用户名: 密码: 验证码:
剩余污泥酶法水解制备蛋白质、氨基酸及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剩余污泥(excess sludge, ES)有机成分中含量最高的是微生物单细胞蛋白质,而微生物单细胞蛋白质是品质好、氨基酸种类齐全的高价值饲料,但尚未得到充分利用。如果应用大量剩余污泥为原料,运用现代食品、生物加工技术,对污泥蛋白资源进行精细加工,生产出动物饲料添加剂,既可综合利用大宗蛋白质资源,避免和减少资源的浪费,提高剩余污泥的附加值;另一方面将ES蛋白应用于动物饲料中,又扩大了优质氨基酸的来源问题。
     从污泥中提取蛋白质和氨基酸的研究方法为酸水解、碱水解法及其超声波辅助法,但还存在固定投资大,资金回收周期长,反应条件剧烈,对生产设备要求较高,对环境造成严重污染,且水解产物极易发生构型改变从而造成水解产物成分极为复杂和蛋白特性变化,导致水解蛋白不能被生物体吸收利用。另外碱性水解易引起几种氨基酸结构变化或外消旋化。水解产生的废水处理需要大量的酸碱,处理费用高。
     本课题针对上述问题,选用蛋白酶水解剩余污泥提取蛋白质,并将其有效转化为氨基酸,产品纯度较高且质量高于国家有关动物饲料标准。此外,利用氧化石墨烯固定化酶反应条件温和、温度低、对蛋白质的破坏作用小等特点,发明一套可循环利用并提高蛋白质水解率的固定酶酶解方法,利用异硫氰酸苯酯(PITC)高效液相色谱、聚丙烯酰胺凝胶电泳对水解蛋白质、氨基酸进行分离纯化和鉴定,利用化学反应动力学原理探讨水解参数与固定酶深度酶解速度之间的关系,在此基础上探索深度酶解的反应动力学和机理,并对蛋白质氨基酸提取物进行重金属含量及多环芳烃(PAHs)含量分析、动物急慢性毒理学研究。
     论文的主要研究内容及结果如下:
     (1)剩余污泥主要成分及利用价值分析
     对选取的ES样品进行了主要有机组分成分分析,发现干物质ES中有机质占73.85%,其中脂肪含量约为0.6%,总糖含量为10.2%,蛋白质含量58.1%,此剩余污泥样品应用于提取蛋白质具有可行性。
     (2)蛋白酶优选及剩余污泥的水解
     考察了木瓜、碱性、中性、酸性、胰以及胃蛋白酶六种不同蛋白酶对ES蛋白质的提取效果。结果发现,碱性蛋白酶提取ES中蛋白质提取率最高。其次为中性蛋白酶和木瓜蛋白酶,胃蛋白酶、酸性蛋白酶和胰蛋白酶的提取效果较差。对碱性蛋白酶水解剩余污泥提取蛋白质的条件进行了优化,考察了不同影响因素,得到碱性蛋白酶最适工作条件为:pH值为8.0,温度55℃,加酶量为2%,反应时间4小时,液固比4:1。在此工作条件下,52.5%的蛋白质被提取出来,占干污泥重量的30.5%。
     (3)酶水解剩余污泥机理分析
     利用SDS-PAGE考察了污泥中蛋白质分布情况,结果表明,不同提取方法的SDS-PAGE蛋白质条带不同,酶法水解ES蛋白质分子量范围大约在14-100kDa;通过Michaelis-Menten方程,采用双倒数作图法绘图,得到碱性蛋白酶催化水解污泥蛋白反应的米氏常数和最大反应速率分别为Km=34.9g/L, Vmax=32.2g/(L·min)。以碱性蛋白酶水解污泥蛋白水解度为参数,推导出反映酶法水解污泥蛋白动力学模型,所建立的模型在一定程度上能模拟水解体系的酶解过程,能较准确地计算出碱性蛋白酶酶解ES蛋白的水解度,理论DH值与实际DH值基本吻合,对酶解过程的实际应用具有很高的利用价值。
     (4)酶法水解制取氨基酸的分析
     PITC柱前衍生反相高效液相色谱法可以在35min内同时分析18种氨基酸,18种氨基酸得到完全分离,相邻氨基酸峰之间均达到基线分离。说明该方法应用在分离氨基酸溶液具有较好的专属性。利用异硫氰酸苯酯(PITC)柱前衍生反相高效液相色谱法检测酶法水解污泥氨基酸溶液含有17种氨基酸,分别为必需氨基酸7种和非必需氨基酸10种。人体所必需氨基酸含量高达40%,说明酶法水解剩余活性污泥制备的氨基酸作为家禽家畜饲料应用价值高。
     (5)蛋白酶固定化及酶学性质考察
     以氧化石墨烯为基底材料,对碱性蛋白酶进行固定化,得到固定化的最优组合,即当温度为25℃,pH值为8,酶用量为600μL,戊二醛浓度2%时,碱性蛋白酶酶活力回收率可达90%左右;同时对固定化蛋白酶最适工作条件进行了考察,固定酶的最适工作条件是,体系pH为8,温度60℃C;考察了固定化酶的热稳定性、pH稳定性、储存稳定性以及重复使用性。同时确定了以酪蛋白为底物时的动力学参数,动力学分析得到游离酶和固定酶的Km常数分别是4.85和8.57mg/mL,最大速率常数max分别是5.7和6.10μg/min。固定酶的米氏常数是游离酶的1.8倍。
     (6)固定酶水解制备氨基酸的研究
     考察了氧化石墨烯固载酶体系水解ES蛋白影响因素,在温度为65℃,pH值为10,酶用量8mg/mL,时间为6h条件下,氧化石墨烯固载酶水解剩余污泥氨基酸结果达到8.23g/100g DS。固定酶与游离酶对剩余污泥粗蛋白质的水解效果几乎一样,水解得到的总氨基酸分别是8.23和10.154g/100g DS。从XRD、XPS、SEM、AFM以及TGA等表征手段分析得出:碱性蛋白酶通过戊二醛交联法已经成功地固载在氧化石墨烯载体上,并且可以了解氧化石墨烯-碱性蛋白酶复合材料的稳定性能。
     (7)污泥水解产品中重金属和持续性有机污染物的分析及对锦鲤的急性毒理学
     考察了污泥及蛋白质制品中重金属微量元素(Cu, Ni, Zn, Fe, Mn)和有害重金属(Pb, Cr, Cd, Hg, As)等金属的含量,发现污泥中铁的含量非常高,达到10247.59mg/kg DS。另外,污泥中除锌含量超标外,基本都在1984年颁布的《农用污泥中污染物控制标准》(GB4284-84)的限值之内。酶法污泥蛋白提取液中重金属微量元素析出量和有害重金属浸出量远远小于碱法、酸法提取污泥蛋白。酶法提取污泥蛋白质中有害重金属Pb、Cr、Cd、Hg、As的含量均低于饲料卫生标准(GB13078-2001),其中Pb浸出率最高。
     经微波消解、固相微萃取后,采用GC/MS分析方法,检测了污泥、三种不同方法提取的污泥蛋白及酶提污泥蛋白饲喂锦鲤鱼体内的18种多环芳烃含量,结果发现,碱法提取的污泥蛋白中,ΣPAHs含量最高,酸法次之,酶法提取的污泥蛋白ΣPAHs最少,最安全。同时考察了酶法提取粗蛋白作为饲料的安全性,锦鲤体内ΣPAHs和致癌性多环芳烃(ΣAHscare)含量普遍比较低。
     总之,本文选用ES为研究对象,利用碱性蛋白酶以及固定化碱性蛋白酶酶法水解为研究方法,系统研究了游离酶与固定酶酶法水解ES中蛋白质、氨基酸,对其水解特性及水解动力学进行了深入探讨。此外,重点考察了酶法提取ES粗蛋白中有毒有害金属及重金属、PAHs含量分析,以及ES粗蛋白应用在锦鲤鱼饲料上的初步研究。本研究为蛋白酶在ES处理中的应用提供了理论依据和实验基础,通过固定化酶技术实现了酶的回收利用、降低了酶解ES成本,并为ES中蛋白质资源化利用奠定了理论和实验基础。酶法提取出的ES蛋白可以作为动物饲料添加剂、氨基酸水溶肥料、氨基酸绿色缓蚀剂以及其他工业应用中的原材料。
Protein is thought to be the major organic compounds in excess sludge (ES), those microbial single cell protein have not been took full advantage although they are of good quality, with all kinds and reasonable ratio of amino acids. Reutilization of ES as crude material is attracting more interest, which products a series of animal feed additive through food biological and processing technology by deep processing and utilization of ES protein resource. Therefore, protein recovery from excess sludge can also provide other important benefits. For example, recovers useful biomaterials directly from excess sludge could avoid and reduce the waste of resources, improve the added value of surplus sludge, and also expanded alternative sources of protein and good quality amino acids.
     Methods of protein and amino acids recovery from excess sludge have been investigated for years. Many chemical, physical or biological treatments, such as alkali treatment and ultra-sonication have been reportedly used to disrupt the sludge floc structure and release the intracellular contents into the aqueous phase. But there have been lots of problems, such as huge fixed assets investment, a long recovery period, intense reaction conditions, the higher requirement in producing equipment is needed, cause serious pollution to the environment. More than that, the protein product cannot be absorption and utilization by organism because hydrolysis product make configuration change and protein characteristic change easily which also resulting in hydrolysis product composition is very complicated. In addition, alkkaline hydrolysis lead to several amino acid structure change or racemic change easily. Last but not least, expenses of subsequent processing are costly because of wastewater generated by base or acid hydrolysis need a lot of acid or alkali.
