用户名: 密码: 验证码:
生物改性木质纤维素材料制备溢油吸附剂的特性和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油的使用过程中通常会造成许多污染问题,污染途径包括生产冶炼、运输和使用过程中的各个环节。石油泄漏不仅造成能源的损失,而且也对环境生态造成不利影响。近年来,石油及石油产品的污染已经造为了严重的水污染问题,从而引起广泛的关注并成为研究热点。虽然一些先进的治理技术已被开发并引入含油废水处理中,如化学混凝、微滤和超滤,但是它们需要昂贵的启动资金和运营成本,这些弊端都抑制了这些技术的应用。因此,有必要开发有效的,经济的环境友好的技术来处理含油废水。近年来,木质纤维素材料已开始用于对含油污水的去除。它们的优点在于选择性地去除水中油类污染物、可生物降解性、成本相对较低,以及对环境的影响小。
     玉米是主要的经济作物之一,生产过程中会产生大量的副产品,如玉米芯、玉米叶和玉米秸秆,如何合理利用是一个非常重要的课题。使用玉米秸秆作为吸油剂用于溢油的回收最近受到重视。但考虑到玉米秸秆原材料的吸油能力相对较低,使用前应采取一些改性方法,以提高它的吸油量。
     本研究以玉米秸秆作为原料(raw corn stalks,简写为RCS),采用纤维素酶和木质纤维素降解菌生物改性技术,制备出不同的吸附剂。然后分别对它们的性质和吸附性能进行研究,阐述了酶改性和真菌改性制备溢油吸附剂的吸附机理,并采用吸附动力学和吸附等温线对吸附过程进行拟合。得到的研究结果如下:
     1.以玉米秸秆为原材料,选取产自黑曲霉的纤维素酶和纤维素酶R10为改性剂,制备高效水体溢油去除剂的最佳条件分别是:45°C,黑曲霉纤维素酶投加量为100U/g和酶反应时间为6小时改性条件下,制备出高效溢油吸附剂ACCS;50°C,纤维素酶R10投加量为100U/g和酶反应时间为4小时改性条件下,制备出高效溢油吸附剂RCCS。
     2.以玉米秸秆、玉米芯和木屑作为原材料,用黑曲霉和黄孢原毛平革菌进行改性,其最佳改性条件分别为:添加外加碳源体系中,黑曲霉在30°C、玉米秸秆与水比例为1:3时,改性6天,分别制备出ANCS、ANCC和ANWC;在小米麦麸培养体系中(比例为2:1),黄孢原毛平革菌在37°C,改性21天,分别制备出PCCS、PCCC和PCWC。对比纤维素降解菌和木质素降解菌对农业固体废弃物吸油量的影响可以看出,纤维素降解菌改性效果优于木质素降解菌,木质素有利于原油的吸附。
     3.从表征结果和组分分析改性机理,可以看出纤维素酶改性和木质纤维素降解真菌改性对纤维素结晶度、比表面积和纤维素木质素组成的改变,直接影响着吸附剂的吸油量。两种改性方法都能使玉米秸秆的纤维素结晶度降低、比表面积增大,纤维素酶和纤维素降解菌丝能穿入纤维素的结晶区,弱化糖苷键,破坏规则的致密平行结构,形成无定形结构,这样玉米秸秆的无定形区域扩大,有利于油分子的渗入,从而提高材料的吸油量,同时疏水性的木质素相对含量升高,亲水性的纤维素相对含量降低,这样使得材料的疏水性增加有利于秸秆在油水表面的吸油。
     4.研究了吸附过程中吸附剂投加量(0.1-0.5g)、初始油量(5-30g)和吸附时间的影响。当初始油量高、吸附剂投加量小时,它们的吸附能力最好,其中ACCS是最好的吸附剂。从吸附动力学和热力学的研究结果分析,ACCS、RCCS、ANCC、PCCC、ANWC和PCWC对原油的吸附更好的与Langmuir方程式符合,说明它们对原油吸附是单层吸附,而ANCS和PCCS对原油的吸附更好的符合Freundlich方程式,说明它们的吸附过程是发生在非匀质表面的多层吸附。所有改性材料都符合二级动力学方程,比较它们的吸附半平衡时间和初始吸附速率发现,ANCS都比其他吸附材料要高。
     5.纤维素酶和木质纤维素真菌改性农业固体废弃物对原油的主要吸附机理是:生物酶和真菌菌丝使得材料获得较大比表面积和较小结晶度而有利于物理吸附,同时改变纤维素、木质素组成比例,提高材料的毛细管作用力,有利于油分子的粘附。
The usage of oil usually causes much pollution, and they may occur during variousstages of its production, transportation and utilization. Oil pollutants are not only a loss ofenergy but also an adverse effect on wildlife. Recently, oil spill has become one of the mostserious problems, so it causes widespread concern and research hotspot. Although someadvanced technologies have been developed and introduced into the oily water treatment,such as chemical coagulation, microfiltration and ultrafiltration, the expensive initial andoperating cost inhibit the application of these methods. So, it is necessary to develop aneffective, economical and green technology to deal with the oil pollutants in water. Recentyears, Cellulose-based organic materials have been started to be used for oil removal frompolluted water. They have the advantages of selective removal of oil over water,biodegradability, relatively low cost, and limited impact on the environment.
     Corn is one of the major economical crops all over the world, and it produce abundant ofbyproducts such as corncob, corn leave and corn stalk, so the importance of utilization of ithas been realized. The usage of corn stalk as an oil-sorbent in the recovery of spilled oils hasreceived attention recently. Considering the oil sorption capacity of raw corn stalk isrelatively low, some modification methods should be taken in order to producehigh-efficiency oil-sorbent.
     In this paper, raw corn stalks (RCS) were used as raw materials, and the choices ofbiotechnology based on the use of cellulase and solid-state fermentation bylignincellulosic-degrading fungi in modification process were taken. These materials wereanalyzed by characterization, and their adsorption isotherm and kinetics were evaluated inbatch experiments. The main results are as follows:
     1. Corn stalks were treated using two kinds of cellulase as modifier, which includecellulase from Aspergillus niger and cellulase R-10, so as to achieve new kinds of modifiedbiosorbent for oil removal from water (named ACCS and RCCS). After6h cellulasetreatment of corn stalk at an enzyme loading of100U/g under45°C, ACCS got high sorption capacity of oils. After4h cellulase R10treatment of corn stalk at an enzyme loading of100U/g under50°C, RCCS got high sorption capacity of oils.
     2. Corn atalks, corncob and oak wood were treated using Aspergillus niger andPhanerochaete chrysosporium, and the optimum modification conditions were as follows: ForAspergillus niger modification with additional carbon, at30℃, the initial solid-liquid ratiowas1:3, and modification time was6days, ANCS, ANCC and ANWC were prepared; ForPhanerochaete chrysosporium modification in millet and wheat bran system (ratio was2:1),at37℃, after modification time of21days, PCCS, PCCC and PCWC were prepared.Compared the modification of both fungi, the effect of Aspergillus niger was better thanPhanerochaete chrysosporium, and cellulase as modifier was better than Aspergillus niger.Lignin is favor for oil adsorption.
     3. The main modification mechanisms were conclused from characrerization results andlignocellulose analysis. Both of cellulase and fungi modification could transformation of thecellulose structure, and decrease the value of CrI, and increase BET areas. The main reasonfor modification can be attributed to the penetration of cellulase and hyphae into thecrystalline region of cellulose, weakening of the glycosidic bonds and formation ofamorphous structures. Meanwhile, they could increase relative amount of hydrophobic lignin,and reduce relative amount of hydrophilic cellulose, so that the improvement of hydrophobicwas benefit to oil adsorption in oil/water system.
     4. The effects of sorbent dose (0.1to0.5g), initial oil amount (5to30g), and thesorption time were also studied. When at high initial oil amount and in small dosage, thesorption capacities of all materials were better, and ACCS was the best sorbent. The sorptionprecesses of ACCS, RCCS, ANCC, ANWC, PCCC and PCWC fitted for Langmuir sorptionisotherm, which means oil moleculors were adhered on their surface by single layer. Thesorption process of ANCS and PCCS was found to fit for Freundlich isotherm, which meanstheir sorption process takes place in a non-homogeneous surface of the multilayer adsorption,and they occurred physical sorption. All of these sorbents met the pseudo-second-orderkinetics, describing that the adsorption rate was relation with square driving force. Compared the half time of adsorption and initial adsorption rate, ANCS is the highest among thesesorbents.
     5. The main mechanism of adsorption of oil by cellulase and lignocellulose-degradingfungi modified corn stalks was physical adsorption depending on their larger surface, lowerdegree of crystallinity, and higher relative amount of lignin, leading to improve the adhesionto oil molecules by capillary force.
引文
[1] Annunciado, T.R., Sydenstricker, T.H. and Amico, S.C. Experimentalinvestigation of various vegetable fibers as sorbent materials for oil spills[J].Marine pollution bulletin,2005,50(11):1340-6.
    [2] Gertler, C., Gerdts, G., Timmis, K.N., et al. Populations of heavy fueloil-degrading marine microbial community in presence of oil sorbentmaterials[J]. Journal of applied microbiology,2009,107(2):590-605.
    [3] Gertler, C., Gerdts, G., Timmis, K.N., et al. Microbial consortia in mesocosmbioremediation trial using oil sorbents, slow-release fertilizer andbioaugmentation[J]. FEMS microbiology ecology,2009,69(2):288-300.
    [4] Saeki, H., Sasaki, M., Komatsu, K., et al. Oil spill remediation by using theremediation agent JE1058BS that contains a biosurfactant produced byGordonia sp. strain JE-1058[J]. Bioresource Technology,2009,100(2):572-7.
    [5] Wang, J., Zheng, Y. and Wang, A. Coated kapok fiber for removal of spilled oil[J].Marine pollution bulletin,2013,69(1-2):91-96.
    [6] Sidik, S.M., Jalil, A.A., Triwahyono, S., et al. Modified oil palm leaves adsorbentwith enhanced hydrophobicity for crude oil removal[J]. Chemical EngineeringJournal,2012,203:9-18.
    [7] Payne, K.C., Jackson, C.D., Aizpurua, C.E., et al. Oil spills abatement: factorsaffecting oil uptake by cellulosic fibers[J]. Environmental science&technology,2012,46(14):7725-30.
    [8] Li, J., Luo, M., Zhao, C.-J., et al. Oil removal from water with yellow horn shellresidues treated by ionic liquid[J]. Bioresource Technology,2012.
    [9] KINGSTON, P.F. Long-term Environmental Impact of Oil Spills[J]. Spill Science&Technology Bulletin,2002,7(1-2):53-61.
    [10] Muschenheim, D.K. and Lee, K. Removal of oil from the sea surface throughparticulate interactions: Review and prospectus[J]. Spill Science&Technology Bulletin,2002,8(1):9-18.
    [11] Adebajo, M.O., Frost, R.L., Kloprogge, J.T., et al. Porous materials for oil spillcleanup: A review of synthesis and absorbing properties[J]. Journal of PorousMaterials,2003,10(3):159-170.
    [12] Sayed, S.A., El Sayed, A.S., M, S., et al. Oil Spill Pollution Treatment bySorption on Natural Cynanchum Acutum L Plant[J]. Journal of AppliedSciences&Environmental Management,2003,7(2):63-73.
    [13] Okoh, A.I., Babalola, G.O. and Bakare, M.K. Microbial densities andphysicochemical quality of some crude oil flow stations' saver pit effluents inthe Niger Delta areas of Nigeria[J]. The Science of the total environment,1996,187(2):73-8.
    [14] Al-Majed, A.A., Adebayo, A.R. and Hossain, M.E. A sustainable approach tocontrolling oil spills[J]. Journal of Environmental Management,2012,113:213-27.
    [15] Albaiges, J., Morales-Nin, B. and Vilas, F. The Prestige oil spill: a scientificresponse[J]. Marine pollution bulletin,2006,53(5-7):205-7.
    [16] Banks, A.N., Sanderson, W.G., Hughes, B., et al. The Sea Empress oil spill(Wales, UK): effects on Common Scoter Melanitta nigra in Carmarthen Bayand status ten years later[J]. