用户名: 密码: 验证码:
亚麻粗纱脱胶微生物的选育与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻(拉丁学名:Linum usitatissimum),数千年以来一直是人类优质纤维的来源,如今不仅能用于纺纱织造,也被广泛应用于高性能复合材料等前沿领域。在亚麻纤维的纺纱过程中,存在着一道工序:亚麻粗纱湿纺细纱过程前,需要对粗纱进行脱胶。传统上,亚麻粗纱脱胶使用一种高温碱煮的方法。这种方法,不仅消耗了大量热能,更产生了化学污染的排放。本研究基于现代微生物工程理论,考虑利用生物菌株发酵液或提纯酶液进行亚麻粗纱脱胶的微生物方法,为替代传统化学方法,提供了一种可能。
     目前苎麻的生物脱胶工艺已经比较成熟而亚麻的生物脱胶手段包括细菌和酶脱胶的研究都相对不够成熟。本研究在前人的基础上,构建技术路线涉及微生物学研究和脱胶工艺研究两部分。传统的微生物培养法,通过稀释梯度涂布和划线分离法,可以获得部分脱胶优势菌种,利用分子生物学手段和生理生化测试对其进行鉴定,同时利用酶学性质进行评价。脱胶工艺研究则揭示了在菌株发酵液深层发酵状况下的脱胶液生理生化变化,为最终工业级发酵水平提供理论基础。
     首先以亚麻粉为唯一碳源,东海腐烂海草作为微生物来源从富集培养液中分离纯化得10株海洋细菌,10种细菌菌种纤维素酶活较低,木聚糖酶活及果胶酶活较高,都比较适用于亚麻生物煮漂;利用生理生化分析和分子生物学手段,鉴定出10种细菌菌种所属种系。进一步分析表明10株菌株中D3、D4、D8、D10用于亚麻粗纱脱胶,残胶率比较低,并且这几株菌种的脱胶能力都好于现有的商品果胶酶,有进一步研究的潜力。另分离出4株海洋真菌,利用显微镜镜检结果和分子生物学手段,鉴定出4种真菌菌种所属种种系。初步测定真菌发酵液酶活,分析其具有脱胶能力,有待进一步研究。
     在筛选菌种的基础上构建并优化了亚麻粗纱微生物脱胶的工艺。在摇瓶水平下构建亚麻粗纱的细菌脱胶工艺为:细菌种子→摇瓶活化细菌种子→细菌脱胶液发酵→发酵液粗纱脱胶→湿热灭活后处理。在此基础上聚焦发酵条件和脱胶条件的优化过程。对从海洋环境中筛选到的D3和D4两株菌种的细菌发酵液进行了发酵条件优化。同时对D3和D4两株菌种在得到最优纤纤维性能的发酵条件下制成发酵液的脱胶粗纱进行了纤维性能分析。结果表明生物脱胶效果明显并且柔和。对D3菌种发酵液的脱胶条件进行了优化。在脱胶过程中使得酶活较高的优化条件与使纤维性能较优的优化条件并不相同。要获得较为优化的脱胶后纤维性能,在适当的脱胶基础上,需要一定的高碱性环境和高温环境。
     细菌脱胶液的酶学性质也在本文中被着重分析。首先对不同发酵水平下D3菌种发酵过程中的生长曲线和酶活曲线进行了测定,发现菌种生长曲线符合微生物典型生长曲线的四期模型,酶活在此过程中存在多个顶峰。进一步分析发现摇瓶水平的菌种浓度和酶活要比发酵水平提前到达顶峰,说明在摇瓶水平条件下发酵液产酶活速率较快。酶活曲线结果说明菌种发酵液的酶活存在好几个顶峰,说明菌种发酵液在脱胶过程中可以被反复利用。进一步研究表明,亚麻粗纱脱胶效果与发酵液酶活力成正相关,与发酵液所含总酶含量也成正相关。相同发酵条件下,使用粗提冻干混合酶与使用发酵脱胶的效果相当。酶量加倍脱胶效果有所提高,但各项物理参数非成倍提高,效果不显著。对于亚麻粗纱生物脱胶的总体效果来说,从发酵液中提取的果胶与木聚糖混合酶,其应用效果要比单一酶效果要好,接近并达到化学脱胶的效果。但如果考虑生产成本,则单纯细菌发酵液也已经能满足生产要求。
     在实验室的研究基础上,进行了工厂放大实验的研究。放大实验选择了两家工厂进行实验并重复验证实验结果。在浙江金鹰亚麻集团有限公司进行的生物脱胶方案工厂试验,方案在总脱胶时间上优于传统化学脱胶,同时还具备了化学品损耗小、化学污染小和能耗小等优点。从细纱成纱质量看,生物脱胶的纱线质量也不亚于化学脱胶。这说明生物脱胶是完全可以替代传统化学脱胶方法的。在湖北精华纺织集团有限公司实验的结果表明生物脱胶方案在这次试验中也能够用来替代传统化学脱胶,同时生物脱胶在化学灭活前的生物脱胶工艺路线是未来较为适合的生物脱胶放大设计工艺方案。酶与生物发酵液效果差异不大,可以考虑在未来生产中在不适合发酵液的生产工艺中使用生物粗酶。此外在增加化学助剂的基础上,脱胶时间3小时就能满足生产要求。
     最后总结本研究的结果,展望今后的研究方向。如果能在目前的工作基础上,筛选或通过基因工程手段构建到具有分泌更高活性脱胶酶的菌株,选择到更有利于生物脱胶的脱胶助剂并进一步优化工艺参数,则亚麻粗纱的生物脱胶方法必将得到长足的进步,最终用于工厂生产。
Flax(binomial name:Linum usitatissimum) has been a source of high quality fiber for thousands of years. It can be widely used for spinning, weaving, high-performance composite materials and other fields. In processing of flax yarn, traditionally, a high-temperature alkali method was used in flax roving degumming and bleaching. This method both consumes a lot of energy and produces chemical pollution emissions. Based on the theory of modem microbial engineering, the use of microorganism fermentation or purified enzyme is used in degumming of flax roving as an alternative to traditional chemical method.