     For the problems above-mentioned, this paper study enzymatic hydrolysis of ES to extract protein and and translating them into amino acids effectively. The product was owned high purification and superior to the national animal feed standard. In addition, an improved rate and can be recycled method was invented by using graphene oxide immobilized enzyme have mild reaction conditions, low temperature and small destructibility on protein structure. The molecular weight ranges of protein product were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The contens of amino acids were detected by Reverse phase-high performance liquid chromatography (RP-HPLC) with phenyl isocyanate (PITC) as reagent. Furthermore, based on chemical reaction kinetics, the relationship between hydrolysis parameters and the rate of extensive hydrolysis of immobilized enzyme was dicussed. The compositions of the recovered protein, heavy metals and polycyclic aromatic hydrocarbons (PAHs) were determined. Finally, toxicity of using the protein recovered from ES was assessed by feeding Brocarded carp. The main contents and results of this study are as follows.
     (l)Analysis of main components and indudtrial value of the excess sludge
     The research indicated that the ES (dried sludge, DS) consisted of73.85%organic matter, which include58.1%protein,10.39%carbohydrate and less than1%lipid. This ES samples used in the extraction of proteins with good feasibility.
     (2)The optimal selection of protease and ES hydrolysis
     ES was hydrolyzed by six different commercial proteolytic enzymes (Papain, Alcalase, Trypsin, Pepsin, Acid proleslytic enzyme, Neutral protease). The results showed that alkaline protease has the highest extraction rate of protein from ES, followed by neutral protease and papain, the other three protease has poor effect. The protein content in the hydrolysate was determined by the Kjeldahl method, and alkaline protease was chosen for further analysis. The optimal hydrolysis conditions are pH8.0, temperature550C, enzyme to substrate (E:S)2%, reaction time4h and ratio of liquid to solid4:1. Experimental results have been shown that52.5%of protein was extracted from ES (accounting for30.5%of initial DS weight) under optimum hydrolysis conditions.
     (3)Mechanism of enzymatic hydrolysis of ES
     The subproteomes generated from ES were analyzed by SDS-PAGE. The results showed that each extraction method led to unique SDS-PAGE protein profiles. Several distinct protein bands were present in ES enzymatic hydrolysate, predominantly in the molecular weight region between14to100kDa. The kinetics of ES enzymatic hydrolysis by alkaline protease was discussed in this article. Lineweaver-Burke plot was used to assess the values of Michaelis constant (Km) and maximum effective velocity (Vmax). The kinetic analysis showed that Km and Vmax values were34.9g/L and32.2g/(L·min).
     The degree of hydrolysis (DH) of protein from ES was determined. The hydrolysis kinetic model was expressed and the theoretical DH from the hydrolysis kinetic model is consistent well with the practical DH. It shows that the kinetic model has significant application value.
     (4)Analysis of free amino acids in ES protease hydrolysate
     Eighteen kinds of free amino acids were separated completely in35min by reversed-phase high performance liquid chromatography with pre-column PITC derivatization. The method has good specificity in the separation of amino acid solution. An RP-HPLC method based on modified pre-column derivatization with PITC was applied to quantify free amino acids in a protein hydrolysate extracted from ES. As shown in results, there were17kinds of natural amino acids emerging in the ES hydrolysate, which consisted of seven kinds of essential amino acids and ten kinds of non-essential amino acids. ES enzymatic hydrolysate has great potential of application in swine and poultry diets.
     (5)Alkaline preotease was immobilized and the properties of graphene oxide-alkaline protease bio-composites
     Graphene oxide (GO) was used as substrate for immobilizing alkaline protease. The immobilizing conditions were optimized though single-factor test and orthogonal design. The test indicated that the optimum technics were as follows:the enzyme amount to1mg carriers was500μL, the concentration glutaraldehyde is2%, pH was8.0, temperature was25℃, crosslinking and absorption time were4hours and1hour. Then the activity recovery was raised to90.0%in the optimum conditions of immobilization. The optimal hydrolysis conditions were60℃and pH8.0. The results showed that the thermostability and reusability of immobilized protease have been obviously improved compared to the free enzyme. However, there was no significant change in optimum pH value between the free and immobilized protease. The immobilized protease exhibited good operational stability. Various concentrations of casein solution were used as substrate. Lineweaver-Burke plot was used to assess the values of Michaelis constant (Km) and maximum effective velocity (Vmax). The kinetic analysis showed that Km values of free and immobilized protease were4.85and8.57mg/mL, and Vmax were5.7and6.10μg/min, respectively. The proteases immobilized GO exhibited apparent Km value which was about1.77-fold higher than that of free protease.
     (6) Highly efficient catalysts of immobilized enzyme for the proteolysis of ES crude protein
     Alkaline protease immobilized on GO showed significant activity towards ES protein hydrolysates, attractive for practical applications. The optimal hydrolysis conditions for immobilized protease were65℃, pH10.0, dosage of enzyme8mg/mL and reaction time6h. The free amino acids formed by free protease and enzyme immobilized on GO were generally similar. The total contents of amino acids yield was10.154and8.23g/100g DS for free enzyme and immobilized enzyme.
     (7) Content of heavy metals and PAHs in the ES crude protein and toxicity on Brocarded carp
     The contents of trace metals (Cu, Ni, Zn, Fe, Mn) and harmful heavy metals (Pb, Cr, Cd, Hg, As) in theES sample and ES crude protein samples were determined. The results showed that iron is the highest which reaching to10247.59mg/kg DS. The content of heavy metals-with the exception of zinc-in ES sample was basiclly within the limit "agricultural sludge the pollutant control standards"(GB4284-84), which promulgated in1984by China. Contents of metals in the ES crude protein which extracted by enzymatic were far lower than that made by alkali and acid extraction. Through the recovery processes of protein, significant amounts of the heavy metals in the raw sludge were removed.
     Microwave-assisted extraction and a solid-phase microextraction (SPME) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of18polycyclic aromatic hydrocarbons (PAHs) in ES, proteins by three different extraction methods and enzymatic proteins feeding Brocarded carp samples. It was found that,AHs concentrations was highest in protein by alkaline hydrolysis, and acid hydrolyzation take second place. It was least in proteins extraction by enzymatic hydrolysis, and more safer. In addition, the toxicity of proteins by enzymatic hydrolysis was investigated, the contents ofAHs and carcinogenic PAHs (ΣPAHscare) in Brocarded carp samples were generally in a low level.
     Overall, we choose the ES as the research object, the protein and amino acid content in the enzymatic hydrolysate by alkaline protease were investigated systematically. The hydrolysis characteristics and kinetics of hydrolysis were further investigated. Furthermore, contents of poisonous and danger metal, heavy metal and PAHs in the crude protein by enzymatic hydrolysis ES were studied. The research include a pilot study of crude protein applied to the feeding Brocarded carp. This study not only provided theoretical basis for alcalase hydrolysates of ES containing high protein, but also estabilised foundation and experimental basis for resource utilization of sludge. The immobilized enzymatic technology makes the recycle of protease is realized and reduces the cost of enzymatic hydrolysis of ES. The curde protein extraction from ES by enzymatic could be used as animal feed additive, water-soluble fertilizers containing amino acids, environment green amino acid inhibitor and raw and processed materials in other industrial applications.
引文
[1]Li, C.W., Lin, J.L., Kang, S.F., Liang, C.L. Acidification and alkalization of textile chemical sludge:Volume/solid reduction,dewaterability, and Al(III) recovery [J]. Seperation and Purification Technology,2005,42(1):31-37.
    [2]Wei, Y.J., Liu, Y.S. Effects of sewage sludge compost application on crops and cropland in a 3-year field study [J]. Chemosphere,2005,59(9):1257-1265.
    [3]Buys, B.R., Klapwijk, A., Elissen, H., Rulkens, W.H. Development of a test metho d to assess the sludge reduction potential of aquatic organisms in activated sludge [J]. Bioresource Technology,2008,99(17):8360-8366.
    [4]《中国污泥处理处置市场分析报告(2012版)》,中国水网,2012-9-26,北京:http://www2.h2o-china.com/report/2012/2012wunireport/.
    [5]傅涛,肖琼,成杨.白皮书12:污泥处理处置市场的困惑与徘徊,中国水网研究院,2012-11-19,北京:http://news.h2o-china.com/html/2012/11/110710_3. shtml.
    [6]Wei, Y., Houten, R.T. V., Borger, A.R., Eikelboom, D.H., Fan, Y. Minimization of excess sludge production for biological wastewater treatment [J]. Water Research, 2003,37(18):4453-4467.
    [7]Zhang, P., Zhang, G., Wang, W. Ultrasonic treatment of biological sludge:floc disintegration, cell lysis and inactivation [J]. Bioresour. Technol.2007,98(1): 207-210.
    [8]Oleszczuk, P. Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil [J]. Chemosphere,2006,65(9):1616-1626.
    [9]Katsoyiannis, A., Zouboulis, A., Samara, C. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process:model predictions against experimental values [J]. Chemosphere,2006,65(9):1634-1641.
    [10]Smith, S.R. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling [J]. Philosophy Today Royal Society A, 2009,367:4005-4041.
    [11]Wong, J.W.C., Selvam, A. Speciation of heavy metals during co-composting of sewage sludge with lime [J]. Chemosphere,2006,63(6):980-986.
    [12]Liu, Y.Y., Ma, L.L., Li, Y.Q., Zheng, L.T. Evolution of heavy metal speciation during the aerobic composting process of sewage sludge [J]. Chemosphere,2007, 67(5):1025-1032.
    [13]Khongnakorn, W., Wisniewski, C., Pottier, L., Vachoud, L. Physical properties of activated sludge in a submerged membrane bioreactor and relation with membrane fouling [J]. Seperation and Purification Technology,2007, 55(1):125-131.
    [14]Zhang, G.M., Yang, J., Liu, H., Zhang, J. Sludge ozonation:disintegration, supernatant changes and mechanisms [J]. Bioresource Technology,2009,100(3): 1505-1509.
    [15]刘东方.华北地区典型城市污水处理厂污泥填埋处置可行性分析[J].环境污染与防治,2010,32(5):40-42,46.
    [16]赵方莹.不同性状城市污水污泥在草坪生产中的应用研究[J].环境污染与防治,2011,33(8):32-35.
    [17]周扬.城市污水处理厂污泥处理处置浅析[J].林业科技情报,2011,43(1):60-62.
    [18]Liu, Y, Kong, S., Li, Y., Zeng, H. Novel technology for sewage sludge utilization: Preparation of amino acids chelated trace elements (AACTE) fertilizer [J]. J. Hazard. Mater,2009,171(1-3):1159-1167.
    [19]Cai, Q.Y., Mo, C.H., Wu, Q.T., Zeng, Q.Y. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application [J]. Bioresource Technology, 2008,99(6):1830-1836.
    [20]Paraiba, L.C., Queiroz, S.C.N., Maia, A.H.N., Ferracini, V.L. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge [J]. Science of the Total Environment,2010,408(16):3270-3276.
    [21]吴健波,刘振鸿,陈季华等.剩余污泥处置的减量化发展方向[J].中国给水排水,2001,17(11):24-26.
    [22]杨瑶,徐鹤,尹建锋等.我国污水处理厂污泥资源化利用现状分析[J].南水北调与水利科技,2012,10(5):114-118.
    [23]Carrere, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenes, J.P., Steyer, J.P., Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability:A review [J]. Journal of Hazardous Materials,2010,183(1-3):1-15.
    [24]Cariales, A., Parellleus, A., Rols, J.L. Decreased sludge production strategy for domestic wastewater treatment [J]. Water Science and Technology,1994, 30(8):96-106.
    [25]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学,2005,26(1):68-71.
    [26]Dwyer, J., Starrenburg, D., Tait, S., Barr, K., Batstone, D.J., Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability [J]. Water Res,2008,42(18):4699-4709.
    [27]Zheng, J., Kennedy, K.J., Eskicioglu, C. Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge [J]. Environ. Technol,2009,30(4):319-327.
    [28]Mottet, A., Steyer, J.P., Deleris, S., Vedrenne, F., Chauzy, J., Carrere H. Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge [J]. Biochem. Eng. J,2009,46(2):169-175.
    [29]王琳,孙德栋.臭氧氧化污泥的试验研究[J].环境污染与防治,2005,27(2):99-102.
    [30]Yeom, I.T., Lee, K.R., Lee, Y.H., Ahn, K.H., Lee, S.H. Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants [J]. Water Sci. Technol,2002,46(4-5):421-425.
    [31]Weemaes, M., Grootaerd, H., Simoens, F., Verstraete, W. Anaerobic digestion of ozonized biosolids [J]. Water Res,2000,34(8):2330-2336.
    [32]Bougrier, C., Battimelli, A., Delgenes, J.P., Carrere, H. Combined ozone pre-treatment and anaerobic digestion for the reduction of biological sludge production in wastewater treatment [J]. Ozone-Sci. Eng,2007,29(3):201-206.
    [33]Chu, L.B., Yan, S.T., Xing, X.H., Sun, X.L., Jurcik, B. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production [J]. Water Res,2009,43(7):1811-1822.
    [34]Paul, E., Camacho, P., Sperandio, M., Ginestet, P. Technical and economical eval-uation of a thermal, and two oxidative techniques for the reduction of excess sludge production, in:1st International Conference on Engineering for Waste Treatment, Albi (France),2005.
    [35]曹秀芹,陈珺.超声波技术在污泥处理中的研究及发展[J].环境工程,2002,20(4):23-25.
    [36]曹秀芹,欧阳利,唐臣.剩余污泥的超声处理试验研究[J].中国给水排水,2003,19(2):58-60.
    [37]Dewil, R., Baeyes, J., Goutvrind, I.L. Ultrasonic treatment of waste activated sludge [J]. Environmental Progress,2006,25(2):121-128.
    [38]Chu, C.P., Lee, D.J., Chang, B.V., You, C.S., Tay, J.H. "Weak" ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids [J]. Water Res,2002,36(11):2681-2688.
    [39]Salsabil, M.R., Prorot, A., Casellas, M., Dagot, C. Pre-treatment of activated sludge:Effect of sonication on aerobic and anaerobic digestibility [J]. Chem. Eng. J,2009,148(2-3):327-335.
    [40]Li, H., Jin, Y.Y., Mahar, R.B., Wang, Z.Y, Nie, Y.F. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability[J]. J. Hazard. Mater, 2009,161(2-3):1421-1426.
    [41]陈声贵,许木启,杨向平等.原生动物在活性污泥中的作用[J].生态学杂志,2002,21(3):47-51;80.
    [42]周可新,许木启,曹宏等.利用微型动物削减剩余污泥量的研究[J].环境污染治理技术与设备,2003,4(1):1-5.
    [43]史彦伟,钟琼,李小明等.S-TE污泥好氧减量技术的研究与应用[J].中国给水排水,2006,22(18):16-20.
    [44]Chen, G.H., Saby, S., Djafer, M., Mo, H.K. New approaches to minimize excess sludge in activated sludge systems [J]. Water Sci Technol,2001,44(10):203-208.
    [45]昝元峰.污泥处理技术的新进展[J].中国给水排水,2004,20(6):25-28.
    [46]王爱军.油田污泥无害化及资源化处理技术探讨[J].化工环保,2011,31(5):427-431.
    [47]吴吉夫,王淑坤,臧树良.城市污水处理厂污泥的有效利用和相关的环境问题研究[J].辽宁大学学报(自然科学版),2002,29(1):90-91.
    [48]李进,白风君,毛成利.污泥的特性与处理 [J].化学工程师,2002,89(2):31-32.
    [49]袁守军,朱宛华.合肥市污水处理厂污泥处置途径探讨[J].合肥工业大学学报,2001,24(4):538-542.
    [50]陈涛,熊先哲.污泥的农林处置与利用[J].生态学杂志,2000,19(6):54-57.
    [51]李志东,李娜,张洪林等.城市污水处理厂污泥的处理处置技术[J].节水灌溉,2007,(02):25-27.
    [52]杨小文,杜英豪.污泥处理与资源化利用方案选择[J].中国给水排水,2002,18(4):31-33.
    [53]李贵宝,杜霞.城市污水污泥在森林与园林绿地利用及展望[J].环境保护,2001,(12):37-38.
    [54]陈春云,庄源益,刘斐.干污泥及其改性物对染料的吸附[J].城市环境与城市生态,2003,16(5):22-24.
    [55]李军,陈邦林,胡建斌等.高温突跃法处理城市污泥的研究[J].环境科学学报,2000,20(6):751-754.
    [56]刘莲香.污水处理厂污泥于陶粒生产中的综合利用[J].陶瓷研究与职业教育,2003,1(1):35-40.
    [57]赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给水排水,2001,17(6):23-25.
    [58]史昕龙,陈绍伟.城市污水污泥的处置与利用[J].环境保护,2001,(03):45-46.
    [59]刘涛,魏先勋,翟云波等.剩余污泥的资源化利用[J].论文集粹,2006,22(92):37-40.
    [60]Pokorna, E., Postelmans, N., Jenicek, P. Study of bio-oils and solids from flash prolysis of sewage sludges [J]. Fuel,2009,88(8):1344-1350.
    [61]Park, H.J., Heo, H.S., Park, Y.K. Clean bio-oil production from fast pyrolysis of sewage slu dge:Effects of reaction conditions and metal oxide catalysts [J]. Bioresource Technology,2010,101(1):S83-S85.
    [62]Lin, Q., Chen, G. Scale-up of microwave heating process for the production of bio-oil from sewage sludge [J]. Journal of Analytical and Applied Pyrolysis,2012, 94:114-119.
    [63]Fonts, I., Gea, G., Azuara, M. Sewage sludge pyrolysis for liquid production:A review [J]. Renewable and Sustainable Energy Reviews,2012,16(5):2781-2805.
    [64]周磊.污泥直接液化制取生物质油试验研究[J].可再生能源,2012,30(3):69-72.
    [65]Kumar, M.S., Mudliar, S.N., Reddy, K.M.K., Chakrabarti, T. Production of biodegradable plastics from activated sludge generated from afood processing industrial wastewater treatment plant [J]. Bioresouree Technol, 2004,95(3):327-330.
    [66]Salehizadeh, H., Van Loosdrecht, M.C.M. Production of polyhydroxyalkanoates by mixed culture:recent trends and biotechnological importance [J]. Biotechnol Adv,2004,22(3):261-279.
    [67]朱晓宇.资源化利用污水厂剩余污泥产生的短链脂肪酸的研究进展[J].水处理技术,2010,36(10):1-4.
    [68]Jiang, Y.M., Chen, Y.G., Zheng, X. Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process [J]. Environmental Science and Technology,2009,43(20):7734-7741.
    [69]郝晓地,王兽林,曹亚莉.剩余污泥减量技术评价及未来潜在技术展望[J].中国给水排水,2008,24(12):1-5.
    [70]何志刚.东莞市市政污泥集中处置工程总体设计[J].工业安全与环保,2010,36(8):14-15.
    [71]罗琼.亚临界水解法处理城市污泥及其栽培试验[J].中国土壤与肥料,2011,(3):62-67.
    [72]Huynh, L.H., Kasim, N.S. Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment [J]. Bioresource Technology,2010,101(22):8891-8896.
    [73]陈玉辉,华佳,霍苗等.酸循环水解制备剩余污泥水解蛋白质的试验研究[J].湖北大学学报(自然科学版),2006,28(4):417-119.
    [74]Ras, M. Girbal-neuhauser E. Paul E. Sperandio, M., Lefebvre, D. Protein extraction from activated sludge:an analytical approach [J]. Water Research, 2008,42(8/9):1867-1878.
    [75]崔静,董岸杰,张卫江等.热碱水解提取污泥蛋白质的实验研究[J].环境工程学报,2009,3(10):1899-1892
    [76]李亚东,李海波.利用剩余活性污泥水解蛋白质制备蛋白质泡沫灭火剂的研究[J].湖北大学学报(自然科学版),2005,27(1):91-93.
    [77]Hwang, J., Zhang, L., Seo, S., Lee, Y.W., Jahng, D. Protein recovery from excess sludge for its use as animal feed [J]. Bioresource Technology,2008,99(18):8949-8954.
    [78]Sheng, G.P., Yu, H.Q., Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:a review [J]. Biotechnology Advances,2010,28(6):882-894.
    [79]D'Abzac, P., Bordas, F., Van Hullebuch, E., Lens, P., Guibaud, G. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols [J]. Applied Microbiology and Biotechnology,2010,85(5):1589-1599.
    [80]Wang, X., Zhang, B., Shen, Z., Qiu, Z., Chen, Z., Min, J., Li, J., Wang, J. The EPS characteristics of sludge in an aerobic granule membrane bioreactor [J]. Bioresource Technology,2010,101(21):8046-8050.
    [81]Chen, Y.G., Jiang, S., Yuan, H.Y., Zhou, Q., Gu, G.W. Hydrolysis and acidifi cation of waste activated sludge at different pHs [J]. Water Res,2007,41(3): 683-689.
    [82]Chishti, S.S., Hasnaina, S.N., Khanb, M.A. Studies on the recovery of sludge protein [J]. Water Res,1992,26(2):241-248.
    [83]Udom, B.E., Mbagwu, J.S.C., Adesodun, J.K., Agbim, N.N. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge [J]. Environ. Int,2004,30(4):467-470.
    [84]Oliver, I.W., McLaughlin, M.J., Merrington, G. Temporal trends of total and potentially available element concentrations in sewage biosolids:a comparison of biosolid surveys conducted 18 years apart [J]. Sci. Total Environ.,2005, 337(1-3):139-145.
    [85]Schmidl, M.K., Taylor, S.L., Nordlee, J.A. Use of hydrolysate-based products in special medical diets [J]. Food Technol.1994,48:77-85.
    [86]肖本益,刘俊新.不同预处理方法对剩余污泥性质的影响研究[J].环境科学,2008,29(2):327-331.
    [87]赵顺顺,孟范平,王震宇.碱水解法提取剩余污泥蛋白质的条件优化[J].城市环境与城市生态,2008,21(5):17-20.
    [88]陈玉辉,华佳,霍苗等.酸循环水解制备剩余污泥水解蛋白质的试验研究[J].湖北大学学报(自然科学版),2006,28(4):417-419.
    [89]华佳,陈玉辉,李亚东等.制备剩余污泥水解蛋白质实验条件的初步研究[J].湖北大学学报,2006,28(1):87-90.
    [90]赵顺顺,孟范平.酸水解法提取剩余污泥蛋白质的条件优化[J].环境科学研究,2008,21(3):180-184.
    [91]Takashima, M., Kudoh, Y, Tabata, N. Complete anaerobic digestion of activated sludge by combining membrane separation and alkaline heat post-treatment [J]. Water Science and Technology,1996,34(5/6):477-481.
    [92]Vlyssides, A.G., KarlisR, K. Thermal-alkaline solubilization of waste activated sludge as a pretreatment stage for anaerobic digestion [J]. Bioresource Technol ogy,2004,91(2):201-206.
    [93]华佳,李亚东,张林生.改进污泥水解制取蛋白质工艺的研究[J].中国给水排水,2008,24(1):17-21.
    [94]崔静,董岸杰,张卫江等.热碱水解提取污泥蛋白质的实验研究[J].环境工程学报,2009,3(10):1899-1892.
    [95]Petrus, S., Meyer, J., Du Preez, C., Kilian, S. G. Isolation and evaluation of yeasts for biomassprosuction from bagasse hemicellulase hydrolysate [J]. Systems in Applied Microbiology,1992,15:161-162.
    [96]Luo, K., Yang, Q., Li, X., Yang, G., Liu, Y., Wang D., Zeng, W., Zeng, G. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by a-amylase [J]. Biochemical Engineering Journal,2012,62:17-21.
    [97]Wawrzynczyk, J., Recktenwald, M., Norrlow, O., Dey, E.S. The fun cti on of cation-binding agents in the enzymatic treatment of municipal sludge [J]. Water Res,2008,42 (6-7):1555-1562.
    [98]Ronja, B. Enzymatic treatment of wastewater sludge in presence of a cation binding agent-improved solubilisation and increased methane production. Linkopings University,2008, Sweden, pp.49-50.
    [99]Ahuja, S.K., Ferreira, G.M., Moreira, A.R. Utilization of enzymes for environmental applications [J]. Crit. Rev. Biotechnol,2004,24(2-3):125-154.
    [100]Ayol, A. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-Ⅰ:performance evaluations [J]. Process Biochem, 2005,40(7):2427-2434.
    [101]Kim, H.J., Kim, S.H., Choi, Y.G., Kim, G.D., Chung, T.H. Effect of enzymatic pretreatment on acid fermentation of food waste [J]. J. Chem. Technol. Biotechnol,2006,81(6):974-980.
    [102]Cadoret, A., Conrad, A., Block, J.-C. Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges [J]. Enzyme Microb. Technol,2002,31 (1-2):179-186.
    [103]Whiteley, C.G., Heron, P., Pletschke, B., Rose, P.D., Tshivhunge, S., Van Jaarsveld, F.P., Whittington-Jones, K. The enzymology of sludge solubilization utilizing sulfate reducing systems properties of proteases and phosphatases [J]. Enzyme Microb. Technol,2002,31(4):419-424.
    [104]Whiteley, C.G., Burgess, J.E., Melamane, X., Pletschke, B., Rose, P.D. The enzymology of sludge solubilisation utilizing sulphate-reducing systems:the properties of lipases [J]. Water Res,2003,37(2):289-296.
    [105]Sesay, M.L., Ozcengiz, G., Sanin, F.D. Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation [J]. Water Res, 2006,40(7):1359-1366.
    [106]Dey, E.S., Szewczyk, E., Wawrzynczyk, J., Norrlow, O. A novel approach for characterization of exopolymeric material in sewage sludge [J]. J. Residuals Sci. Technol,2006,3(2):97-103.
    [107]Roman, H.J., Burgess, J.E., Pletschke, B.I. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge [J]. Afr. J. Biotechnol,2006, 5(10):963-967.
    [108]Yang, Q., Luo, K., Li, X.M., Wang, D.B., Zheng, W., Zeng, G.M., Liu, J.J. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes [J]. Bioresour.Technol,2010,101(9):2924-2930.
    [109]李萍,李登新,苏瑞景等.2种处理方法水解剩余污泥蛋白质的研究[J].环境工程学报,2011,5(12):2859-286.
    [110]Gianfreda, L., Rao, M.A. Potential of extracellular enzymes in remediation of polluted soils:a review [J]. Enzyme Microb Technol,2004,35(4):339-354.
    [111]Whiteley, C.G., Heron, P., Pletschke, B., Rose, P.D., Tshivhunge, S., Van Jaarsveld, F.P., Whittington-Jones, K. The enzymology of sludge solubilisation utilising sulphate reducing systems:properties of protease and phosphatases [J]. Enzyme Microb. Technol,2002,31(4):419-424.
    [112]Weemaes, M., Grootaerd, H., Simoens, F., Verstraete, W. Anaerobic digestion of ozonized biosolids [J]. Water Res,2000,34(8):2330-2336.
    [113]Wang, F., Lu, S., Ji, M. Components of released liquid from ultrasonic waste activated sludge disintegration [J]. Ultrason. Sonochem,2006,13(4)334-338.
    [114]Zhang, P., Zhang, G., Wang, W. Ultrasonic treatment of biological sludge:floc disin tegrat ion, cell lysis and ina ctiva tion [J]. Bioresour. Technol, 2007,98(1):207-210.
    [115]Shier, W.T, Purwono, S.K. Extraction of single-cell protein from actived sewage sludge:thermal solubilization of protein [J].Bioresour Technol,1994, 49(2):157-162.
    [116]Morita H. Present status of reuse of excess sludge and its future prospect [J]. J. Environ Technol. Japan,2000,29:334-341.
    [1]赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002.
    [2]Yin, X., Han, P., Lu, X., Wang, Y. A review on the dewaterability of bio-sludge and ultrasound pretreatment [J].Ultrasonics Sonochemistry,2004, 11(6):337-348.
