo Sci Tech,1990,2 (1):21-25.
    [12]Amirbayat J, Norton M L. An energy approach to the instability problem of overfeed seams:part 2:experimental analysis [J]. Int J Clo Sci Tech,1990,2 (2) 7-13.
    [13]Amirbayat J, McLaren Miller J. Order of magnitude of compressive energy of seams and its effect on seam pucker [J]. Int J Clo Sci Tech,1991,3 (2):12-17.
    [14]Kawabata S, Niwa M. Clothing engineering based on objective measurement technology [J]. Int J Clo Sci Tech,1998,10 (3/4):263-272.
    [15]Sechler E E. Elasticity in Engineering[M].John Wiley & Sons, New York, 1952:37.
    [16]Inui S, Yamaraka T. Seam pucker simulation [J]. Int J Clo Sci Tech,1998,10 (2):128-142.
    [17]Inui S, Okabe H, Yamaraka T. Simulation of seam pucker on two strips of fabric sewn together [J]. Int J Clo Sci Tech,2001,13 (1):53-64.
    [18]Hu JL, Ma L, George B,etc. Modelling Multi-layer Seam Puckering [J]. Text Res J,2006,76 (9):665-673.
    [19]Mousazadegan F, Saharkhiz S, Latifi M.Prediction of tension seam pucker formation by finite-element model[J]. Int J Clo Sci Tech,2012,24 (2/3):129-140.
    [20]张义同.织物力学研究的新进展[J].力学进展,2003,33(2):217-226.
    [21]Zhang Y T, Fu Y B. A micromechanical model of woven fabric and its application to the analysis of buckling under uniaxial tension Part 1:the micromechanical model[J]. Inter J Engng Sci,2000,38 (17):1895-1906.
    [22]Zhang Y T, Fu Y B. A micromechanical model of woven fabric and its application to the analysis of buckling under uniaxial tension Part 2:Buckling analysis[J]. Inter J Engng Sci,2001,39 (1):1-13.
    [23]Zhang Y T, Xu J F. The buckling analysis of woven fabric subjected to uniaxial tension along any direction[J]. Applied Mathematics and Mechanics,2002,23 (5): 597-605.
    [24]Park C K,Kang T J. Objective evaluation of seam pucker using artificial intelligence. Part Ⅱ:Method of Evaluating Seam Pucker[J], Textile Research Journal, 1999,69 (11):835-845.
    [25]Fan J,Yu W,Hunter L. Clothing appearance and fit:Science and technology[M]. Egland:The Textile Institute,2004:22-24,27-29.
    [26]Kwong M Y. Engineering principles in man's jacket pattern construction[C]// Proc.of 1st China International Wool Textile Conference. Xi'an",1994:214-219.
    [27]G. Stylios, Sotomio J. A neural network approach for the optimization of the sewing process of wool and wool mixture fabrics[C]//Proc. of 1st China Iiitemational Wool Textile Conference. Xi'an",1994:689-693.
    [28]ASTM D4231, Standard practice for evaluation of men's and boy's home launderable woven dress shirts and sport shirt[S], ASTM International,2008(2001,1989).
    [29]Pang Y T. A study on the evaluation of seam pucker in garments[D], MA Dissertation, The Hong Kong Polytechnic University,2000.
    [30]ISO 7770, Textiles-Method for assessing the appearance of seams in durable press products after domestic washing and drying[S], International organisation for standards,2009 (1985).
    [31]JIS L 1905, Methods for assessing the appearance of seam pucker on textiles[S], Japanese standards association,2012 (2009,2000,1994)
    [32]Park C K, Ha J Y. A Process for Optimizing Sewing Conditions to Minimize Seam Pucker Using the Taguchi Method[J]. Textile Res J,2005,75 (3):245-252.
    [33]Shiloh M. The evaluation of seam-puckering[J]. J Text Inst,1971,62 (3):176.
    [34]Galuszynski S. Objective measurement of seam pucker[C]//Proc Symposium on new technologies for textiles, July 21-23,1986:100-113.
    [35]杨建忠,王善元,轻薄织物屈曲变形与缝纫起皱关系的研究[J].西北纺织工学院学报,2001,15(1):5-10.
    [36]Dobilaite V, Juciene M. The influence of mechanical properties of sewing threads on seam pucker[J]. IJCST,2006,18 (5):335-345.
    [37]Bertold A M,Munden D L. The effect of sewing variables on fabric pucker[J]. Cloth Res J,1974,2 (1):68.
    [38]Belser R B,Kwon C T,Conrad J M. Instrument for grading seam pucker[J]. Text Res J,1986,38 (3):315.
    [39]Watanabe S. Tailorability[J]. Jpn Res Assoc Textile End Uses,1982,23 (12): 499.
    [40]Shigeru I,Atsuo S. Objective evaluation of seam pucker[J].Int Cloth Sci Tecnnol, 1992,4 (5):24.
    [41]Stylios G,Parsons Moore R. Seam pucker prediction using neural computing[J]. Int Cloth Sci Technol,1993,5 (5):24.
    [42]Stylios G and Sotomi J O. Investigation of seam pucker in lightweight synthetic fabric as an aesthetic property part Ⅱ:model implementation using computer "vision"[J].J Text Inst,1993,84 (4):601.
    [43]Stylios G,Sotomi J O. Investigation of seam pucker in lightweight synthetic fabric as an aesthetic property part Ⅰ:a cognitive measurement of seam pucker[J]. J Text Inst,1993,84 (4):593-600.
    [44]Richard C, Sewability in the dynamic environment of the sewing process[J], J Fed AsianProf Tex Assoc,1995,3 (1):83.
    [45]Richard C. Pucker as fabric-thread machine mechanical instability phenomenon [J]. J Fed Asian Prof Tex Assoc,1996,3 (2):69.
    [46]Aibara T,Mabuchi T,Izumida M. Automatic evaluation of the appearance of seam puckers on suits[C], IEICE Trans Inf & Syst,2000, E83-D (7):1346-1352.
    [47]Park C K,Lee D H,KANG T J. A new evaluation of seam pucker and its application [J]. Int J Cloth Sci Tech,1997,9 (3):252.
    [48]Jucien M,Vobolis J. Seam pucker indicators and their dependence upon the parameters of a sewing machine [J]. Int J Clo Sci Tech,2008,20 (4):31-239.
    [49]Dobilaite V, M Juciene. Evaluation of Seam Pucker Using Shape Parameters [J]. Materials Science,2010,16 (2):154-158.
    [50]Youngjoo N. Assessing Wrinkling Using Image Analysis and Replicate Standards[J]. Text Res J,1999,65 (3):149-157.
    [51]Fan J,Lu D,MacAlpine M,et al. Objective evaluation of pucker in 3-dimensional garment seams[J]. Text Res J,1999,69 (7):467-472.
    [52]Fan J,Liu F. Objective evaluation of garment sewing using 3-D laser scanning technology[J]. Text Res J,2000,70 (11):1025-1030.
    [53]Fan J. Assessing the quality of garment appearance[J]. ATA Journal, 1998(6/7):76.
    [54]Fan J.MacApline J M K,Lu D. The use of a 2-D digital filter in the objective evaluation of seam pucker as 3-D surface[J]. J Text Inst,1999,90 (3):445.
    [55]Fan J,Hui C L P,Lu D. Towards the objective evaluation of garment appearance[J]. Int J Cloth Sci Technol,1999,11 (2/3):151.
    [56]Park C K,Kang T J. Objective evaluation of seam pucker using artificial intelligence. Part Ⅱ:Method of Evaluating Seam Pucker[J], Textile Research Journal, 1999,69 (11):835-845.
    [57]Koehl L,Miou J C,Zeng X Y,et al. Computational Textile,2007:39-54.
    [58]Kang T J,Kim S Ch,Sul I H,et al. Fabric surface roughness evaluation using wavelet-fractal method part Ⅰ:Wrinkle, smoothness and seam pucker[J]. Textile Research Journal,2005,75 (11):751-760.
    [59]李艳梅,张渭源,小波分析在织物缝纫平整度客观评价中的应用[J],纺织学报,2009,30(10):115-119.
    [60]Kang T J,Lee J Y. Objective evaluation of fabric wrinkles and seam puckers using fractal geometry[J]. Text Res J,2000,70 (6):469-475.
    [61]Kang T J,Kim S Ch,Sul I H,et al. Fabric surface roughness evaluation using wavelet-fractal method part Ⅰ:Wrinkle, smoothness and seam pucker[J]. Textile Research Journal,2005,75 (11):751-760.
    [62]Song WQ, Zhang J. Objective Evaluation of Seam Pucker Using Complex Wavelet and Fractal Dimension of Textural Image [J]. Applied Mechanics and Materials,2011(44-47):3464-3468.
    [63]KL Mak, W Li Objective evaluation of seam pucker on textiles by using self-organizing map. IAENG International J. of Computer Science,2008,35:1, IJCS 35 1 07.
    [64]范蕤,陆建德,基于模糊神经网络的丝织物缝纫性能预测[J].苏州大学学报,2008(03):60-63,71.
    [65]潘永惠,包芳,王士同.基于改进RBF网络的缝纫平整度模糊辩识系统[J],纺织学报,2008,29(3):76-79,86.
    [66]Tarafdar N, Roy A, Sarkar T. Study of sewability parameters of different shirting fabrics. [J]. Man-made Textiles in India,2005,48 (12):463-467.
    [67]Minazio P G. The fabric processing performance and its rolr in predicting the appearance of man's wool suit jackets. [J]. Int J Clo Sci Tech,1998,10 (3/4): 182-190.
    [68]Kawabata S,Mori M,Niwa M. An experiment on human sensory measurement and its objective measurement of seam pucker level[J]. Int Cloth Sci Technol,1997, 9 (3):203-206.
    [69]Schwartz P. Effect of Jamming on Seam Pucker in Plain Woven Fabrics[J]. Text Res J,1984,54 (1):32-34.
    [70]Sarhan TMAL. A Study of Seam Performance of Micro-Polyester Woven Fabrics[J]. Journal of American Science,2011,7(12):41-46..
    [71]Gurarda A. Investigation of the seam performance of PET/Nylon-elastane woven fabrics[J]. Textile Research Journal,2008,78(1):21-27.
    [72]Gupta B S, Leek F J, Baker R L,et al.Directional variations in fabric properties and seam quality [J]. Int J Clo Sci Tech,1992,4 (2/3):71-78.
    [73]Mukhopadhyay A, Sikka M, Karmakar A K. Impact of laundering on the seam tensile properties of suiting fabrics[J]. Int Cloth Sci Technol,2004,16(4):394-403.
    [74]Behera B K, Sharma S. Low stress behaviour and sewability of suiting and shirting fabrics[J]. Indian Journal of Fiber and Textile Research,1998,23 (4): 233-241.
    [75]Cheng K P S,Poon K P W. Seam properties of Woven fabrics[J]. Textile Asia, 2002 (3):30-34.
    [76]Stjepanovic Z, Strah H. Selection of suitable sewing needle using machine learning techniques. Int Cloth Sci Technol,1998,10 (3/4):209-218.
    [77]De Boos A G, The objective measurement of finished fabric[M]//Brady P R (ed.). Finishing and wool fabric properties-A guide to the theary and practice of finishing woven wool fabrics. CSIRO, IWS,1997:44.
    [78]高雪莲,吴巧英,武利利.薄丝织物结构、性能与缝纫缩皱的关系[J].丝绸,2011,3(3):22-25.
    [79]常婷,方丽英,潘婷等.大豆蛋白纤维机制织物性能对缝缩率的影响[J].浙江理工大学学报,2011,28(5):723-727.
    [80]De Boos A G,Roczniok A F. Communications:"engineering" the extensibility and formability of wool fabrics to improve garment appearance[J]. International Journal of Clothing Science and Technology,1996,8 (5):51-59.
    [81]Amirbayat J. The buckling of flexible sheets under tension, Part 1:Theoretical analysis, Part2:Experimental studies[J].J Text Inst,1991,82 (1):61-77.
    [82]Kim HA, Kim SJ. Seam pucker and formability of the worsted fabrics [J]. Fibers and Polymers,2011,12(18):1099-1105.
    [83]Hui CL, Ng SF. Predicting Seam Performance of Commercial Woven Fabrics Using Multiple Logarithm Regression and Artificial Neural Networks Textile [J]. Textile Research Journal,2008,79(18):1649-1657.
    [84]Gersak J. Development of the system for qualitative prediction of garment appearance quality [J]. Int J Clo Sci Tech,2002,14 (3/4):169-180.
    [85]Pavlinic D Z,Gersak J,Demsar J,et al. Predicting seam appearance quality[M]. Textile Research Journal[J].2006,76 (3):235-242.
    [86]Wu Q Y, Zhang W B, Wu C S, Zhu L J. Investigation of Seam Pucker in Lightweight Silk [J]. Textile Bioengineering and Informatics Symposium Proceedings. (13),2010:620-626.
    [87]Wu Qiao-Ying and Zhang Wen Bing. Influence of mechanical properties of lightweight silk fabrics on seam shrinkage [J]. Advanced Material Research, 2011(1):119-122.
    [88]Minazio P G. The fabric processing performance and its rolr in predicting the appearance of man's wool suit jackets. [J].Int J Clo Sci Tech,1998,10 (3/4): 182-190.
    [89]朱柳静,吴巧英,高雪莲.轻薄丝织物的斜向力学性能及其与缝纫缩皱关系的研究[J].丝绸,2010,47(3):20-23.
    [90]Sandow K. Seam puckering:common sewing problem and solutions [J]. Apparel Manufacturers,1990 (9):14-18.
    [91]Gersak J. Study of relationship between fabric elastic potential and garment appearance quality [J]. Int J Clo Sci Tech,2004,14 (1/2):238-251.
    [92]Park C K,Kang T J. Objective evaluation of seam pucker using artificial intelligence. Part III:using the objective evaluation method to analyze the effects of sewing parameters on seam pucker[J]. Text Res J,1999,69 (12):919-943.
    [93]Pierce F T. The 'handle' of cloth as a measurable quantity[J]. J TextInst,1930 (21):377-381.
    [94]李汝勤,宋钧才,纤维和纺织品测试原理与仪器[M].中国纺织大学出版社,1995.
    [95]Fabrics:Sensory and Mechanical Properties[J]. Textile Progress,1996,26 (3): 36-38.
    [96]川端季雄.KES-F系统的应用[J].纤维工业(日),1991,47(11):624-628.
    [97]Shishoo J R L,虞洋(译).织物的评定[J].江苏丝绸,1992(5):39-43.
    [98]Minazio P G. FAST-fabric Assurance by Simple Testing[J].Int J Clo Sci Tech, 1995,7 (2/3):43-48.
    [99]Bassett RJ, Postle R, Pan N. Experimental Methods for Measuring Fabric Mechanical Properties:A Review and Analysis [J]. Text Res J,1999,69 (11): 866-875.
    [100]Yick KL, Cheng KPS, Dhingra RC,et al. Comparison of Mechanical Properties of Shirting Materials Measured on the KES-F and FAST Instruments[J]. Text Res J, 1996,66 (10):622-633.
    [101]陈东生,赵书经,日下部信幸.KES系统与FAST系统物理力学指标的比较[J],纺织学报,2008,29(3):76-79,86.
    [102]王革辉.KES与FAST系统织物低应力力学性能的比较[J],纺织学报,2002,23(6):458-459.
    [103]Tokmak O, Berkalp O.B., Gersak J. Investigation of the Mechanics and performance of Woven Fabrics using objective evaluation techniques. Part 1:The relationship between FAST, KES-F and Cuisick's Drape-Meter parameters [J]. Fibers &Textiles in Eastern Europe,2010,18 (2):55-59.
    [104]Ancutiene K, Strazdiene E, Nesterova A. The relationship between fabrics bending rigidity parameters defined by KES-F and FAST equipment [J]. Materials Science,2010,16 (4):346-352.
    [105]刘侃.基于织物力学性能的服装缝纫平整度等级客观评价系统的建立[D].东华大学博士学位论文,2005:26.
    [106]许同洪,顾平.羊毛织物的超喂缝缩率与力学性能的关系[J].纺织学报,2009,30(7):47-50.
    [107]陈慧敏,顾洪波,张渭源.光栅投影技术在织物平整度等级评定中的应用[J].仪器仪表学报,2007,28(5):903-907.
    [108]潘永惠.基于神经计算的服装缝纫性能模糊评价研究[D].江南大学博士学位论文,2008:3-5.
    [1]Kawabata S, Niwa M. Clothing engineering based on objective measurement technology [J]. Int J Clo Sci Tech,1998,10 (3/4):263-272.
    [2]Amirbayat J. An energy approach to the instability problem of overfeed seams: part 1:theoretical analysis [J]. Int J Clo Sci Tech,1990,2 (1):21-25.
    [3]Kwong M Y. Engineering principles in man's jacket pattern construction[C]// Proc.of 1 st China International Wool Textile Conference. Xi'an",1994:214-219.
    [4]Youngjoo N. Assessing Wrinkling Using Image Analysis and Replicate Standards[J]. Text Res J,1999,65 (3):149-157.
    [5]Fan J,Liu F. Objective evaluation of garment sewing using 3-D laser scanning technology[J]. Text Res J,2000,70 (11):1025-1030. [6] Koehl L,Miou J C,Zeng X Y,et al. Computational Textile,2007:39-54.
    [7]Mak K L,Li W,Ranchordas A N,et al. CT 3rd International Conference on Computer Vision Theory and Applications, CY,2008 JAN:22-25.
    [8]KL Mak, W Li Objective evaluation of seam pucker on textiles by using self-organizing map. IAENG International J. of Computer Science,2008,35:1, IJCS_35_1_07.
    [9]李艳梅,仇晓坤,蒋真真.缝纫平整度客观评判模型的研究[J],丝绸,2011,48(4):28-31.
    [10]Park C K,Lee D H,KANG T J. A new evaluation of seam pucker and its application[J]. Int J Cloth Sci Tech,1997,9 (3):252.
    [11]Jucien M,Vobolis J. Seam pucker indicators and their dependence upon the parameters of a sewing machine [J]. Int J Clo Sci Tech,2008,20 (4):31-239.
    [12]Dobilaite V, M Juciene. Evaluation of Seam Pucker Using Shape Parameters [J]. Materials Science,2010,16 (2):154-158.
    [13]Postle R, Postle J. Fabric manipulation in apparel manufacture based on objective measurement technology[C]. Proc:Society of fiber science and technology. Yokohama:Japan,1994:479.
    [14]Kawabata S. Fibre science to apparel engineering[J]. Text Asia,1998 Nov:51-56.
    [15]高雪莲,吴巧英,武利利.薄丝织物结构和性能与缝纫缩皱的关系[J].丝绸,2011,48(3):22-25.
    [16]Wu Qiao-Ying and Zhang Wen Bing. Influence of mechanical properties of lightweight silk fabrics on seam shrinkage [J]. Advanced Material Research,2011 (1):119-122.
    [17]常婷,方丽英,潘婷等.大豆蛋白纤维机制织物性能对缝缩率的影响[J].浙江理工大学学报,2011,28(5):723-727.
    [18]朱柳静,吴巧英,高雪莲.轻薄丝织物斜向力学性能及缝纫缩皱研究[J].丝绸,2010,47(3):20-23.
    [19]唐虹.雪纺织物性能与缝缩方向性研究[J],纺织学报,2008,29(10):87-91.
    [20]方丽英,袁观洛.氨纶机织物性能与缝纫质量关系的研究[J],纺织学报,2004,25(3):57-59.
    [21]武利利,吴巧英,冯婉婉.薄型丝织物缝纫缩皱与缝纫线纤度及施加张力的关系[J].丝绸,2012,49(6):31-35.
    [22]杨建忠,王善元,轻薄织物屈曲变形与缝纫起皱关系的研究[J].西北纺织工学院学报,2001,15(1):5-10.
    [23]陈国强,杨如馨.新编丝织物染整[M].中国纺织出版社,2006:1.
    [24]冯岑,真丝绉类织物洗涤缩水率的测试分析[J].江苏丝绸,2001(5):31-33.
    [25]AATCC 88B.Smoothness of Seams in Fabrics after Repeated Home Laundering [S].
    [26]张文彤、邝春伟.SPSS统计分析基础教程[M].高等教育出版社,2011:183-184.
    [27]薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2007:229-232.
    [28]庄楚强吴亚深.应用数理统计基础[M].广州:华南理工大学出版社,2005:275-277.
    [29]吴子婴,李茂松.涤纶仿真丝织物厚度与物理指标关系及分类方法的研究[J].浙江丝绸工学院学报,1998,15(2):86-92.
    [1]Kawabata S, Niwa M. Clothing engineering based on objective measurement technology. Int J Clo Sci Tech 1998; 10:263-272.
    [2]陈超.现行丝织物经线织缩率计算方法剖析[J].苏州大学学报(工科版),2002,22(2):7-10.
    [3]高斌,江世璟,皮上超.平纹织物织缩率的实用计算[J].纺织学报,2003,24(2):134-136.
    [4]傅菊芬,白伦.织物缩水机理及其数学模型的研究与应用[J].纺织学报,2006,27(4):31-35.
    [5]kilby W F.2-planar stress-strain relationships in woven fabrics [J]. J Text Ins. 1963,54(1):T9-T27.
    [6]朱柳静,吴巧英,高雪莲.轻薄丝织物的斜向力学性能及其与缝纫缩皱关系的研究[J].丝绸,2010,3(3):20-23.
    [7]高雪莲,吴巧英,武利利.薄丝织物结构、性能与缝纫缩皱的关系[J].丝绸,2011,3(3):22-25.
    [8]Wu Q Y, Zhang W B, Wu C S, Zhu L J. Investigation of Seam Pucker in Lightweight Silk [J]. Textile Bioengineering and Informatics Symposium Proceedings.2010:620-626.
    [9]Wu Qiao-Ying and Zhang Wen Bing. Influence of mechanical properties of lightweight silk fabrics on seam shrinkage [J]. Advanced Material Research,2011 (1):119-122.
    [10]Gurarda A. Investigation of the seam performance of PET/Nylon-elastane woven fabrics[J]. Textile Research Journal,2008,78(1):21-27.
    [11]Stylios G, Sotomi JO. Investigation of seam pucker in lightweight synthetic fabric as an aesthetic property (Parts Ⅰ, Ⅱ). J Text Inst 1993; 4:593-607.
    [12]杨建忠,王善元.轻薄织物斜向力学性能与缝纫起皱关系的研究[J].西北纺织工学院学报2001,15(3):15-20.
    [13]Park CS. A study of seam puckering in thin fabrics. Kor Soc Clo Textiles 1997;1:23-28.
    [14]DobilaiteV, Petrauskas A. The effect of fabric structure and mechanical properties on seam pucker. Material Sience 2002;8:495-499.
    [15]谢光银,织物几何结构特征与密度设计的研究[J],北京纺织,2000(3):28-30
    [16]Tester, D. Application of FAST to fabric and garment manufacture. CSIRD press, 1988. p.25.
    [17]张文彤、邝春伟.SPSS统计分析基础教程[M].高等教育出版社,2011:183-184.
    [18]程琮,范华.Levene方差齐性检验[J].中国卫生统计,2005,22(6):408,420.
    [19]曾艳庄刘段春生.两个非正态样本同分布检验的非参数法选择[J].中国卫生统计,2012,29(2):210-213.
    [20]程琮,谷秀芳,程玮.Hollander极端反应检验[J].中国卫生统计:1999,16(3):170-171.
    [1]MASAKO N. Sewability of new synthetic fabrics[J]. Jpn Res Assn Text End-Uses, 1994,35(1):20-29.
    [2]高雪莲,吴巧英,武利利.薄丝织物结构、性能与缝纫缩皱的关系[J].丝绸,2011,3(3):22-25.
    [3]Wu Qiao-Ying and Zhang Wen Bing. Influence of mechanical properties of lightweight silk fabrics on seam shrinkage [J]. Advanced Material Research, 2011(1):119-122.
    [4]常婷,方丽英,潘婷等.大豆蛋白纤维机制织物性能对缝缩率的影响[J].浙江理工大学学报,2011,28(5):723-727.
    [5]Amirbayat J. The buckling of flexible sheets under tension, Part 1:Theoretical analysis, Part2:Experimental studies[J].J Text Inst,1991,82 (1):61-70.
    [6]Amirbayat J. The buckling of flexible sheets under tension, Part2:Experimental studies[J].J Text Inst,1991,82 (1):71-77.
    [7]杨建忠,王善元,轻薄织物屈曲变形与缝纫起皱关系的研究[J].西北纺织工学院学报,2001,15(1):5-10.
    [8]Dobilaite V,Petrauskas A. The effect of fabric structure and mechanical properties on seam pucker[J]. Material Sience,2002,8 (4):495-499.
    [9]Cheng K P S,Poon K P W. Seam properties of Woven fabrics[J]. Textile Asia, 2002 (3):30-34.
    [10]De Boos A G,Roczniok A F. Communications:"engineering" the extensibility and formability of wool fabrics to improve garment appearance[J]. International Journal of Clothing Science and Technology,1996,8 (5):51-59.
    [11]Wu Q Y, Zhang W B, Wu C S, Zhu L J. Investigation of Seam Pucker in Lightweight Silk [J]. Textile Bioengineering and Informatics Symposium Proceedings. (13),2010:620-626.
    [12]朱柳静,吴巧英,高雪莲.轻薄丝织物的斜向力学性能及其与缝纫缩皱关系的研究[J].丝绸,2010,3(3):20-23.
    [13]杨建忠,王善元.轻薄织物斜向力学性能与缝纫起皱关系的研究[J].西北纺织工学院学报2001,15(3):15-20.
    [14]李艳梅.织物性能对服装缝纫质量的影响分析[J].上海纺织科技,2008(3):45-48.
    [15]许同洪,顾平.羊毛织物的超喂缝缩率与力学性能的关系[J].纺织学报,2009,30(7):47-50.
    [16]刘冠彬,王玉岭,张文斌.精纺毛织物最大缝缩率与织物的纱向角度相关性模型的讨论[J].东华大学学报,2012,38(3):303-307.
    [17]Kim HA, Kim SJ. Seam pucker and formability of the worsted fabrics [J]. Fibers and Polymers,2011,12(18):1099-1105.
    [18]Hui CL, Ng SF. Predicting Seam Performance of Commercial Woven Fabrics Using Multiple Logarithm Regression and Artificial Neural Networks Textile [J]. Textile Research Journal,2008,79(18):1649-1657.
    [19]朱文艺浦冬晓.基于核主成分分析的丝织物缝纫平整度模糊评价[J],通化师范学院学报,2011(10):17-18.
    [20]刘侃.基于织物力学性能的服装缝纫平整度等级客观评价系统的建立[D].上海:东华大学,2005:1-5.
    [1]YAMADA Y. A Study of seam pucking[J]. Jpn Res Assn Text End-Uses,1993, 34(3):37-45.
    [2]YAMADA Y,MORI M,NIWA M. A study of seam puckering, II. Prediction of seam puckering of ladies' thin dress fabrics based on mechanical properties[J]. Jpn Res Assn Text End-Uses,1995,36 (2):45-53.
    [3]MASAKO N. Sewability of new synthetic fabrics[J]. Jpn Res Assn Text End-Uses, 1994,35(1):20-29.
    [4]TASAKI K,KANAMITSU T. Seam pucker prediction from fabric properties and its preventive method[J]. J Text Mach Soc Japan,1998,51 (1):107-112.
    [5]Wu Q Y, Zhang W B, Wu C S, Zhu L J. Investigation of Seam Pucker in Lightweight Silk [J]. Textile Bioengineering and Informatics Symposium Proceedings. (13),2010:620-626.
    [6]朱柳静,吴巧英,高雪莲.轻薄丝织物的斜向力学性能及其与缝纫缩皱关系的研究[J].丝绸,2010,3(3):20-23.
    [7]刘侃.织物缝纫平整度客观评价新方法[J].纺织导报,2007(12):96-97.
    [8]鲁茂、贺昌政,对多重共线性问题的探讨.统计与决策,2007(8):5-9.
    [9]范蕤,陆建德,基于模糊神经网络的丝织物缝纫性能预测[J].苏州大学学报,2008(03):60-63,71.
    [10]潘永惠,包芳,王士同.基于改进RBF网络的缝纫平整度模糊辩识系统[J],纺织学报,2008,29(3):76-79,86.
    [11]刘侃.基于织物力学性能的服装缝纫平整度等级客观评价系统的建立[D].东华大学博士学位论文,2005.
    [12]朱文艺浦冬晓.基于核主成分分析的丝织物缝纫平整度模糊评价[J],通化师范学院学报,2011(10):17-18.
    [13]倪红.基于基本规格参数的织物缝纫平整度的研究[J],毛纺科技,2009(12):45-48.
    [14]AMIRBAYAT J. An energy approach to the instability problem of overfeed seams:Part 1.-Theoretical analysis [J]. Int J Clo Sci Tech,1990,2(1):21-25.
    [15]AMIRBAYAT J,NORTON M L. An energy approach to the instability problem of overfeed seams:part 2:experimental analysis [J]. Int J Clo Sci Tech,1990,2(2): 7-13.
    [16]KAWABATA S,NIWA M. Clothing engineering based on objective measurement technology [J]. Int J Clo Sci Tech,1998,10(3/4):263-272.
    [1]庄楚强,吴亚深.应用数理统计基础[M].广州:华南理工大学出版社,2005:275-277.
    [2]张文彤、邝春伟.SPSS统计分析基础教程[M].高等教育出版社,2011:123-125.
    [3]鲁茂、贺昌政,对多重共线性问题的探讨.统计与决策,2007.(8):5-9.
    [4]满敬,銮杨薇.基于多重共线性的处理方法[J],数学理论与应用,2010(2):105-109.
    [5]杨梅,肖静,蔡辉.多元分析中的多重共线性及其处理方法[J],中国卫生统计,2012,29(4):620-624.
    [6]肖筱南.小样本多元逐步回归的最优筛选分析[J],统计与信息论坛,2002(17):22-24.
    [7]杨有,李晓虹.多重共线性的逐步回归检验分析[J],重庆三峡学院学报,2006,22(3):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700