用户名: 密码: 验证码:
城市河湖污染沉积物原位生物/物化组合修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业化和城市化进程的加快,城市河湖富营养化问题日益严重。氮磷浓度是河湖富营养化的主要限制因子,沉积物是河湖中氮磷的“源”或“汇”,因此,原位控制污染沉积物氮磷释放是控制河湖富营养化的有效措施。针对目前污染沉积物原位覆盖法中的覆盖材料存在原位再生困难、吸附的氮再释放和利用率不高等问题,本文提出了以挂膜沸石作为主要覆盖材料的原位生物/物化组合修复技术控制污染沉积物氮、磷和有机物释放,研究了该技术控制沉积物污染物释放效果、影响因素和作用机理,考察了沸石原位生物再生的可行性,分析了沸石上细菌数量变化和微生物种群结构演替特征,优化了覆盖层组成方式和规模化制备挂膜沸石方法。主要开展了以下研究。
     (1)研究了高效菌在沸石上的挂膜方法,制得挂膜沸石。研究发现,将从沉积物中分离、筛选得到的2株高效异养硝化细菌WGX10和WGX18(均属于芽孢杆菌属,Bacillus sp.)和2株高效好氧反硝化细菌HF3和HF7(均属于不动杆菌属,Acinetobacter sp.)等4株菌液按等体积比混合,制得混合菌液;再将其与灭菌原水按照体积比1:9混合,制得混合液;将天然沸石放置混合液中,在25-30℃、DO浓度2~3mg·L~(-1)以上条件下进行人工曝气挂膜培养2~3d,即可制得挂膜沸石。
     (2)试验研究了挂膜沸石覆盖对沉积物污染物释放的控制能力和效果。室内模拟试验研究结果表明,10kg·m~(-2)挂膜沸石覆盖对上覆水体TN削减率达90%以上,对表层(0~18cm)沉积物TN削减率为10%,对表层(0~8cm)沉积物TP固定率为13%;现场原位试验研究结果表明,2kg·m~(-2)挂膜沸石覆盖对上覆水体的TN和COD平均削减率为36%和41%,对上覆水体和表层(0~20cm)沉积物的TP平均固定率分别为35%和13%;可见,挂膜沸石覆盖不仅有效地控制沉积物氮、磷和有机物释放,而且进一步削减沉积物氮负荷,是原位修复污染沉积物的有效技术。
     (3)研究了影响挂膜沸石覆盖控制沉积物污染物释放的技术关键控制因子。上覆水体DO浓度、挂膜沸石覆盖强度、碳源等是主要影响因素;上覆水体DO浓度过高或过低都会影响生物脱氮效果,最佳DO浓度为1~4mg·L~(-1);挂膜沸石覆盖强度越大,控制效果越好,应结合沉积物污染程度、控制效果要求及成本等设计覆盖强度;碳源减少使生物脱氮效果降低。
     (4)研究了挂膜沸石覆盖控制沉积物污染物释放的作用机理。主要依靠生物、化学和物理协同作用削减氮负荷,沸石的物理吸附和化学离子交换快速吸附氨氮;高效菌的生物硝化反应将吸附的氨氮转化为硝氮,实现沸石原位生物再生,同时其生物反硝化反应将硝氮转化为N2。主要依靠物理吸附和化学沉淀反应固定磷。
     (5)研究了挂膜沸石上细菌数量变化和微生物菌群结构演替规律。挂膜沸石上硝化细菌数量随着碳源的减少而减少,反硝化细菌随着碳源的减少及上覆水体DO浓度增加(大于3mg·L~(-1))而减少,可见碳源和上覆水体DO浓度是影响挂膜沸石上硝化菌和反硝化菌生长的主要因子;高效菌一直存在挂膜沸石上,且都是优势菌,高效菌与土著菌存在竞争,土著优势菌的种类不断更替,新增土著优势菌中,沙雷氏菌和代夫特菌具有脱氮功能,细菌形态从球杆状变为杆状。
     (6)优化了覆盖层组成方式。覆盖层最佳组合方式是挂膜沸石层在下、河沙层在上;河沙层作用是提高挂膜沸石层吸附氨氮能力、强化挂膜沸石层生物脱氮作用、物理掩蔽未被挂膜沸石覆盖的沉积物;挂膜沸石与河沙组合覆盖可以降低挂膜沸石覆盖强度,从而减少了成本。
     (7)研究确定了挂膜沸石规模化制备方法,在扬州鸿泰支河应用了挂膜沸石与河沙组合覆盖修复技术控制沉积物污染物释放,覆盖层组成方式为上层河沙(5mm厚)、中层挂膜沸石(20mm后)和下层河沙(10mm厚)。应用结果表明:组合覆盖技术对上覆水体TN和CODCr平均削减率分别为61%和34%,对TP的平均固定率为37%;可见,规模化制备挂膜沸石方法是可行的。
With the rapid development of industrialization and urbanization, eutrophicationof the urban rivers and lakes is increasingly more serious in China. Nitrogen (N) andphosphorus (P) concentrations are the main limiting factors for eutrophication of therivers and lakes, and sediment plays an important role in eutrophication because it wasregarded as a source or a sink for N and P of the rivers and lakes. Therefore, in situreducing N and P released from sediment will be an effective solution for controllingeutrophication of the rivers and lakes. Currently, the capping material of in situcontaminated sediment capping may have the following issues:(1) in situ regeneration;(2) secondary release of nitrogen from active adsorbent;(3) limited utilization rate ofactive adsorbent. In order to resolve these issues, in situ combined biological andphysicochemical technology with biozeolite as main capping material was proposed toreduce N, P and organics released from sediment in the study. The efficiencies,mechanisms and the main influences of controlling contaminant released fromsediment using the technology were examined through laboratory and field scaleincubation experiments. The feasibility of in situ biological regenerating theammonium (NH4+-N) adsorption capacity of zeolite was investigated. The successivechanges in microbial community structure, nitrifiers and denitrifiers number on thebiozeolite were analyzed. The composition methods of capping layer and the methodsof large-scale preparation of biozeolite were optimized. The study mainly carried out as the follows:
     (1) The preparation of biozeolite: To obtain the bacterial consortium, twoheterotrophic nitrifiers WGX10and WGX18(Bacillus sp.) and two aerobic denitrifierHF3and HF7(Acinetobacter sp.) isolated from contaminated sediment were enrichedrespectively, and then mixed in equal proportion. The natural zeolite of a certainamount were put in mixed liquor of the bacterial consortium suspension and sterilizedraw water at1:9in volume for2~3days under the condition of25~30℃anddissolved oxygen (DO) above2~3mg L~(-1)via artificial aeration until the biofilmformation process was finished.
     (2) The efficiencies of the technology: The laboratory sediment incubationexperiment results showed that the reduction efficiency of total nitrogen (TN) ofoverlying water using capping with biozeolite of the dose rates of10kg m~(-2)was morethan90%, the TN reduction efficiency of sediment core (0~18cm) was10%, and thetotal phosphorus (TP) fixation efficiency of sediment core (0~8cm) was13%. Thefield sediment incubation experiment results showed that the average reductionefficiencies of TN and chemical oxygen demand (COD) of overlying water by cappingwith biozeolite dose rates of2kg m~(-2)were36%and41%, respectively, and the TPaverage fixation efficiency of overlying water and sediment core (0~20cm) was35%and13%, respectively. Therefore, biozeolite capping could not only effectively inhibitN, P and organics released from sediment, but also can further reduce some of N fromsediment, and is an effective technology for in situ remediating contaminated sediment.
     (3) The key factors of the technology: The DO concentrations of overlying water,the dosage of biozeolite and carbon source were the main factors of the technology.The efficiencies of biological nitrogen removal were influenced by too high or low DOconcentrations, and the optimal concentration range of DO was between1~4mg L~(-1).The higher the dosages of biozeolite were, the better efficient reduction of contaminantreleasd from sediment were, and in order to design the dosage of biozeolite, pollutionlevel of sediment, requirement of reduction efficiency and technology cost should betaken into consideration. The reduction of carbon source was the major reason for thedecrease of biological nitrogen removal.
     (4) The mechanisms of the technology: The N removal mainly depends on biological, physical and chemical processes. NH4+-N is quickly adsorbed by biozeolitethrough physical adsorption and chemical ion exchange. The adsorbed NH4+-N isgradually desorbed from biozeolite and transformed to NO3--N through biologicalnitrification, indicating that in situ biological regenerating the ammonium (NH4+-N)adsorption capacity of zeolite is feasible. The P fixation mainly depends on physicaland chemical processes.
     (5) The successive changes in microbial community structure, nitrifiers anddenitrifiers number on the biozeolite: The reduction of carbon source was the majorreason for the decrease of nitrifiers number. The reduction of carbon source and toohigh DO concentration (more than3mg L~(-1)) were the primary cause for the decreaseof denitrifiers number. Therefore, the DO concentration and carbon source are the mainfactors for the growth of nitrifiers and denitrifiers. Bacillus sp. and Acinetobacter sp.were still present on the biozeolite and were dominant bacteria. There was competitionbetween indigenous bacteria and isolated bacteria, and the indigenous dominantbacteria progressed continually. Moreover, two indigenous aerobic denitrificationstrains (Delftia sp. and Serratia sp.) were found on the biozeolite. The bacterial shapesvaried from sphere bacilli form to rod-shaped.
     (6) The optimization of the composition methods of capping layer: The optimalcombination method of biozeolite and sand was to put biozeolite under the fine sand.The purpose of sand on the upper layer are: to improve the NH4+-N adsorption capacityof biozeolite capping layer; to strengthen biological denitrification of biozeolitecapping layer; to cover the sediment that missed the coverage by biozeolite. Thecombination capping of biozeolite and sand could decrease the dose rate of biozeoliteand reduce the cost.
     (7) The large-scale preparation method of biozeolite was established. Thecombination capping technology of biozeolite and sand was applied for controllingcontaminant released from sediment in Hongtai River at Yangzhou City. Thecomposition method of capping layer from top to bottom was sand layer (the thicknessof5mm), biozeolite layer (the thickness of20mm) and sand layer (the thickness of10mm). The results of the average reduction efficiencies of TN, TP and COD ofoverlying water using the combination capping of biozeolite and sand were61%and 34%, respectively, and the TP average fixation efficiencies was37%. Therefore, thelarge-scale preparation method of biozeolite is feasible.
引文
[1] Azcue J M, Zeman A J, Mudroch A, et al. Assessment of sediment and porewaterafter one year of subaqueous capping of contaminated sediments in HamiltonHarbour, Canada[J]. Water Science and Technology,1998,37(6-7):323-329.
    [2] Akhurst D, Jones G B, McConchie D M. The aplication of sediment cappingagents on phosphorus speciation and mobility in a sub-tropical dunal lake[J].Marine and Freshwater Research,2004,55:715-725.
    [3] Burgess R M, Pelletier M C, Ho K T, et al. Removal of ammonia toxicity inmarine sediment TIEs: A comparison of Ulva lactuca, zeolite and aerationmethods[J]. Marine Pollution Bulletin,2003,46:607-618.
    [4] Berg U, Neumann T, Donnert D, et al. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J]. AppliedGeochemistry,2004,19(11):1759-1771.
    [5] Bai Y H, Sun Q H, Xing R, et al. Removal of pyridine and quinoline by bio-zeolitecomposed of mixed degrading bacteria and modified zeolite[J]. Journal ofHazardous Materials,2010,181:916-922.
    [6] Bai Y H, Sun Q H, Sun R H, et al. Bioaugmentation and adsorption treatment ofcoking wastewater containing pyridine and quinoline using zeolite-biologicalaerated filters [J]. Environmental Science and Technology,2011,45:1940-1948.
    [7] Bai Y H, Sun Q H, Xing R, et al. Comparison of denitrifier communities in thebiofilms of bioaugmented and non-augmented zeolite-biological aerated filters[J].Environmental Technology,2012,33(17):1993-1998.
    [8] Caputo D, Pepe F. Experiments and data processing of ion exchange equilibriainvolving Italian natural zeolites: a review[J]. Microporous and MesoporousMaterials,2007,105:222-231.