    [3]周扬.城市污水处理厂污泥处理处置及利用浅析[J].林业科技情报,2011,43(1):60-62.
    [4]Beier, S.P., Guerra, M., Garde, A., Jonsson G. Dynamic microfiltration with a vibrating hollow fiber membrane module:Filtration of yeast suspensions [J]. Journal of Membrane Science,2006,281(1-2):281-287.
    [5]Raunkjaer, K., Hvitved-Jacobsen, T., Nielsen, P.H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater [J]. Water Res,1994, 28(2):251-262.
    [6]Ge, L.Y., Wang, H.W., Ma, L.M., Deng, H.H. Extraction of extracellular polym eric substances (EPS) from four kinds of activated sludge [J], Fresen. Environ. Bull.2006,15(10):1252-1255.
    [7]Yan, Y.Y., Chen, H.L., He, Q.B., Tan, X.J., Dai, X.H., Zhou, Q. Effect of ultrasonic time on waste activated sludge hydrolysis and volatile fatty acids accumulation under alkaline condition [J]. Fresen. Environ. Bull.2011,20(11):2861-2868
    [8]Tanaka, S., Kobayashi, T., Kamiyama, K., Bildan, M.N. Effects of thermoche mical pretreatment on the anaerobic digestion of waste activated sludge [J]. Wa ter Sci. Technol.1997,35 (8):209-215.
    [9]霍贞,王芬,季民.污泥破解技术的研究与进展[J].工业水处理,2005,25(9):16-19.
    [10]金儒霖,刘永龄.污泥处置[M].北京:中国建筑工业出版社,1982.
    [11]赵庆祥.污泥资源化技术[M].北京:北京工业出版社,2002.
    [12]陈寰.溶解氧对好氧颗粒污泥影响的研究进展[J].四川环境,2010,29(2):109-112.
    [13]廖青,李小明,杨麒等.好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J].工业用水与废水,2008,39(4):13-19.
    [14]沈仲根,张丽丽,陈建孟等.有机负荷影响好氧颗粒污泥特性的研究[J].环境污染与防治,2008,30(8):69-72.
    [15]陈寰.苯酚-硫酸法测定好氧颗粒污泥胞外聚合物中多糖浓度的研究[J].四川环境,2012,31(5):1-3.
    [16]姜勇,赵萍,董铁有等.含油污泥油含量测定方法[J].环境科学与管理,2008,33(2):115-117.
    [17]黄伟坤,唐英章,黄焕昌.食品检验与分析[M].北京:轻工业出版社,1989:57.
    [18]Kilara, A. Enzyme-modified protein food ingredients [J]. Process Biochem. 1985,20:149-158.
    [19]Im m, J.Y., L ee, C.M. Production of seafood flavor from red hake (Urophycis chuss) by enzymatic hydrolysis [J]. J Agric Food Chem.1999,47(6):2360-2366.
    [20]Mullally, M.M., O'Callaghan D.M., FitzGerald R.J. Proteolytic and peptidolytic activities in commercial pancreatin protease perparations and their reationship to some whey protein hydrolysate characteristics [J]. J Agric Food Chem,1994, 42:2973-2981.
    [21]Gauthier, S.F., Paquin, P., Pouliot, Y, Turgeon, S. Surface activity and related functional properties of peptides obtained from whey proteins [J]. J Dairy Sci, 1993,76:321-328.
    [22]Nguyen, T.P., Hankins, N.P., Hilal, N. A comparative study of the flocculation behaviour and final properties of synthetic and activated sludge in wastewater treatment [J]. Desalination.2007,204(1/2/3):277-295.
    [23]崔静,董岸杰,张卫江等.热碱水解提取污泥蛋白质的实验研究[J].环境工程学报,2009,10:1889-1892.
    [24]Liu, H., Fang, H.P. Extraction of extracellular polymeric substances (EPS) of sludges [J]. J. Biotechnol.2002,95(3):249-256.
    [25]Wingender, J., Neu, T.R., Flemming, H.C. Microbial Extracellular Polymeric Substances:Characterisation, Structure and Function. Springer, Berlin, Germany, 1999. p.123.
    [26]Wang, Z., Wang, W., Zhang, X., Zhang, G. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor [J]. J. Hazard. Mater. 2009,162(2-3):799-803.
    [27]Liu, Y., Kong, S., Li, Y, Zeng, H. Novel technology for sewage sludge utilization: Preparation of amino acids chelated trace elements (AACTE) fertilizer [J]. J. Hazard. Mater.2009,171(1-3):1159-1167.
    [28]Ferreira, N.G., H ulti n, H.O. Liquefying cod fish frames under acidic conditions with a fungal enzyme [J]. J Food Proc Pres,1994,18:87-91.
    [1]徐红亮,武小鹰,郑平.胞外多聚物及其对废水生物处理的影响[J].环境科学与技术,2005,28(S1):121-124.
    [2]Goel, R., Mino, T., Satoh, H., Matsuo, T. Enzym eactivities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor [J]. Water Res, 1998,32(7):2081-2088.
    [3]Shanableh, A., Jomaa, S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment [J]. Water Sci Technol,2001, 44(10):129-135.
    [4]相玉琳,张卫江,徐姣等.超声波辐射强化污泥蛋白质的提取[J].化学工程,2011,39(3):63-66.
    [5]Park, C., Novak, J.T., Helm, R.F., Young-Ock, A., Esen, A. Evaluation of the extracellular proteins in full-scale activated sludges [J]. Water Research,2008,42 (14):3879-3889.
    [6]Ehlers, M.M., Cloete, T.E. Comparing the protein profiles of 21 different activated sludge systems after SDS-PAGE [J]. Water Research.1999,33(5):1181-1186.
    [7]Duncan, A.J., Bott, C.B., Terlesky, K.C., Love, N.G. Detection of GroEL in activated sludge:a model for detection of system stress [J]. Letters in Applied Microbiology,2000,30(1):28-32.
    [8]Wilmes, P., Bond, P.L. The application of two dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms [J]. Environmental Microbiology,2004,6(9):911-920.
    [9]Wilmes, P., Wexler, M., Bond, P.L. Metaproteomics provides functional insight into activated sludge wastewater treatment [J]. PLoS ONE,2008,3 (3):e1778/.
    [10]Constaintimides, A., Adu-Amanlcwa, B. Enzymatic modification of vegetable proteins:mechanism, kinetics and production of soluble and partially soluble protein in a batch reactor [J]. Biotechnology and Bioengineering,1980, 22:1543-1565.
    [11]Marquez, M.C., Vazquez, M.A. Modeling of enzymatic protein hydrolysis [J]. Process biochemistry,1999,35(1-2):111-117.
    [12]Kristinsson, H.G., Rasco, B.A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline protease and a visceral serine protease mixture [J]. Process Biochemistry,2000,36(1-2):131-139.
    [13]Alder-Nissen. Enzymic hydrolysis of food proteins [M]. EI-sevier applied science publishers, London,1986,116-124.
    [14]蓝建京,覃玥,刘旭辉.碱性蛋白酶水解丝素蛋白的动力学研究[J].广东农业科学,2012,(3):87-90.
    [15]Song, J., Tao, W., Chen, W. Kinetics of enzymati c unhairing by protease in leather industry [J]. Journal of Cleaner Production.2011,19(4):325-331.
    [16]Te llo, P.G. Enzymatic hydrolysis of whey protein:I kinetic models [J]. Biotechnology and Bioengineering,1994,44(4):523-528.
    [17]Marquez, M.C., Vazquez, M.A. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry,1999,35(1-2):111-117.
    [18]常志娟,邓尚贵.青鳞鱼蛋白木瓜蛋白酶控制水解动力学模型的研究[J].食品科技,2008,(1):96-99.
    [19]黄秋霞,孙建华,兰雄雕等.碱性蛋白酶酶解罗非鱼下脚料蛋白动力学研究[J].食品科学,2012,33(02):53-57.
    [20]王廷华,邹晓莉.蛋白质理论与技术[M].北京:北京科学技术出版社,2007.
    [21]Gorner, T., De Donato, P., Ameil, M., Montarges-Pelletier, E., Lartiges, B.S. Activated sludge exopolymers:separation and identification using size exclusion chromatography and infrared micro-spectroscopy [J]. Water Research,2003, 37(10):2388-2393.
    [22]Zhang, L., Feng, X., Zhu, N., Chen, J., Role of extracellular protein in the for mation and stability of aerobic granules [J]. Enzyme and Microbial Technology, 2007,41 (5):551-557.
    [23]Park, C., Novak, J.T., Helm, R.H., Ahn, Y.-O., Esen, A. Evaluation of the extracellular proteins in full-scale activated sludges [J]. Water Research,2008, 42(14):3879-3889.
    [24]Bourven, I., Costa, G., Guibaud, G. Qualitative characterization of the protein fraction of exopolymeric substances (EPS) extracted with EDTA from sludge [J]. Bioresource Technology,2012,104:486-496.
    [25]薛照辉,吴谋成,尹经章.复合酶水解菜籽清蛋白的研究[J].中国粮油学报,2004,19(3):57-61.
    [26]林伟锋,赵谋明,彭志英等.海洋鱼蛋白可控酶解动力学模型的研究[J].食品与机械,2005,21(3):10-13.
    [1]Tanaka, S., Kobayashi, T., Kamiyama, K., Bildan, M.N. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol,1997,35(8):209-215.
    [2]Chen,Y.G., Jiang,S., Zhou, H.Y. Q., Gu, G.W. Hydrolysis and acidification of waste activated sludge at different pHs [J]. Water Res,2007,41(3):683-689.
    [3]Liu, Y, Kong, S., Li, Y, Zeng, H. Novel technology for sewage sludge utilization: Preparation of amino acids chelated trace elements (AACTE) fertilizer [J]. J. Hazard. Mater,2009,171(1-3):1159-1167.
    [4]Huynh, L.H., Kasim, N.S., Ju, Y.H. Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment [J]. Bioresource Technol,2010,101(22)8891-8896.
    [5]Champagne, P., Li, C.J. Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars [J]. Bioresource Technol,2009,100(23):5700-5706.
    [6]Fountoulakis, M., Lahm, H.W. Hydrolysis and amino acid composition analysis of proteins [J]. J. Chromatogr. A.1998,826(2):109-134.
    [7]Haynes, P.A., Sheumach, D., Greig, L.G., Kibby, J., Redmond, J.W. Applications of automated amino acid analysis using 9-fluorenylmethyl chloroformate [J]. J.Chromatogr.A,1991,588(1-2):107-114.
    [8]Gheshlaghi, R., Scharer, J.M., Moo-Young, M., Douglas, P.L. Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC [J]. Analytical Biochemistry,2008,383(1):93-102.
    [9]CallejOn, R.M., Troncoso, A.M., Morales M.L. Determination of amino acids in grape-derived products:A review [J]. Talanta,2010,81(4-5):1143-1152.
    [10]Hein riks on, R.L., Meredith, S.C. Amino acid analysis by reverse-phase high-performance liquid chromatography:pre colu mn de rivati zat ion with phenylisothiocyanate[J]. Anal Biochem,1984,136(1):65-74.
    [11]Molnar-Perl, I. Quantitation of amino acids and amines in the same matrix by high-performance liquid chromatography, either simultaneously or separately [J]. Journal of Chromatography A,2003,987(1-2):291-309.
    [12]Haandel, L., Killmer, J., Li, X., Schoneich, C., Stobaugh, J.F. Phenylisothiocyanate as a Multiple Chemical Dimension Reagent for the Relative Quantitation of Protein Nitrotyrosine [J]. Chromatographia,2008,68 (7/8):507-516.
    [13]Bronowicka-Adamska P., Zagajewski, J., Czubak, J., Wrobel, M. RP-HPLC method for quantitative determination of cystathionine, cysteine and glutathione:An application for the study of the metabolism of cysteine in human brain [J]. Journal of Chromatography B,2011,879(21):2005-2009.
    [14]Dale, Y., Mackey, V., Mushi, R., Nyanda, A., Maleque, M., Ike, J. Simultaneous measurement of phenylalanine and tyrosine in phenylketonuric plasma and dried blood by high-performance liquid chromatography [J]. J Chromatogr B,2003, 788(1):1-8.
    [15]Hadad, G.M., El-Gindy, A., Mahmoud, W.M.M. Optimization and Validation of an HPLC-UV Method for Determination of Tranexamic Acid in a Dosage Form and in Human Urine [J]. Chromatographia,2007,66(5-6):311-317.
    [16]Chicharroa, M., Sanchez, A., Zapardiel, A., Rubianes, M.D., Rivas, G. Capillary electrophoresis of neurotransmitters with amperometric detection at melanin-type polymer-modified carbon electrodes [J]. Analytica Chimica Acta,2004, 523(2):185-191.
    [17]Dong, S.Q., Zhang, S., Cheng, X., He, P.G., Wang, Q.J., Fang, Y.Z. Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and Cu2O [J]. J. Chromatogr. A,2007,1161(1-2):27-333.
    [18]Bidlingmeyer B.A., Cohen S.A., Tarvin T.L. Rapid analysis of amino acids using pre-column derivatization [J]. J. Chromatogr. B.1984,336(1):93-104.
    [19]Str ydom D.J., Coh en S.A. Com pari son of ami no ac id an aly ses by phenylisothiocyanate and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate precolumn derivatization [J]. Anal.Biochem,1994,222(l):19-28.
    [20]Cohen S.A., De Antonis K.M. Applications of amino acid derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate:Analysis of feed grains, intravenous solutions and glycoproteins [J]. J. Chromatogr. A.1994,661(1): 25-34.
    [21]Heems D., Luck G., Fradeau C., Verette E. Fully automated precolumn derivatization, on-line dialysis and high-performance liquid chromatographic analysis of amino acids in food, beverages and feedstuff [J]. J. Chromatogr. A, 1998,798(1-2):9-17.
    [22]Bosch, L., Alegria, A., Farre, R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods [J]. Journal of Chromatography B,2006,831(1-2): 176-183.
    [23]Campanella, L., Crescentini, G., Avino, P. Simultaneous determination of cysteine, cystine and 18 other amino acids in various matrices by high-performa nce liquid chromatography [J]. J. Chromatogr. A,1999,833 (2):137-145.
    [1]袁定重,张秋禹,候振宇等.固定化载体材料的最新研究进展[J].材料导报,2006,20(1):69-72.
    [2]Sangeetha, K., Abraham, T.E. Chemical modification of papain for use in alkaline medium [J]. J Mol Catal B-Enzym.2006,38(3-6):171-177.
    [3]Spagna, G., Barbagallo, R.N., Greco, E., Manenti, I., Pifferi, P.G. A mixture of purified glycosidases from Aspergillus niger for oenological application immobilized by inclusion in chitosan gels [J]. Enzyme Microb Tech.2002, 30(1):80-89.
    [4]Yang, Y.M., Wang, J.W., Tan, R.X. Immobilization of glucose oxidase on chitosan-SiO2 gel [J]. Enzyme Microb Tech,2004,34(2):126-131.
    [5]Silva, C.J.S.M., Zhang, Q.H., Shen, J.S., Artur C.-P. Immobilization of proteases with a water soluble-insoluble reversible polymer for treatment of wool [J]. Enzyme Microb Tech,2006,39(4):634-640.
    [6]Li, F.Y., Xing, Y.J., Ding, X. Immobilization of papain on cotton fabric by sol-gel method [J]. Enzyme Microb Tech,2007,40(7):1692-1697.
    [7]Ganesh Kumar, A., Perinbam, K., Kamatchi, P., Nagesh, N., Sekaran, G. In situ immobilization of acid protease on mesoporous activated carbon packed column for the production of protein hydrolysates [J]. Bioresour. Technol,2010,101(4): 1377-1379.
    [8]Wei, L.M., Zhang, W., Lu, H.J., Yang, P.Y. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis [J]. Talanta.2010. 80(3):1298-1304.
    [9]Zhao, J., Wang, Y, Luo, G., Zhu, S. Immobilization of penicillin G acylase on macro-mesoporous silica spheres [J]. Bioresour. Technol,2011,102(2):529-535.
    [10]Yilmaz, E., Can, K., Sezgin, M., Yilmaz, M. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester [J]. Bioresour. Technol,2011,102(2):499-506.
    [11]Novoselov, K.S., Geim, A.K., Morozov, S.V. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [12]Kim, H., Macosko, C.W. Processing-property relationships of polycarbonate /graphene composites [J]. Polymer,2009.50(15):3797-3809.
    [13]Wei, T., Luo, G.L., Fan, ZH.J., Zheng, CH., Yan, J., Yao, CH.ZH., Li, W.F., Zhang, CH. Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion [J]. Carbon,2009,47(9):2296-2299.
    [14]Jiang, L., Shen, X.P., Wu, J.L., Shen, K.CH. Preparation and characterization of graphene/poly (vinyl alcohol) Nanocomposites [J]. J Appl Polym Sci, 2010,118(1):275-279.
    [15]Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S. Graphene-based composite materials [J]. Nature,2006,442(7100):282-286.
    [16]Wakabayashi, K., Pierre, C., Dikin, D.A., Ruoff, R.S., Ramanathan, T., Brinson, L.C., Torkelson, J.M. Polymer-graphite nanocomposites:Effective dispersion and major property enhancement via solid-state shear pulverization [J]. Macromole cules,2008,41(6):1905-1908.
    [17]Zhang, J.L., Zhang, F., Yang, H.J., Huang, X.L., Liu, H., Zhang, J.Y., Guo, SH.W. Graphene oxide as a matrix for enzyme immobilization [J]. Langmuir,2010, 26(9):6083-6085.
    [18]Bryjak, J., Liesiene, J., Kolarz, B.N. Application and properties of butyl acrylate/pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for trypsin immobilization [J]. Colloids Surf. B.,2008,61(1):66-74.
    [19]Yang, Q., Pan, X.J., Huang, F., Li, K.C. Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene [J]. J. Phys. Chem. C,2010, 114(9):3811-3816.
    [20]Wang, Y, Li, Z.H., Wang, J., Li, J.H., Lin, Y.H. Graphene and graphene oxide: biofunctionalization and applications in biotechnology [J]. Trends Biotechnol, 2011,29(5):205-212.
    [21]Altun, G.D., Cetinus, S.A. Immobilization of pepsin on chitosan beads [J]. Food Chem,2007,100(3):964-971.
    [22]Gallego, F.L., Betancor, L., Hidalgo, A., Ortiz, G.D., Mateo, C., Lafuente, R.F., Guisan, J.M. Stabilization of different alcohol oxidases via immobilization and post immobilization techniques [J]. Enzyme Microb Technol,2007, 40(2):278-284.
    [23]Rocha, C., Goncalves, M.P., Teixeira, J.A. Immobilization of trypsin on spent grains for whey protein hydrolysis [J]. Process Biochem,2011,46(2):505-511.