     Currently, degumming of ramie has been used in an industrial scale and any other bio-methods used in bast fiber are relatively immature. In this study, microbiology and degumming methods were both researched. For microbiology, microorganism were selected using molecular biology and physiological and biochemical tests. Physiological and biochemical changes in the degumming methods were studied in the deep liquid fermentation conditions. Both microbiology and degumming method research were helpful to build efficient degumming system.
     Ten strains of marine bacteria were isolated from the enrichment and purified.Since polygalacturonase and xylanasc arc useful in scouring and high cellulase activities damage fiber quality, high polygalacturonase and xylanase and low cellulase activities were chosen as the standard of bacteria scouring. Physiological and biochemical analysis and molecular biology methods were used to identify. Further analysis showed that D3, D4, D8and D10for retting flax roving were better than product pectinase. For further studies, another four strains of marine fungus were also and identified. Determination of fungal fermentation enzyme activity pended further study.
     Flax roving degumming process was shown:bacterial seed→seed fermentation→bacterial fermentation→degumming→post-processing.D3and D4two strains screened from the marine environment were analyzed. Polyglaeturonase were taken as the enzyme activities. Tenacity and fineness were both considered as properties of fibers(flax bundles) and they were normalized to standardize then given the same weight to define a textile evaluation value as a nondimensional value to measure property of fibers. High temperature(35-40℃) and middle timc(12hours) made good production of polygalcturonase which is the key in scouring and keeping good fiber quality. But it still needs more alkaline for further scouring considering traditionally way is alkaline scouring. Goal programming was used to compute the estimated goal of maximum textile evaluation value. The results of computing indicates that maximum textile evaluation value was at coded factor(01.6820), which is initial pH of9, temperature of40℃, scouring time of12hours. The adequacy of the predicted model was examined by additional independent experiments at the suggested optimal synthesis conditions that flax rovings were scoured to verification that tenacity and fineness was22.78cN/tex and1165Nm respectively and SEM figure also supported the point.
     Enzyme in degumming was explored. Further analysis revealed that the level of bacteria flask concentration and enzyme activity peaked earlier than the level of fermentation, under the conditions described in the sample fermented liquid level reaches the level unglued faster rate. Activity curve results illustrate the activity of bacteria fermentation broth presence of several peaks, indicating that bacteria in the fermentation broth degumming process can be repeatedly used In the optimal fermentation conditions, the use of ammonium sulfate salting out method of fractional precipitation mainly flax degumming of fermented liquid enzyme, determine the relative enzyme activity get various enzymes ammonium sulfate saturation range, a large number of salting out, and in accordance with the commercial enzyme.
     Enlarge experiment were carried on on the bias. Test in Zhejiang Golden Eagle Group Co. Showed that the total program time was shorter than traditional chemical degumming and also chemical pollution and energy consumption was low. This shows degumming is completely replace traditional chemical degumming methods. Results of test in Textile Group Co., Ltd. in Hubei showed that the biological degumming solution can also be used to replace traditional chemical degumming, while the chemical degumming before inactivation of biological degumming process route is more appropriate for the future design of biological degumming enlarge technology program. Chemical supplement was favorable for biological degumming and3hours was enough to meet production requirements.
     In conclusion,based on the screening or through genetic engineering to build higher activity with the secretion of enzyme degumming strains selected to be more conducive degumming degumming auxiliaries and further optimize the process parameters, flax roving biological degumming approach is bound to be great progress, and ultimately used in the factory.
引文
[1]刘晓兰, 郑喜群, 江洁, 等.生物法亚麻原茎脱胶过程及新工艺[J].应用与环境生物学报,2001,7(4): 392-395.
    [2]郑磊, 丁若垚, 董政娥, 等.亚麻粗纱的细菌脱胶初探[J].东华大学学报(自然科学版,2012,38(4).
    [3]郑磊, 丁若垚, 郁崇文.脱胶细菌在亚麻粗纱脱胶中的初步应用[J].纺织学报,2012,33(8):66-70.
    [4]郑磊.亚麻粗纱的细菌脱胶研究[D].东华大学,2012.
    [5]Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction[J]. J. Am. Chem. Soc,2002,124 (31):9074-82.
    [6]Updegraff DM. Semimicro determination of cellulose in biological materials[J]. Analytical Biochemistry,1969,32 (3):420-424.
    [7]Pornsak Sriamornsak. Chemistry of Pectin and its Pharmaceutiacal Uses:A Review[J]. Silpakorn University International Journal,2003,3 (1-2):206.
    [8]McCartney L, Marcus S E, Knox J P. Monoclonal antibodies to plant cell wall xylans and arabinoxylans[J]. Journal of Histochemistry & Cytochemistry,2005, 53(4):543-546.
    [9]喻红芹.亚麻的品质及生物处理的研究[J].东华大学博士学位论文,2009:15,2009.
    [10]Martone, Pt; Estevez, Jm; Lu, F; Ruel, K; Denny, Mw; Somerville, C; Ralph, J Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture[J]. Current biology:CB,2009,19 (2):169-75.
    [11]Foulk J A, Akin D E, Dodd R B. Processing techniques for improving enzyme-retting of flax[J]. Industrial Crops and Products,2001,13(3):239-248.
    [12]Day A, Ruel K, Neutelings G, et al. Lignification in the flax stem:evidence for an unusual lignin in bast fibers[J]. Planta,2005,222(2):234-245.