    [9] Cho Y M, Smithenry D W, Ghosh U, et al. Field methods for amending marinesediment with activated carbon and assessing treatment effectiveness[J]. MarineEnvironmental Research,2007,64:541-555.
    [10] Chen Q, Ni J R. Heterotrophic nitrification-aerobic denitrification by novel isolatedbacteria[J]. Journal of Industrial Microbiology and Biotechnology,2011,38:1305-1310.
    [11] Cornelissen G, Krusa M E, Breedveld G D, et al. Remediation of contaminatedmarine sediment using thin-layer capping with activated carbon-A fieldexperiment in Trondheim Harbor, Norway[J]. Environmental Science andTechnology,2011,45:6110-6116.
    [12] Chen Q, Ni J R. Ammonium removal by Agrobacterium sp. LAD9capable ofheterotrophic nitrification–aerobic denitrification[J]. Journal of Bioscience andBioengineering,2012,113(5):619-623.
    [13] Chen P Z, Li Q X, Wang Y C, et al. Simultaneous heterotrophic nitrification andaerobic denitrification by bacterium Rhodococcus sp. CPZ24[J]. BioresourceTechnology,2012,116:266-270.
    [14] Cornelissen G, Amstaetter K, Hauge A, et al. Large-scale field study on thin-layerCapping of marine PCDD F-contaminated sediments in Grenlandfjords, Norwayphysicochemical effects[J]. Environmental Science and Technology,2012,46:12030-12037.
    [15] Du G C, Geng J J, Chen J, et al. Mixed culture of nitrifying bacteria anddenitrifying bacteria for simultaneous nitrification and denitrification[J]. WorldJournal of Microbiology and Biotechnology,2003,19(4):433-437.
    [16] Douglas G B, Robb M S, Ford P W. Reassessment of the performance ofmineral-based sediment capping material to bind phosphorus: a comment onAkhurst et al.(2004)[J]. Marine and Freshwater Research,2008,59:836-837.
    [17] Daniel L M C, Pozzi E, Foresti E, et al. Removal of ammonium via simultaneousnitrification–denitrification nitrite-shortcut in a single packed-bed batch reactor[J].Bioresource Technology,2009,100:1100-1107.
    [18] Ding L L, Zhou Q X, Wang L,et al. Dynamics of bacterial community structure ina full-scale wastewater treatment plant with anoxic-oxic configuration using16SrDNA PCR-DGGE fingerprints[J]. African Journal of Biotechnology,2011,11(4):589-600.
    [19] F rstner U. Geochemical Techniques on Contaminated Sediments-River BasinView[J]. Environmental Science and Pollution Research,2003,10(1):58-68.
    [20] Foglar L, Sipos L, Bolf N. Nitrate removal with bacterial cells attached to quartzsand and zeolite from salty wastewaters [J]. World Journal of Microbiology andBiotechnology,2007,23:1595-1603.
    [21] Foyle A M, Norton K P. Geo-feasibility of in situ sediment capping in a GreatLakes[J]. Environmental Geology,2007,53:271-282.
    [22] Fernández N, Montalvo S, Fernández-Polanco F, et al. Real evidence about zeoliteas microorganisms immobilizer in anaerobic fluidized bed reactors [J]. ProcessBiochemistry,2007,42:721-728.
    [23] F rstner U, Apit S E. Sediment remediation: U.S. focus on capping and monitorednatural recovery. Fourth international conference on remediation of contaminatedsediment[J]. Journal of Soils and Sediments,2007,7(6):351-358.
    [24] Green M, Mels A, Lahav O, et al. Biological-ion exchange process for ammoniumremoval from secondary effluent[J]. Water Science and Technology,1996,34(1-2):449-458.
    [25] Gupta A B. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneousheterotrophic nitrification and aerobic denitrification [J]. Enzyme and MicrobialTechnology,1997,21:589-595.
    [26] Gustavson K E, Burton G A, Francingues N R, et al. Evaluating the effetiveness ofcontaminated-sediment dredging[J]. Environmental Science and Technology,2008,42(14):5042-5047.
    [27] Go J, Lampert D J, Stegemann J A, et al. Predicting contaminant fate and transportin sediment caps: Mathematical modeling approaches[J]. Applied Geochemistry,2009,24:1347-1353.
    [28] Ginkel S W V, Lamendella R, Kovacik W P, et al. Microbial community structureduring nitrate and perchlorate reduction in ion-exchange brine using thehydrogen-based membrane biofilm reactor (MBfR)[J]. Bioresource Technology,2010,101:3747-3750.
    [29] Gibbs M, Hickey C W, zkundakci D. Sustainability assessment and comparisonof efficacy of four P-inactivation agents for managing internal phosphorus loads inlake: sediment incubations[J]. Hydrobiologia,2011,658:253-275.
    [30] Gibbs M, zkundakci D. Effects of a modified zeolite on P and N processes andfluxes across the lake sediment-water interface using core incubations[J].Hydrobiologia,2011,661:21-35.
    [31] Gómez-Brandón M, Aira M, Lores M, et al. Changes in microbial communitystructure and function during vermicomposting of pig slurry[J]. BioresourceTechnology,2011,102:4171-4178.
    [32] Ge S J, Peng Y Z, Wang S Y, et al. Nitrite accumulation under constanttemperature in anoxic denitrification process: The effects of carbon sources andCOD/NO3-N[J]. Bioresource Technology,2012,114:137-143.
    [33] Hupfer M, P thig R, Brüggemann R, et al. Mechanical resuspension ofautochthonous calcite (seekreide) failed to control internal phosphorus cycle in autrophic lake[J]. Water Research,2000,34(3):859-867.
    [34] Himmelheber D W, Pennell K D, Hughes J B. Natural attenuation processes duringin situ capping[J]. Environmental Science and Technology,2007,41:5306-5313.
    [35] Himmelheber D W, Taillefert M, Pennell K D, et al. Spatial and Ttemporalevolution of biogeochemical processes following in situ capping of contaminatedsediments[J]. Environmental Science and Technology,2008,42:4113-4120.
    [36] Hrenovic J, Rozic M, Sekovanic L, et al. Interaction of surfactant-modifiedzeolites and phosphate accumulating[J]. Journal of Hazardous Materials,2008,156:576-582.
    [37] Himmelheber D W, Thomas S H, L ffler F E, et al. Microbial colonization of an insitu sediment cap and correlation to stratified redox zones[J]. EnvironmentalScience and Technology,2009,43:66-74.
    [38] Haile T, Nakhla G. The inhibitory effect of antimicrobial zeolite on the biofilm ofAcidithiobacillus thiooxidans[J]. Biodegradation,2010,21:123-134.
    [39] Huang T L, Xu J, Cai D J. Efficiency of active barriers attaching biofilm assediment capping to eliminate the internal nitrogen in eutrophic lake and canal[J].Journal of Environmental Sciences,2011,23(5):738-743.
    [40] Himmelheber D W, Pennell K D, Hughes J B. Evaluation of a laboratory-scalebioactive in situ sediment cap for the treatment of organic contaminants[J]. WaterResearch,2011,45:5365-5374.
    [41] Huang T L, Zhou Z M, Xu J L, et al. Biozeolite capping for reducing nitrogen loadof the ancient in Yangzhou City[J]. Water Science and Technology,2012,66(2):336-344.
    [42] Huang G X, Fallowfield H, Guan H D, et al. Remediation of nitrate-nitrogencontaminated groundwater by a heterotrophic-autotrophic denitrification approachin an aerobic Environment[J]. Water Air and Soil Pollution,2012,223:4029-4038.
    [43] Jacobs P H, F rstner U. Concept of subaqueous capping of contaminatedsediments with active barrier system (ABS) using natural and modified zeolite[J].Water Research,1999,33(9):2083-2087.
    [44] Jung J Y, Pak D, Shin H S, et al. Ammonium exchange and bioregeneration ofbio-flocculated zeolite in a sequencing batch reacter[J]. Biotechnology Letters,1999,21:289-292.
    [45] Jacobs P H, F rstner U. Managing contaminated sediments IV. Subaqueous storageand capping of dredged material[J]. Journal of Soils and Sediments,2001,1(4):205-212.
    [46] Jacobs P H, Waite T D. The role of aqueous iron(II) and manganese(II) insub-aqueous active barrier systems containing natual clinoptilolite[J].Chemosphere,2004,54:313-324.
    [47] Jung J Y, Chung Y C, Shin H S, et al. Enhanced ammonia nitrogen removal usingconsistent biological regeneration and ammonium exchange of zeolite in modifiedSBR process[J]. Water Research,2004,38:347-354.
    [48] Jarvie H P, Jurgens M D, Williams R J, et al. Role of bed sediments as sources andsinks of phosphorus across two major eutrophic UK river basins: the HampshireAvon and Herefordshire Wye[J]. Journal of Hydrology,2005,304(1-4):51-74.
    [49] Kim C G, Lee H S, Yoon T. Enhanced nitrification by immobilized clinoptilolite inan activated sludge[J]. Environmental Engineering Research,2003,8(2):49-58.
    [50] Kim G, Jeong W, Choi S, et al. Sand capping for controlling phosphorus releasefrom lake sediments [J]. Environmental Technology,2007,28:381-389.
    [51] Kim M, Jeong S Y, Yoon S J, et al. Aerobic denitrification of Pseudomonas putidaAD-21at different C/N Ratios[J]. Journal of Bioscience and Bioengineering,2008,106(5):498-502.
    [52] Kubota M, Nakabayashi T, Matsumoto Y, et al. Selective adsorption of bacterialcells onto zeolites[J]. Colloids and surfaces B: Biointerfaces,2008,64:88-97.
    [53] Kim S Y, Jafvert C T, Yoon S, et al. Potential consolidation-induced NAPLmigration from coal tar impacted river sediment under a remedial sand cap[J].Journal of Hazardous Material,2009,162:1364-1370.
    [54] Kim G, Jung W. Role of sand capping in phosphorus release from sediment[J].Journal of Civil Engineering.2010,14(6):815-821.
    [55] Kim J O, Kim S, Park N S. Performance and modeling of zeolite adsorption forammonia nitrogen removal[J]. Desalination and Water Treatment.2012,43:113-117.
    [56] Kupryianchyk D, Rakowska M I, Grotenhuis J T C, et al. In situ sorption ofhydrophobic organic compounds to sediment amended with activated carbon[J].Environmental Pollution.2012,161:23-29.
    [57] Kelusar R, Nerurkar A, Desai A. Development of a simultaneous partialnitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scaleprocess for removal of ammonia from effluent of a fertilizer industry [J].Bioresource Technology,2013,130:390-397.
    [58] Kulkarni P. Nitrophenol removal by simultaneous nitrification denitrification(SND) using T. pantotropha in sequencing batch reactors (SBR)[J]. BioresourceTechnology,2013,128:273-280.
    [59] Li Z H, Roy S J, Zou Y Q, et al. Long-term chemical and biological stability ofsurfactant-modified zeolite [J]. Environmental Science and Technology,1998,32:2628-2632.
    [60] Lahav O, Green M. Ammonium removal using ion exchange and biologicalregeneration[J]. Water Research,1998,32(7):2019-2028.
    [61] Lendvay J M, L ffler F E, Dollhope M, et al. Bioreactive Barriers: A comparisonof bioaugmentation and biostimulation for chlorinated solvent remediation[J].Environmental Science and Technology,2003,37:1422-1431.
    [62] Lowry G V, Johnson K M. Congener specific PCB dechlorination by microscaleand nanoscale zero-valent ironin a methanol/water solution[J]. EnvironmentalScience and Technology,2004,38:5208-5216.
    [63] Lampert D J, Reible D. An analytical modeling approach for evaluation of cappingof contaminated sediments[J]. Soil and Sediment Contamination,2009,18:470-488.
    [64] Liang S C, Zhao M, Lu Lei, et al. Isolation and characteristic of an aerobicdenitrifier with high nitrogen removal efficiency[J]. African Journal ofBiotechnology,2011,10(52):10648-10656.
    [65] Lin J W, Zhan Y H, Zhu Z L. Evaluation of sediment capping with active barriersystem (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorusand ammonium release[J]. Science of the Total Environment,2011,409:638-646.
    [66] Lampert D J. Assessing the effectiveness of thin-layer sand caps for contaminatedsediment management through passive sampling[J]. Environmental Science andTechnology,2011,45:8437-8443.
    [67] Lewis W M, Wurtsbaugh W A, Paerl H W. Rationale for control of anthropogenicnitrogen and phosphorus to reduce eutrophication of inland waters[J].Environmental Science and Technology,2011,45:10300-10305.
    [68] Lürling M, Faassen E. Controlling toxic cyanobacteria: Effects of dredging andphosphorus-binding clay on cyanobacteria and microcystins[J]. Water Research,2012,46:1447-1459.
    [69] Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populationsby denaturing gradient gel electrophoresis analysis of polymerase chainreactionamplified genesencodingfor16SrRNA[J]. Applied and EnvironmentalMicrobiology,1993,59:695-700.
    [70] Murphy P, Marquette A, Reible D, et al. Predicting the performance of activatedcarbon-, coke-, and soil-amended thin layer sediment caps[J]. Journal ofEnvironmental Engineering,2006,132(7):787-794.
    [71] Michalsen M M, Goodman B A, Kelly S D, et al. Uranium and technetiumbio-immobilization in intermediate-scale physical models of an in situbio-barrier[J]. Environmental Science and Technology,2006,40:7048-7053.
    [72] McDonough K M, Murphy P, Olsta J, et al. Development and placement of asorbent-amended thin layer sediment cap in the Anacostia River[J]. Soil andSediment Contamination,2007,16:313-322.
    [73] Mailapalli D R, Thompson A M. Polyacrylamide coated MilorganiteTMandgypsum for controlling sediment and phosphorus loads[J]. Agriculture WaterManagement,2011,101:27-34.
    [74] Montalvo S, Guerrero L, Borja R, et al. Application of natural zeolites in anaerobicdigestion processes: A review [J]. Applied Clay Science,2012,58:125-133.
    [75] Meis S, Spears B M, Maberly S C, et al. Sediment amendment with phoslock inClatto reservoir (Dundee, UK): Investigating changes in sediment elementalcomposition and phosphorus fractionation[J]. Journal of EnvironmentalManagement,2012,93(1):185-193.
    [76] Nakagawa T, Sato S, Yamamoto Y, et al. Successive changes in communitystructure of an ethylbenzene-degrading sulfate-reducing consortium[J]. WaterResearch,2002,36:2813-2823.
    [77] Nilsson P, Jansson M. Hydrodynamic control of nitrogen and phosphorus turnoverin an eutrophicated estuary in the Baltic[J]. Water Research,2002,36:4616-4626.
    [78] Nakhla G, Farooq. Simultaneous nitrification-denitrification in slow sand filters[J].Journal of Hazardous Materials,2003, B96:291-303.
    [79] Nakano K, Iwasawa H, Lee T J, et al. Improved simultaneous nitrification anddenitrification in a single reactor by using two different immobilization carrierswith specific oxygen transfer characteristics[J]. Bioprocess and BiosystemsEngineering,2004,26:141-145.
    [80] N slund J, Samuelsson G S, Gunnarsson J S, et al. Ecosystem effects of materialsproposed for thin-layer capping of contaminated sediments[J]. Marine EcologyProgress Series,2012,449:27-39.
    [81] Oliveira M, Ribero D, Nobrega J M, et al. Removal of phosphorus from waterusing active barriers: Al2O3immobilized on to polyolefins[J]. EnvironmentalTechnology,2011,32(9):989-995.
    [82] Palermo M R. Design considerations for in-situ capping of contaminatedsediments [J]. Water Science and Technology,1998,37(1-2):315-321.
    [83] Pochana K, Keller J. Study of factors affecting simultaneous nitrification anddenitrification (SND)[J]. Water Science and Technology,1999,39(6):61-18.
    [84] Patureau D, Zumstein E, Delgenes J P, et al. Aerobic denitrifiers isolated fromdiverse natural and managed ecosystems[J]. Microbial Ecology,2000,39(2):145-152.
    [85] Park S J, Lee H S, Yoon T. The evaluation of enhanced intrification byimmobilized biofilm on a clinoptilolite carrier[J]. Bioresource Technology,2002,82:183-189.
    [86] Perkins, R G, Underwood, G J. Partial recovery of a eutrophic reservoir throughmanaged phosphorus limitation and unmanaged macrophyte growth[J].Hydrobiologia,2002,481(1-3):75-87.
    [87] Perelo L W. Review: In situ and bioremediation of organic pollutants in aquaticsediments[J]. Journal of Hazardous Materials,2010,177:81-89.
    [88] Parkyn S M, Hickey C W, Clearwater S J. Measuring sub-lethal effects onfreshwater crayfish (paranephrops planifrons) behaviour and physiology:laboratory and in situ exposure to modified zeolite[J]. Hydrobiologia,2011,661:37-53.
    [89] Park S, Yu J, Byun I, et al. Microbial community structure and dynamics in amixotrophic nitrogen removal process using recycled spent caustic under differentloading conditions[J]. Bioresource Technology,2011,102:7265-7271.
    [90] Qiu X F, Wang T W, Zhong X M, et al. Screening and characterization of anaerobic nitrifying-denitrifying bacterium from activated sludge[J]. Biotechnologyand Bioprocess Engineering,2012,17:353-360.
    [91] Robertson L A, Kuenen J G. Thiosphaera pantotropha gen. nov. sp. nov., afacultatively anaerobic, facultatively autotrophic sulphur bacterium [J]. Journal ofGeneral Microbiology,1983,129:351-354.
    [92] Robertson L A, Kuenen J G. Aerobic denitrification: a controversy revived[J].Archives of Microbiology,1984,139:351-354.
    [93] Robertson L A, Niel W J, Torremans A M, et al. Simultaneous Nitrification andDenitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha[J].Applied and Environmental Microbiology,1988,54(11):2812-2818.
    [94] Ro i M, Cerjan-stefanovi, Kurajica S, et al. Ammoniacal nitrogen removalfrom water by treatment with clays and zeolites [J]. Water Research,2000,34(14):3675-3681.
    [95] Santons V A, Tramper J, Wijffels R H. Simultaneous nitrification anddenitrification using immobilized microorganisms[J]. Artificial Cells,Nanomedicine and Biotechnology,1993,21(3):317-322.
    [96] Sakai K, Ikehata Y, Ikenaga Y, et al. Nitrite oxidation by heterotrophic bacteriaunder various nutritional and aerobic conditions[J]. Journal of FermentationBioengineering,1996,82(6):613-617.
    [97] Suzuki M, Rappe M S, Giovannoni S J. Kinetic bias in estimates of coastalpicoplankton community structure obtained by measurements of small-subunitrRNA gene PCR amplicon length heterogeneity[J]. Applied and EnvironmentalMicrobiology,1998,64(11):4522-4529.
    [98] Son D H, Kim D W, Chung Y C. Biological nitrogen removal using a modifiedoxic anoxic reactor with zeolite circulation[J]. Biotechnology Letter,2000,22:35-38.
    [99] Shin E W, Han J S. Phosphate adsorption on aluminium-impregnated mesoporoussilicates: Surface structure and behaviour of adsorbents[J]. Environmental Scienceand Technology,2004,38(3):912–917.
    [100] Sun H W, Xu X Y, Gao G D, et al. A novel integrated active capping technique forthe remediation of nitrobenzene contaminated sediment[J]. Journal of HazardousMaterial,2010,182:184-190.
    [101] Sun S J, Wang L, Huang S L, et al. The effect of capping with natural andmodified zeolite on the release of phosphorus and organic contaminants from riversediment[J]. Frontiers of Environmental Science and Engineering,2011,5(3):308-313.
    [102] Struijs J, Beusen A, Zwart D D, et al. Characterization factors for inland watereutrophication at the damage level in life cycle impact assessment[J]. TheInternational Journal of Life Cycle Assessment,2011,16:59-64.
    [103] Smith A M, Kirisits M J, Reible D D. Assessment of potential anaerobicbiotransformation of organic pollutants in sediment caps[J]. New Biotechnology,2012,30(1):80-87.
    [104] Seifi M, Fazaelipoor M H. Modeling simultaneous nitrification and denitrification(SND) in a fluidized bed biofilm reactor[J]. Applied Mathematical Modelling,2012,36:5603-5613.
    [105] Sarioglu O F, Suluyayla R, Tekinay T. Heterotrophic ammonium removal by anovel hatchery isolate Acinetobacter calcoaceticus STB1[J]. InternationalBiodeterioration and Biodegradation,2012,71:67-71.
    [106] Thoma G J, Reible D D, Valsaraj K T, et al. Efficiency of capping contaminatedsediments in situ.2. Mathematics of diffusion-adsorption in the capping layer[J].Environmental Science and Technology,1993,27:2412-2419.
    [107] Tarabara V V, Wiesner M R. Physical and transport properties of bentonite-cementcomposites: A new material for in situ capping of contaminated underwatersediments[J]. Environmental Engineering Science,2005,22(5):578-590.
    [108] Tang X Q, Wu M, Yang W J, et al. Ecological strategy for eutrophication control[J].Water, Air and Soil Pollution,2012,223:723-737.
    [109] Vandecasteele B, Samyn J, Vos B D, et al. Effect of tree species choice andmineral capping in a woodland phytostabilisation system A case-study forcalcareous dredged sediment landfills with an oxidised topsoil[J]. EcologicalEngineering,2008,32:263-273.
    [110] Virdis B, Rabaey K, Rozendal R A, et al. Simultaneous nitrification, denitrificationand carbon removal in microbial fuel cells[J]. Water Research,2009,44:2970-2980.
    [111] Wang X Q, Thlbodeaux L J, Valsaraj K T, et al. Efficiency of cappingcontaminated bed sediments in situ.1. Laboratory-scale experiments ondiffusion-adsorption in the capping layer [J]. Environmental Science andTechnology,1991,25:1578-1584.
    [112] Wang P, Li X T, Xiang M F, et al. Characterization of efficient aerobic denitrifiersisolated from two different sequencing batch reactors by16S-rRNA analysis[J].Journal of Bioscience and Bioengineering,2007,103(6):563-567.
    [113] Walters E, Hille A, He M, et al. Simultaneous nitrification/denitrification in abiofilm airlift suspension (BAS) reactor with biodegradable carrier material[J].Water Research,2009,43:4461-4468.
    [114] Wittebolle L, Verstraete W, Boon Nico. The inoculum effect on theammonia-oxidizing bacterial communities in parallel sequential batch reactors[J].Water Research,2009,43:4149-4158.
    [115] Wei S, Tauber M, Somitsch W, et al. Enhancement of biogas production byaddition of hemicellulolytic bacteria immobilised on activated zeolite[J]. WaterResearch,2010,44:1970-1980.
    [116] Wang B, Wang W, Han H J, et al. Nitrogen removal and simultaneous nitrificationand denitrification in a fluidized bed step-feed process[J]. Journal ofEnvironmental Sciences,2012,24(2):303-308.
    [117] Xiong W H, Peng J. Laboratory-scale investigation of ferrihydrute-modifieddiatomite as a phosphorus co-precipitant[J]. Water Air and Soil Pollution,2011,215:645-654.
    [118] Xu D, Ding S M, Sun Q, et al. Evaluation of in situ capping with clean soils tocontrol phosphate release from sediments[J]. Science of the Total Environment,2012,438:334-341.
    [119] Yang L. Investigation of nitrification by co-immobilized nitrifying bacteria andzeolite in a batchwise fluidized bed [J]. Water Science and Technology,1997,35(8):169-175.
    [120] Yang X P, Wang S M, Zhang D W, et al. Isolation and nitrogen removalcharacteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium,Bacillus subtilis A1[J]. Bioresource Technology,2011,102:854-862.
    [121] Yao S, Ni J R, Chen Q, et al. Enrichment and characterization of a bacteriaconsortium capable of heterotrophic nitrification and aerobic denitrification at lowtemperature[J]. Bioresource Technology,2013,127:151-157.
    [122] Zhao B, He Y L, Zhang X F. Nitrogen removal capability through simultaneousheterotrophic nitrification and aerobic denitrification by Bacillus sp LY [J].Environmental Technology,2010,31(4):409-416.
    [123] Zhao B, He Y L, Hughes J, et al. Heterotrophic nitrogen removal by a newlyisolated Acinetobacter calcoaceticus HNR[J]. Bioresource Technology,2010,101:5194-5200.
    [124] Zhang J B, Wu P X, Hao B, et al. Heterotrophic nitrification and aerobicdenitrification by the bacterium Pseudomonas stutzeri YZN-001[J]. BioresourceTechnology,2011,102:9866-9869.
    [125] Zhu L, Ding W, Feng L J, et al. Isolation of aerobic denitrifiers andcharacterization for their potential application in the bioremediation of oligotrophicecosystem[J]. Bioresource Technology,2012,108:1-7.
    [126] Zhao B, An Q, He Y L, et al. N2O and N2production during heterotrophicnitrification by Alcaligenes faecalis strain NR[J]. Bioresource Technology,2012,116:379-385.
    [127] Zhang Q L, Liu Y, Ai G M, et al. The characteristics of a novel heterotrophicnitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strainL7[J]. Bioresource Technology,2012,108:35-44.
    [128] Zhu L, Ding W, Feng L J, et al. Characteristics of an aerobic denitrifier that utilizesammonium and nitrate simultaneously under the oligotrophic niche[J].Environmental Science and Pollution Research,2012,19(8):3185-3191.
    [129] Zheng H Y, Liu Y, Gao X Y, et al. Characterization of a marine origin aerobicnitrifying–denitrifying bacterium[J]. Journal of Bioscience and Bioengineering,2012,114(1):33-37.
    [130] zkundakci D, Hamilton D P, Scholes P. Effect of intensive catchment and in-lakerestoration procedures on phosphorus concentrations in a eutrophic lake[J].Ecological Engineering,2010,36:396-405.
    [131] zkundakci D, Hamilton D P, Gibbs M M. Hypolimnetic phosphorus and nitrogendynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion[J].Hydrobiologia,2011,661:5-20.
    [132] zkundakci D, Duggan I C, Hamilton D P. Dose sediment capping havepost-application effects on zooplankton and phytoplankton?[J]. Hydrobiologia,2011,661:55-64.
    [133]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2005.
    [134]陈晓蕾,张忠译.微生物的ARDRA检测[J].微生物学杂志,1999,19(4):40-43.
    [135]戴兴春,黄民生,徐亚同,等.沸石强化生化装置脱氮功能的效果及机理初探[J].环境科学,2007,28(8):1182-1188.
    [136]党秋玲,刘池,席北斗,等.生活垃圾堆肥过程中细菌群落演替规律[J].环境科学研究,2011,24(2):236-242.
    [137]丁炜,朱亮,徐京,等.好氧反硝化菌及其在生物处理与修复中的应用研究进展[J].应用与环境生物学报,2011,17(6):923-929.
    [138]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [139]高增文.山区水库氮污染行为与控制技术研究——以田庄水库为例[D].青岛:中国海洋大学,博士论文,2008.
    [140]郝建朝,刘学增,卢显芝,等. pH和沸石处理池塘底泥磷吸附与解吸行为的研究[J].环境科学与技术,2008,31(8):18-21.
    [141]黄廷林,苏俊峰,李倩.好氧反硝化菌株的筛选培养及其反硝化性能研究[J].西安建筑科技大学学报(自然科学版),2009,41(5):704-707.
    [142]胡细全,胡志操,王春秀,等.天然沸石吸附氨氮和磷的研究[J].环境科学与管理,2009,34(4):72-74.
    [143]胡小贞,金相灿,卢少勇,等.湖泊底泥污染控制技术及其适用性探讨[J].中国工程科学,2009,11(9):28-33.
    [144]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1987.
    [145]金敏,王景峰,孔庆鑫,等.好氧异养硝化菌Acinetobacter sp. YY-5的分离鉴定及脱氮机理[J].应用与环境生物学报,2009,15(5):692-697.
    [146]蒋轶锋,刘大华,孙同喜,等.沸石滤料曝气生物滤池处理水产养殖废水的工艺特性[J].环境科学,2010,31(3):703-708.
    [147]寇丹丹,张义,黄发明,等.水体沉积物磷控制技术[J].环境科学与技术,2012,35(10):81-85.
    [148]林建伟.地表水体底泥氮磷污染原位控制技术及相关机理研究[D].上海:同济大学,博士论文,2006.
    [149]林建伟,朱志良,赵建夫.天然沸石覆盖层控制底泥氮磷释放的影响因素[J].环境科学,2006,27(5):880-884.
    [150]林建伟,朱志良,赵建夫,等. HCl改性沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理研究[J].环境科学,2007,28(3):551-555.
    [151]林建伟,朱志良,赵建夫.沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理分析[J].农业环境科学学报,2007,26(2):790-794.
    [152]林建伟,朱志良,赵建夫,等.天然沸石和方解石复合覆盖技术抑制底泥磷释放的影响因素研究[J].环境科学,2007,28(2):397-402.
    [153]林建伟,朱志良,赵建夫,等.无机盐改性对沸石覆盖技术控制底泥氮磷释放的影响研究[J].湖泊科学,2007,19(1):52-57.
    [154]林建伟,朱志良,赵建夫,等.有机改性沸石覆盖抑制底泥氮磷释放的效果[J].同济大学学报(自然科学版),2007,35(12):1651-1655.
    [155]梁威,吴苏青,吴振斌.分子技术在湿地微生物群落解析中的应用[J].生态环境学报,2010,19(4):947-978.
    [156]刘启明,成路,沈冰心,等.沸石覆盖层控制水库底泥氮磷释放的影响因素[J].集美大学学报(自然科学版),2010,15(5):338-341.
    [157]刘剑楠,汪苹,尹明锐,等.高效异养硝化-好氧反硝化菌株的分离鉴定与脱氮性能[J].北京工商大学学报(自然科学版),2010,28(2):18-33.
    [158]吕永康,殷家红,刘玉香,等.一株异养硝化菌的分离鉴定及其最佳亚硝化条件[J].化工学报,2011,62(5):1421-1427.
    [159]刘云兵,孙爱华,曹秀云,等.不同固磷方式对巢湖沉积物磷吸附行为的影响[J].水生生物学报,2011,35(2):319-324.
    [160]潘纲,代立春,李梁,等.改性当地土壤技术修复富营养化水体综合效果研究: I.水质改善的应急与长期效果与机制[J].湖泊科学,2012,24(6):801-810.
    [161]邱并生.好氧反硝化菌[J].微生物学通报,2010,31(11):1712.
    [162]芮传芳,吴涓,李玉成.异养硝化细菌的筛选、鉴定及其氨氮转化特性的研究[J].生物学杂志,2012,29(1):37-41.
    [163]苏俊峰.异养型同步硝化反硝化脱氮技术及微生物特性研究[D].哈尔滨:哈尔滨工业大学,博士论文,2007.
    [164]苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态[J].环境科学学报,2007,27(3):386-390.
    [165]苏俊峰,黄廷林,刘燕,等.异养型同步硝化反硝化处理微污染水源水[J].环境科学与技术,2010,33(3):141-143.
    [166]司文攻,吕志刚,许超.耐受高浓度氨氮异养硝化菌的筛选及其脱氮条件优化[J].环境科学,2011,32(11):3448-3454.
    [167]唐艳,胡小贞,卢少勇.污染底泥原位覆盖技术综述[J].生态学杂志,2007,26(7):1125-1128.
    [168]温东辉,张曦,吴为重,等.天然沸石对铵吸附能力的生物再生试验研究[J].北京大学学报(自然科学版),2003,39(4):494-500.
    [169]王浩,陈吕军,温东辉.天然沸石对溶液中氨氮吸附特性的研究[J].生态环境,2006,15(2):219-223.
    [170]王琳,李季,郭廷忠,等.乙酸钙不动杆菌对富营养化景观水体的净化作用[J].生态环境,2008,17(5):1784-1786.
    [171]王琳,李季,康文力,等.河流沉积物中反硝化细菌的分离及脱氮除磷研究[J].环境科学,2009,30(1):91-95.
    [172]王弘宇,马放,开魏,等.两株异养硝化细菌的氨氮去除特性[J].中国环境科学,2009,29(1):47-52.
    [173]王岩,沈锡权,吴祖芳,等. PCR-SSCP技术在微生物群落多态性分析中的应用进展[J].生物技术,2009,13(9):84-87.
    [174]魏云霞.基于沸石吸附-固定化微生物SBR-SND脱氮研究[D].兰州:兰州大学,博士论文,2010.
    [175]魏巍,黄廷林,苏俊峰,等.1株贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J].生态环境学报,2010,19(9):2166-2171.
    [176]王磊,汪苹,刘健楠,等.固定异养硝化-好氧反硝化菌脱氮能力的研究[J].北京工商大学学报(自然科学版),2010,28(1):18-23.
    [177]武俊梅,王荣,徐栋,等.垂直流人工湿地不同填料长期运行效果研究[J].中国环境科学,2010,30(5):633-638.
    [178]薛传东,杨郝,刘星.天然矿物材料修复富营养化水体的实验研究[J].岩石矿物学杂志,2003,22(4):381-385.
    [179]徐金兰,黄廷林,蔡道健.挂膜沸石覆盖技术修复富营养化水体的研究[J].中国给水排水,2010,26(19):37-40.
    [180]辛玉峰,曲晓华,袁梦冬,等.一株异养硝化-反硝化不动杆菌的分离鉴定及脱氮活性[J].微生物学报,2011,51(12):1646-1654.
    [181]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册[M].北京:中国环境科学出版社,1990.
    [182]叶恒朋,陈繁忠,盛彦清,等.覆盖法控制城市河涌底泥磷释放研究[J].环境科学学报,2006,26(2):262-268.
    [183]杨小龙,李文明,陈燕,等.一株好氧反硝化菌的分离鉴定及其除氮特性[J].微生物学报,2011,51(8):1062-1070.
    [184]于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定[J].给水排水,2002,28(5):1-5.
    [185]余润兰,苗雷.异养硝化细菌Alcaligeneces sp. S3除氮特性及动力学[J].环境工程学报,2012,6(3):869-702.
    [186]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [187]邹联沛,刘旭东,王宝贞,等. MBR中影响同步硝化反硝化的生态因子[J].环境科学,2001,22(4):51-55.
    [188]张曦,吴为中,温东辉,等.生物沸石床污水脱氮效果及机理[J].环境科学,2003,24(5):75-80.
    [189]张斌,孙宝盛,季民,等. MBR中微生物群落结构的演变与分析[J].环境科学学报,2008,28(11):2192-2199.
    [190]祝凌燕,张子种,周启星.受污染沉积物原位覆盖材料研究进展[J].生态学杂志,2008,27(4):645-651.
    [191]钟继承,刘国锋,范成新.湖泊底泥疏浚环境效应:I.内源磷释放控制作用[J].湖泊科学,2009,21(1):84-93.
    [192]张新颖,吴志超,王志伟,等.天然斜发沸石粉对溶液中NH4+的吸附机理研究[J].中国环境科学,2010,30(5):609-614.
    [193]曾庆梅,司文攻,李志强,等.一株高效异养硝化菌的选育、鉴定及其硝化条件[J].微生物学报,2010,50(6):803-810.
    [194]张海耿,马绍赛,李秋芬,等.循环水养殖系统(RAS)生物载体上微生物群落结构变化分析[J].环境科学,2011,32(1):231-239.
    [195]朱兰保,盛蒂.污染底泥原位覆盖控制技术研究进展[J].重庆文理学院学报(自然科学版),2011,30(3):38-41.
    [196]赵兴敏,赵兰波王继红,等.富营养化景观水体沉积物中磷的控制研究[J].农业环境科学学报,2012,31(10):2013-2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700