    [24]Mateo, C., Palomo, J.M., Fuentes, M., Betancor, L., Grazu, V, Gallego, F., Pessela, B.C.C., Hidalgo, A., Lorente, G.F., Lafuente, R.F., Guisan, J.M. Glyoxyl agarose:a fully inert and hydrophilic support for immobilization and high stabilization of proteins [J]. Enzyme Microb Technol,2006,39(2):274-280.
    [25]Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72(1-2):248-254.
    [26]Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide [J]. J Am Chem Soc,1958,80:1339-1339.
    [27]Shao, Y.Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y. Graphene based electrochemical sensors and biosensors:A review [J]. Electroanalysis,2010, 22(10):1027-1036.
    [28]Laaksonen, P., Markku, K., Laaksonen, T., Schchepetov, A., Jiang, H., Ahopelto, J., Linder, M.B. Interfacial engineering by proteins:Exfoliation and functionalization of graphene by hydrophobins [J]. Angewandte Chemie International Edition,2010,49(29):4946-4949.
    [29]刘海燕.固定化木瓜蛋白酶及其动力学性质的研究[D].河北大学硕士论文,2002.
    [30]Niyogi, S., Bekyarova, E., Itkis, M.E., Mcwilliams, J.L., Hamon, M.A., Haddon, R.C. Solution properties of graphite and graphene [J]. J. Am. Chem. Soc., 2006,128(24):7720-7721.
    [31]Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G. Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotech,2008,3(2):101-105.
    [1]Bayramoglu, G., Yilmaz, M., Arica, M.Y. Immobilization of a thermostable a-amylase onto reactive membranes:kinetics characterization and application to continuous starch hydrolysis [J]. Food Chemistry,2004,84(4):591-599.
    [2]Akay, G., Erthan, E., Keskinlek, B., Algur.O.F. Removal of phenol from wastewater using membrane-immobilized enzymes part, cross-flow filtration [J]. Journal of Membrane Science,2002,206(1-2):61-68.
    [3]于宏兵,林学钰,张兰英等.固定化蛋白酶对废水中蛋白质的水解效果与机理[J].环境科学,2005,26(3):112-117.
    [4]Moreno, M.C.M., Cuadrado, V.F. Enzymic hydrolysis of vegetable proteins: mechanism and kinetics[J]. Process Biochem,1993,28(7):481-490.
    [5]Gonzalez-Tello, P., Camacho, F., Juracdo, E., Paez, M.P., Guadix, E.M. Enzymatic hydrolysis of whey proteins:I. Kinetic models [J]. Biotechnol Bioeng,1994, 44:523-528.
    [6]Shahidi, F., Han, X.Q., Synowiecki, J. Production and characteristics of protein hydrolysates from capelin [J]. Food Chem,1995,53(3):285-293
    [7]Liu, Y., Kong, S., Li, Y., and Zeng, H. Novel technology for sewage sludge utilization:Preparation of amino acids chelated trace elements (AACTE) fertilizer [J]. J. Hazard. Mater,2009,171(1-3):1159-1167.
    [8]Hontoria-Lucas, C., Lopez-Peinado, A.J., Lopez-Gonzalez, J., Rojas-Cervantes, M.L., Martin-Aranda, R.M. Study of oxygen-containing groups in a series of graphite oxides:Physical and chemical characterization [J]. Carbon.1995, 33(11):1585-1592.
    [9]Szabo, T., Berkesi, O., Dekany, I. DRIFT study of deuterium-exchanged graphite oxide [J]. Carbon.2005,43(15):3186-3189.
    [10]Stankovich, S., Piner, R.D., Nguyen, S.T., Ruoff, R.S. Synthesis and exfoliation of isoc yana te-trea ted gra phe ne oxi de nan opiate lets [J]. Carbon,2006, 44(15):3342-3347.
    [11]Paci, J.T., Belytschko, T., Schatz, G.C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide [J]. J.Phys.Chem.C,2007,111(49):18099-18111.
    [12]Jeong, H.K., Lee, Y.P., Lahaye, R.J.W.E., Park, M.H., An, K.H., Kim, I.J. Yang, C.W., Park, C.Y., Ruoff, R.S., Lee, Y.H. Evidence of graphitic AB stacking order of graphite oxides [J]. J.Am. Chem. Soc.2008,130(4):1362-1366.
    [13]Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S. Graphene oxide papers modified by divalentions-Enhancing mechanical properties via chemical cross-linking [J]. ACS Nano,2008,2(3):572-578.
    [14]Yadav, R., Dobal, P., Shripathi, T., Katiyar, R., Srivastava, O. Effect of growth temperature on bamboo-shaped carbon-nitrogen (C-N) nanotubes synthesized using ferrocene acetonitrile precursor [J]. Nanoscale Res Lett,2008,4(3): 197-203.
    [15]Yang, Q., Pan, X., Huang, F., Li, K. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives [J]. J. Phys. Chem. C,2010, 114(9):3811-3816.
    [16]Su, J., Cao, M., Ren, L., Hu, C. Fe3O4-Graphene nanocomposites with improved lithium storage and magnetism proterties [J]. J. Phys. Chem. C,2011, 115(15):14469-14477.
    [17]Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y. Synthesis of graphe ne-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565.
    [18]Hsieh, C.T., Teng, H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics [J]. Carbon,2002,40(5):667-674.
    [19]Gong, Q.M., Li, Z., Wang, Y, Wu, B., Zhang, Z., Liang, J. The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes [J]. Mater. Res. Bull.2007,42(3):474-481.
    [20]Hsieh, C.T., Hsu, S.M., Lin, J.Y., Teng, H. Electrochemical capacitors based on graphene oxide sheets using different aqueous electrolytes [J]. J. Phys. Chem. C. 2011,115(25):12367-12374.
    [21]Hontoria-Lucas, C, Lopez-Peinado, A.J., Lopez-Gonzaez, J., Rojas-Cervantes, M.L., Martin-Aranda, R.M. Study of oxygen-containing groups in a series of graphite oxides:Physical and chemical characterization [J]. Carbon,1995,33 (11):1585-1592.
    [22]Kaniyoor, A., Baby, T.T., Arockiadoss, T., Rajalakshmi, N., Ramaprabhu, S. Wrinkled graphenes:A study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide [J]. J. Phys. Chem. C,2011, 115(36):17660-17669.
    [23]Mou, Z., Chen, X., Du, Y., Wang, X., Yang, P., Wang, S. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea [J]. Appl. Surf. Sci,2011,258(5):1704-1710.
    [24]Waltman, R.J., Pacansky, J., Bates, C.W. X-ray photoelectron spectroscopic studies on organic photoconductors:evaluation of atomic charges on chlorodiane blue and p-(diethylamino) benzaldehyde diphenylhydrazone [J]. Chem. Mater, 1993,5(12):1799-1804.
    [25]Kawaguchi, M., Yagi, S., Enomoto, H. Chemical preparation and characterization of nitrogen-rich carbon nitride powders [J]. Carbon,2004,42(2):345-350.
    [26]Zhao, H., Chen, X.L., Jia, C., Zhou, T., Qu, X., Jian, J., Xu, Y. WITHDRAWN:A facile mechanochemical way to prepare g-C3N4 [J]. Mater. Sci. Eng. B,2005, 122(3):226-230.
    [27]Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properities [J]. Nano Lett,2009,9(5):1752-1758.
    [28]Zhang, G., Sun, S., Yang, D., Dodele t, J.P., Sacher, E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment [J]. Carbon,2008,46(2):196-205.
    [29]Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X. Effect of grapheme oxide on the properties of its composite with polyaniline [J]. ACS. Appl. Mater. Interfaces, 2010,2(3):821-828.
    [30]Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J]. Carbon.2009,47(1): 145-152.
    [31]Li, X., Wang, H., Robinson, J.T., Sanchez, H., Diankov, G., Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide [J]. J. Am. Chem. Soc. 2009,131(43):15939-15944.
    [32]Hakoda, T., Yamamoto, S., Kawaguchi, K., Yamaki, T., Kobayashi, T., Yoshikawa. M. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition [J].. Appl. Surf. Sci,2010,257(5):1556-1561.
    [33]Soto, G., Samano, E.C., Machorro, R., Farias, M.H., Cota-Araiza, L. Study of composition and bonding character of CNx films [J]. Appl. Surf. Sci, 2001,183(3-4):246-58.
    [34]Pietrzak, R. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal [J]. Fuel,2009, 88(10):1871-1877.
    [35]McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera, A.M., Milius, D.L., Car, R., Prudhomme, R.K., Aksay, I.A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chem. Mater,2007,19(18):4396-4404.
    [36]Jeong, H.K., Jin, M.H., So, K.P., Lim, S.C., Lee, Y.H. Tailoring the characteristics of graphite oxides by different oxidation times [J]. J. Phys. D. Appl Phys, 2009,42(6):065418.
    [37]Ren, P.G., Yan, D.X., Ji, X., Chen, T., Li, Z.M. Temperature dependence of graphene oxide reduced by hydrazine hydrate [J]. Nano technology,2011, 22(5):055705.
    [1]Smith, S.R. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling [J]. Philos.T.Roy.Soc.A,2009, 367:4005-4041.
    [2]Zedeck, M.S. Polycyclic aromatic hydrocarbons:a review [J]. J. Environ. Pathol. Toxicol,1980,3:537-567.
    [3]Council of the European Community, Working Document on Sludge,3rd Draft, Brussels,2000,27 April:1.
    [4]Wild, S.R., Watorhouse, K.S., Mcgrath, S.P., Jones, K.C. Organic contaminants in an agricultural soil with a known history of sewage sludge amendments: polynuclear aromatic hydrocarbons [J]. Environ. Sci. Technol,1990,24(11): 1706-1711.
    [5]Blanchard, M., Teil, M.J., Ollivon, D., Legenti, L., Chevreuil, M. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France) [J]. Environ.Res,2004,95(2):184-197.
    [6]Perez, S., Farre, M., Garcia, M.J., Barcelo, D. Occurrence of polycyclic aromatic hydrocarbons in sewage sludge and their contribution to its toxicity in the ToxAlert(?) 100 bioassay [J]. Chemosphere,2001,45(6-7):705-712.
    [7]Abad, E., Martinez, K., Planas, C., Palacios, O., Caixach, J., Rivera, J. Priority organic pollutant assessment of sludges for agricultural purposes [J]. Chemosphere,2005,61(9):1358-1369.
    [8]Busetti, F., Heitz, A., Cuomo, M., Badoer, S., Traverso, P. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant [J]. J. Chromatogr. A,2006,-1102(1-2):104-115.
    [9]Villar, P., Callejon, M., Alonso, E., Jimenez, J.C., Guiraun, A. Optimization and validation of a new method of analysis for polycyclic aromatic hydrocarbons in sewage sludge by liquid chromatography after microwave assisted extraction [J]. Anal. Chim. Acta,2004,524(l-2):295-304.
    [10]Villar, P., Callejon, M., Alonso, E., Jimenez, J.C., Guiraun, A. Temporal evolution of polycy clic aro matic hyd rocarb ons (PAHs) in sludge from wast ewater treatment plants:Comparison between PAHs and heavy metals [J]. Chemosphere, 2006,64(4):535-541.
    [11]Helaleh, M.I.H., Al-Omair, A., Nisar, A., Gevao, B. Validation of various extraction techniques for the quantitative anal ysis of po lycyclic ar omatic hydrocarbons in sewage sludges using gas chromatography-ion trap mass spectrometry [J]. J. Chromatogr. A,2005,1083(1-2):153-160.
    [12]张海霞,朱彭龄.固相萃取[J].分析化学,2000,28(9):1172-1180.
    [13]Pagliuca, G., Gazzotti, T., Ziro, E. Determiation of high moleclar mass polycyclic aromatic hydrocarbons in a typical Iyalian smoked cheese by HPLC [J]. Journal of Agriculture and Food Chemistry,2003,51:5111-5115.
    [14]Portet-Koltalo, F., Oukebdane, K., Robin, L., Dio nnet, F., De sbene, P.L. Quantification of volatile PAHs present at trace levels in air flow by aqueous trapping-SPE and HPLC analysis with fluorimetric detection [J]. Talanta,2007, 71(5):1825-1833.
    [15]Ma, J., Xiao, R., Li, J., Yu, J., Zhang, Y, Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2010, 1217(34):5462-5469.
    [16]Sapozhnikova, Y, Lehotay, S.J. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography-tandem mass spectrometry [J]. Analytica Chimica Acta, 2013,758:80-92.
    [17]Vaz, J.M. Screening direct analysis of PAHS in atmospheric particulate matter with SPME [J]. Talanta,2003,60(4):687-693.
    [18]Rianawati, E., Balasubramanian, R. Optimization and validation of solid phase micro-extraction (SPME) me thod for an alys is of p olycyc lic arom atic hydrocarbons in rainwater and stormwater [J]. Physics and Chemistry of the Earth, Parts A/B/C,2009,34(13-16):857-865.
    [19]Llompart, M., Sanchez-Prado, L., Lamas, J.P., Garcia-Jares, C., Roca, E., Dagnac T. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers [J]. Chemosphere,2013,90(2):423-431.
    [20]Sanchez-Brunete, C., Miguel, E., Tadeo, J.L. Rapid method for the determination of polycyclic aromatic hydrocarbons in agricultural soils by sonication-assisted extraction in small columns [J]. Journal of Separation Sciences,2006, 29(14):2166-2172.
    [21]Simon, R., Palme, S., Anklam, E. Single-laboratory validation of a gas chromatography-mass spectrometry method for quantitation of 15 European priority polycyclic aromatic hydrocarbons in spiked smoke flavourings [J]. Journal of Chromatography A,2006,1103(2):307-313.
    [22]EC (European Commission), Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food, Scientific Committee on Food.4 December 2002.
    [23]Sanchez-Brunete, C., Miguel, E., Tadeo, J.L. Analysis of 27 polycyclic aromatic hydrocarbons by matrix solid-phase dispersion and isotope dilution gas chromatography-mass spectrometry in sewage sludge from the Spanish area of Madrid [J]. Journal of Chromatography A,2007,1148(2):219-227.
    [24]Zhang, W., Wei, C., Feng, C., Yan, B., Li, N., Peng, P., Fu, J. Coking wastewater treatment plant as a source of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere and health-risk assessment for workers [J]. Science of the Total Environment,2012,432:396-403.
    [25]崔静,董岸杰,张卫江等.热碱水解提取污泥蛋白质的实验研究[J].环境工程学报,2009,3(10):1899-1892.
    [26]Liu, Y., Kong, S., Li, Y., Zeng, H. Novel technology for sewage sludge utilization: Preparation of amino acids chelated trace elements (AACTE) fertilizer [J]. J. Hazard. Mater.2009,171 (1-3):1159-1167.
    [27]Chicharroa, M., Sanchez, A., Zapardiel, A., Rubianes, M.D., Rivas, G. Capillary electrophoresis of neurotransmitters with amperometric detection at melanin-type polymer-modified carbon electrodes [J]. Analytica Chimica Acta,2004, 523(2):185-191.
    [28]Dong, S.Q., Zhang, S., Cheng, X., He, P.G., Wang, Q.J., Fang, Y.Z. Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and Cu2O [J]. J. Chromatogr. A,2007,1161 (1-2):327-333.
    [29]Auer, W., Malissa, J.H. Determination of trace amounts of polycyclic aromatic hydrocarbons in soil [J]. J. Agric. Food Chem,1990,237:451-457.
    [30]Martens, D., Maguhn, J., Spizauer, P., Kettrup, A. Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem [J]. Fresenius J. Anal. Chem,1997,359:546-554.
    [31]Song, Y.F., Jing, X., Fleischmann, S., Wilke, B.M. Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments [J]. Chemosphere,2002,48(9):993-1001.
    [32]刘俊建.典型持久性有机污染物在城市污水处理过程中的迁移转化规律研究[D].西安建筑科技大博士学位论文.2011.
    [33]Bodzek, D., Janoszka, B. Comparison polyclic aromatic compounds and heavy metals contents in sewage sludges from industrialized and non-industrialized region [J]. Water, Air and Soil Pollution,1999, 111(1/4):359-369.
    [34]Wild, S.R., Waterhouse, K.S., McGrath, S.P., Jones, K.C. Organic contaminants in an agricultural soil with a known history of sewage sludge amendments: polynuclear aromatic hydrocarbons [J]. Environ. Sci. Technol.1990,24(11): 1706-1711.
    [35]Blanchard, M.,Teil, M.J., Ollivon, D., Legenti, L., Chevreuil, M. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France)[J]. Environmental Research, 2004,95(2):184-197.
    [36]Busetti, F, Heitz, A., Cuomo, M., Badoer, S., Traverso, P. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant [J]. Journal of Chromatography A,2006,1102 (1-2):104-115.
    [37]Oleszczuk, P. Investigation of potentially bioavailable and sequestrated forms of polycyclic aromatic hydrocarbons during sewage sludge composting [J]. Chemosphere,2007,70(2):288-297.
    [38]Khadhar, S., Higashi, T., Hamdi, H., Matsuyama, S., Charef, A. Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants [J]. Journal of Hazardous Materials,2010,183(1-3):98-102.
    [39]Oleszczuk, P., Hale, S.E., Lehmann, J., Cornelissen, G. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge [J]. Bioresource Technology, 2012,111:84-91.
    [40]莫测辉,蔡全英,吴启堂等.我国一些城市污泥中多环芳烃(PAHs)的研究[J].环境科学,2001,21(5):613-618.
    [41]方海兰,陈玲,彭喜玲等.上海主要污水处理厂污泥中多环芳烃的分布特征[J],土壤学报,2008,45(6):1164-1169.
    [42]Takashima, M., Kudoh, Y., Tabata, N. Complete anaerobic digestion of activated sludge by combining membrane separation and alkaline heat post-treatment [J]. Water Science and Technology,1996,34(5-6):477-481.
    [43]Vlyssides, A.G., Karlis, R.K. Thermal-alkaline solubilization of waste activated sludge as a pretreatment stage for anaerobic digestion [J]. Bioresource Technology,2004,91(2):201-206.
    [44]Beszedits, S., Lugowski, A. Utilizing Waste Activated Sludge for Animal Feeding. B&L Information Service, Toronto.1981.
    [45]Ray, E.E., O'Brien, R.T., Stiffler, D.M., Smith, G.S. Quality of meat from cattle fed sewage solids [J]. J. Food Protect,1982,45,317-321.
    [46]Shier, W.T., Purwono, S.K. Extraction of single-cell protein from activated sewage sludge:thermal solubilization of protein [J]. Bioresour. Technol,1994,49(2):157-162.
    [47]Hwang, J., Zhang, L., Seo, S., Lee, Y.W., Jahng, D. Protein recovery from excess sludge for its use as animal feed. Bioresource Technology,2608,99(18): 8949-8954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700