    [13]Henriksson G, Akin D E, Slomczynski D, et al. Production of highly efficient enzymes for flax retting by Rhizomucor pusillus[J]. Journal of Biotechnology,1999, 68(2):115-123.
    [14]Brown A E, Sharma H S S, Black D L R. Relationship between pectin content of stems of flax cultivars, fungal cell wall - degrading enzymes and pre - harvest retting[J]. Annals of applied biology,1986,109(2):345-351.
    [15]Mossello A A, Harun J, Resalati H, et al. Soda-anthraquillone pulp from Malaysian cultivated kenaf for linerboard production[J]. BioResources, 2010, 5(3): 1542-1553.
    [16]Akin D E, Foulk J A, Dodd R B. Influence on flax fibers of components in enzyme rotting formulations[J]. Textile research journal, 2002, 72(6): 510-514.
    [17]Hassan T, Rizkalla S. Investigation of bond in concrcte structures strengthened with near surface mounted carbon fiber reinforced polymer strips[J]. Journal of composites for construction, 2003, 7(3): 248-257.
    [18]Nishino T, Hirao K, Kotera M, et al. Kcnaf reinforced biodegradable composite[J]. Composites Science and Technology, 2003, 63(9): 1281-1286.
    [19]Paridah M T, Basher A B, SaifulAzry S, et al. Retting process of some bast plant fibres and its effect on fibre duality: A review[J]. BioResources, 2011, 6(4) 5260-5281.
    [20]Banik S, Basak M K, Paul D, et al. Ribbon rotting of jutea prospective and eco-friendly method for improvement of fibre quality[J]. Inchrstrial Crolrs and Products, 2003, 17(3): 183-190.
    [22]Beg Q, Kapoor M, Maliajall L, et al. Microbial xylanases and their industrial applications: a review[J]. Alrplied Microbiology and Biotechnology, 2001, 56(3-4): 326-338.
    [23]Biagiotti J, Puglia D, Kenny J M. A review on natural fibre-based composites-part Ⅰ : Structure, processing and properties of vegetable fibres[J]. Journal of Natrrral Fihers, 2004, 1(2): 37-68.
    [24]B1anco P, Sieiro C, Villa T G. Production of pectic enzymes in ycasts[J]. FEMS Microhiology Letters, 1999, 175(1): 1-9.
    [25]Judt M. Non-wood plant fibres, will there be a come-back in paper-making[J]. Industrial crops and products,, 1993, 2(1): 51-57.
    [25]Akin D E, Foulk J A, Dodd R B, et al. Enzyme-rotting of flax and characterization of processed fibers[J]. Journal of biotechnologv, 2001, 89(2) 193-203.
    [26]Akin, D E, Condon, B, Sohn, M, et al. Optimization for enzynic-rettlng of flax with pectate lyase[J]. Inchrstrial crops crud prochrcts, 2007,25(2), 136-146.
    [27]Christiaan Van Sumere, Rotting of flax with special reference to elizyme-rotting. The hiologl, and processing of flax,1992, p.153-193.
    [28]Paridah, M.T., Syeed, S. A., and Juiana, H.(2008). Mechanical properties of kenaf(Hibiscus cannabnius L.) stem of different ages. Proceeding Colloquium of kenaf Research,2008, p.18.
    [29]Zhang, J, Henriksson, G,& Johansson, G. Polygalacturonase is the key component in enzymatic retting of flax[J]. Journal of biotechnology,2000,81(1), 85-89.
    [30]Evans, JD, Akin, DE, Morrison, WH, et al. Modifying dew-retted flax fibers by means of an air-atomized enzyme treatment[J]. Textile research journal,2002,72(7), 579-585.
    [31]Yu P L, Choudhury S D, Ahrens K. Purification and characterization of the antimicrobial peptide, ostricacin[J]. Biotechnology Letters,2001,23(3):207-210.
    [32]Jayani R.S., Saxena S., and Gupta R.. Microbial pectinolytic enzymes:A review[J]. Process Biochemistry,2005.40(9):2931-2944.
    [33]Yadav S, Yadav P K, Yadav D, et al. Pectin lyase:a review[J]. Process Biochemistry,2009,44(1):1-10.
    [34]曾莹,向新柱等.苎麻微生物脱胶菌株的筛选[J].纺织学报,2007,28(11):73-75.
    [35]刘正初.苎麻生物脱胶工艺[J].农村新技术,2008(20):69-69.
    [36]刘正初,彭源德等.苎麻生物脱胶新技术工业化生产应用研究[J].纺织学报,2001,22(2):27-29.
    [37]刘正初,彭源德等.苎麻生物脱胶工艺技术与设备生产应用研究[J].中国农业科学,2000,33(4):68-74.
    [38]喻红芹,牛建设,郁崇文,等.亚亚麻粗纱的生物处理[J].纤维素科学与技术,2008,16(1): 50-53.
    [39]Viikari L. Ranua M, Kantelinen A, et al. Application of enzymes in bleaching[J]. Proceedings of 4th International Symposium on Wood and Pulping Chemistry, Paris. 1987,1:151-4.
    [40]Gummadi S N, Kumar D S. Microbial pectic transeliminases[J]. Biotechnology letters,2005,27(7):451-458.
    [41]Dosanjh N S, Hoondal G S. Production of constitutive, thermostable, hyper active exo-pectinase from Bacillus GK-8[J]. Biotechnology letters,1996,18(12): 1435-1438.
    [42]Fukuda Y,Hayakawa T, Ichihara E, et al. Measurement of the flux and zenith-anglc distribution of upward throughgoing muons by Super-Kamiokandc[J]. Physical Review Letters,1999,82(13):2644-2648.
    [43]Kaur C, Kapoor H C. Anti-oxidant activity and total phenolic content of some Asian vegetables[J]. International Journal of Food Science & Technology,2002, 37(2):153-161.
    [44]Zheng L, Du Y, Zhang J. Degumming of ramie libers by alkalophilic bacteria and their polysaccharidc-dcgrading cnzymes[J]. Bioresource technology,2001,78(1): 89-94.
    [45]Cao J, Zheng L, Chen S. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie[J]. Enzyme and microbial technology,1992,14(12):1013-1016.
    [46]Kashyap D R, Chandra S, Kaul A, et al. Production, purification and characterization of pectinase from a Bacillus sp. DT7[J]. World journal of Microbiology and Biotechnology,2000,16(3):277-282.
    [47]Gummadi S N, Manoj N, Kumar D S. Structural and biochemical properties of pectinases[M]. Industrial Enzymes. Springer Netherlands,2007:99-115.
    [48]Kapoor M, Kuhad R C. Improved polygalacturonase production from Bacillus sp. MG-cp-2 under submerged (SmF) and solid state (SSF) fermentation [J]. Letters in applied microbiology,2002,34(5):317-322.
    [49]Mukhopadhyay A, Dasgupta A K, Chattopadhyay l), et al. Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles[J]. Bioresource Technology,2012.
    [50]Gummadi S N, Kumar D S. Microbial pectic transeliminases[J]. Biotechnology letters,2005,27(7):451-458.
    [51]Demir N, Nadaroglu H, Tasgin E, et al. Purification and characterization of a pectin lyase produced by Geobacillus stcarothermophilus Ah22 and its application in fruit juice production[J]. Annals of microbiology,2011,61(4):939-946.
    [52]Bali R. Isolation of extracellular fungal pectinolytic enzymes and extraction of pcctic using kinnow waste as substratc[D]. A thesis submitted in partial fulfillment of the requirement of the award of Master of Science. Department of Biotechnology & ENV. Sciences partial-Punjab, India,2003.
    [53]Favela-Torres E, Volke-Sepulveda T, Viniegra-Gonzalez G. Production of hydrolytic depolymerising pectinases[J]. Food Technology and Biotechnology,2006, 44(2):221.
    [54]Patil S R, Dayanand A. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions[J]. Bioresource technology,2006,97(18):2340-2344.
    [55]Pedrolli D B, Monteiro A C, Gomes E, et al. Pectin and pectinases:production, characterization and industrial application of microbial pectinolytic enzymes[J]. Open Biotechnol J,2009,3:9-18.
    [56]Sharma D C, Satyanarayana T. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsrl in submerged fermentation by using statistical methods[J]. Bioresource technology,2006,97(5): 727-733.
    [57]Silva D O, Attwood M M, Tempest D W. Partial purification and properties of pectin lyase from Penicillium expansum[J]. World Journal of Microbiology and Biotechnology,1993,9(5):574-578.
    [58]Baracat-Pereira M C, Coelho J L C, Silva D O. Production of pectin lyase by Penicillium griseoroseum cultured on sucrose and yeast extract for degumming of natural fibres[J]. Letters in applied microbiology,1994,18(3):127-129.
    [59]Hazarika L K, Saikia C N, Kataky A, et al. Evaluation of physico chemical characteristics of silk fibres of Antheraea assama reared on different host plants[J]. Bioresource technology,1998,64(1):67-70.
    [60]Bruhlmann F, Leupin M, Erismann K H, et al. Enzymatic degumming of ramie bast fibers[J]. Journal of biotechnology,2000,76(1):43-50.
    [61]Beg Q, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial applications:a review[J]. Applied Microbiology and Biotechnology,2001,56(3-4): 326-338.
    [62]张红霞,江晓路,牟海津,等.微生物果胶酶的研究进展[J].生物技术,2005,15(5):92-95.
    [63]尤华,陆兆新,冯红霞.微生物原果胶酶的研究进展[J].工业微生物,2002,32(1):50-53.
    [64]焦云鹏,王志民,蒋长兴.固定化果胶酯酶的研究[J].食品与发酵工业,2005,31(8):137-140.
    [65]吴琼,刘自.放线菌果胶酶的分离纯化及酶学性质的研究[J].山东轻工业学院学报,1996,10(4):53-58.
    [66]刘同军,张玉臻.半纤维素酶的应用进展[J].食品与发酵工业,1998,24(6):58-61.
    [67]陈洪章,李佐虎.影响纤维素酶解的因素和纤维素酶被吸附性能的研究[J].化学反应工程与工艺,2000,16(1):30-35.
    [68]杨文博,陈锦英.β甘露聚糖酶酶解植物胶及其产物对双歧杆菌的促生长作用[J].微生物学通报,1995,22(4):204-207.
    [69]季立才,胡培植.漆酶催化氧化反应研究进展[J].林产化学与工业,1997,17(1):79-84.
    [1]Akin D E, Foulk J A, Dodd R B, et al. Enzyme-retting of flax and characterization of processed fibers[J]. Journal of biotechnology,2001,89(2):193-203.
    [2]Sharma H S S. Enzymatic degradation of residual non-ccllulosic polysaccharides present on dew-retted flax fibres[J]. Applied microbiology and biotechnology,1987, 26(4):358-362.
    [3]彭源德,冯湘沅,刘正初,等.苎麻脱胶菌种的特性研究[J].中国麻作,1995,17(2):32-35.
    [4]刘正初,彭源德,冯湘沅,等.苎麻生物脱胶新技术工业化生产应用研究[J].纺织学报,2001,22(2):91-93.
    [5]刘全永,胡江春,薛德林,等.海洋微生物生物活性物质研究[J].应用生态学报,2002,13(7):901-905.
    [6]韩文君,古静燕,李天东,等.一株产琼胶酶土壤细菌Paenibacillus sp. MY03的筛选与分子鉴定[J].绵阳师范学院学报,2007,2: 019.
    [7]曾松荣.细菌,霉菌玻片标本的制作技巧[J].生物学通报,2004,39(4):52-52.
    [8]任随周,郭俊,王亚丽,等.细菌脱色酶TpmD对三苯基甲烷类染料脱色的酶学特性研究[J].微生物学报,2006,46(3):385-389.
    [9]张冬艳.氧化亚铁硫杆菌的菌数测定法[J].内蒙古工业大学学报(自然科学版),1996,1.
    [10]董硕,迟乃玉,张庆芳.低温葡聚糖内切酶产生菌的筛选,鉴定及酶学性质[J].微生物学通报,2011,38(2):169-175.
    [11]成文,曾宝强.孔雀绿染料的微生物脱色研究[J].应用与环境生物学报,2000,6(4):370-373.
    [12]郭刚,邹全明,张卫军,等.一种改良幽门螺杆菌液体培养方法[J].第三军医大学学报,1999,21(2):124-125.
    [13]邓涤夷,王玮.硫酸铜亚碲酸钾鸡蛋琼脂培养基培养白喉杆菌的实验观察[J].微生物学通报,1980,2:32-34.
    [14]王萍.培养方法对土壤可培养细菌多样性的影响及两株新菌的初步鉴定[D].南京农业大学,2009.
    [15]王晋.VP试验的实验室评价[J].上海医学检验杂志,1992,7(3): 167-168.
    [16]于云桓.嗜热脂肪杆菌芽胞杆菌培养基指示剂的选择[J].中国消毒学杂志,1990,3:029.
    [17]周延清.DNA分子标记技术在植物研究中的应用[M].化学工业出版社,2005.
    [18]万波,郑莉,程书秋.大肠杆菌感受态细胞培养与冻存条件的研究[J].微生物学通报,1997,24(4):234-236.
    [19]谭秀华,武玉永,马立新,等.耐碱性甘露聚糖酶基因的克隆及其在毕赤酵母中的表达[J].微生物学报,2005,45(4):543-546.
    [20]于超,张明,王宇,等.栽培,野生及不同产地半夏总生物碱测定[J][J].中国中药杂志,2004,29(6):583-584.
    [21]沈萍,陈向东.微生物学实验[M].高等教育出版社,2007.
    [22]Beveridge T J. Mechanism of gram variability in select bacteria[J]. Journal of bacteriology, 1990,172(3):1609-1620.
    [23]Bao Y, Lies D P, Fu H, et al. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria[J]. Gene,1991, 109(1):167-168.
    [24]Fan J Q, Yamamoto K, Matsumoto Y, et al. Action of endo-a-N-acetylgalacto saminidase from Alcaligenes sp. on amino acid-O-glycans:Comparison with the enzyme from Diplococcuspneumoniae[J]. Biochemical and biophysical research communications,1990,169(2):751-757.
    [25]Schloter M, Assmus B, Hartmann A. The use of immunological methods to detect and identify bacteria in the environment[J]. Biotechnology advances,1995, 13(1):75-90.
    [26]李海波,吴学谦,魏海龙,等.基于形态特征和ITS序列对7个鹅膏菌属菌株的分类鉴定[J].菌物研究,2007,5(1):14-19.
    [27]Weisburg W G, Barns S M, Pelletier D A, et al.16S ribosomal DNA amplification for phylogcnetic study[J]. Journal of bacteriology.1991,173(2):697-703.
    [28]Peterson K J, Ecrnisse D J. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences[J]. Evolution & development,2001,3(3):170-205.
    [29]汤雪明,戴书文.生物样品的环境扫描电镜观察[J].电子显微学报,2001,20(3):217-223.
    [30]陈杨栋,陈婷,李力炯,等.苎麻微生物脱胶菌株筛选及脱胶效果评价[J].纺织学报,2010,31(5):69-73.
    [31]钟军,伍波,王坤,等.苎麻属野生种质资源的初步步评价[J].中国农学通报,2009,25(06): 225-230.
    [32]魏景超.真菌鉴定手册[M].上海科学技术出版社,1979.
    [1]宗炜.酸性漂白剂在亚麻粗纱漂白中的应用[J].印染,2005,31(11):12-13.
    [2]熊宗贵,生物技术.发酵工艺原理[M].中国医药科技出版社,1995.
    [3]陈坚,发酵过程,李寅.发酵过程优化原理与实践[M].化学工业出版社,2002.
    [4]余红英,杨幼慧,杨跃生,等.枯草芽孢朴菌β-甘露聚糖酶补料发酵及其特性研究[J].微生物学通报,2002,29(5):25-29.
    [5]彭源德,冯湘沅,刘正初,等.苎麻脱胶菌种的特性研究[J].中国麻作,1995,17(2):32-35.
    [6]杨萍,十伟东.束纤维的拉伸特性与强度—伸长间的关系[J].毛纺科技,2002,3:20-24.
    [7]李丹月,姜凤琴.大麻纤维脱胶主要工艺参数与纤维分裂度关系的回归分析[J].大连工业大学学报,2010,29(003):227-229.
    [8]高凤芹,刘斌,孙启忠.以草本植物为原料的稀酸预处理及发酵研究[J].西南农业学报,2011,24(1):105-109.
    [9]尹思慈,阮锡根,孙成志,等.应用偏光显微镜测定木材纤维胞壁的纤丝角[J].林业科学,1986,22(2):209-212.
    [10]Byler D M, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spcctra[J]. Biopolymers,1986,25(3):469-487.
    [11]何晓东,汤河源FT—IR显微ATR红外光谱图像系统及其应用[J].现代仪器使用与维修,1999(2):32-34.
    [12]谢大荣,吴南屏,高乃奎.聚丙烯热重分析计算方法的比较[J].高分子材料科学与工程,1986,2(1):31-38.
    [13]王惠,吴兆亮,童应凯,等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发,2006,27(6):19-22.
    [1]Cao J, Zheng L, Chen S. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie[J]. Enzyme and microbial technology,1992,14(12):1013-1016.
    [2]冯新梅,刘冰玉.发酵韧皮纤维的厌氧细菌菌株筛选及制浆效果[J].华中农业大学学报,1998,17(3): 241-245.
    [3]Zheng L, Du Y, Zhang J. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes[J]. Bioresource technology,2001,78(1): 89-94.
    [4]Bruhlmann F, Leupin M, Erismann K H, et al. Enzymatic degumming of ramie bast fibers[J]. Journal of biotechnology,2000,76(1):43-50.
    [5]Zhengchu L, Yuande P, Xiangyuan F, et al. Study on Industrial Application of Equipment and Technique for Ramie Degumming by Microorganism [J][J]. SCIENTIA AGRICULTURA SINICA,2000,4:009.
    [6]陈策岐.提取果胶新工艺——盐析法[J].食品科学,1991,2: 25-28.
    [7]张晓伦,刘旭,饶泽昌.高效纤维素分解菌混合培养及其降解能力[J].南昌大学学报(理科版),2005,29(5): 500:502.
    [8]叶钢,垮辆,毛节铸.桔果采后钙处理对纤维素酶和果胶酶的影响①[J].浙江农业大学学报,1993,19(4):450-454.
    [9]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报,2002,3(24.30).
    [1]熊宗贵,生物技术.发酵工艺原理[M].中国医药科技出版社,1995.
    [2]贺小贤.生物工艺原理[M].化学工业出版社教材出版中心,2003.
    [3]俞俊棠,唐孝宣,生物工艺学.生物工艺学[M].华东化工学院出版社,1992.
    [4]梅乐和,姚善泾,林东强.生化生产工艺学[M].科学出版社,1999.
    [5]刘国诠.生物工程下游技术[M].化学工业出版社现代生物技术与医药科技出版中心,2003.
    [6]陈天寿.微生物培养基的制造与应用[M].中国农业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700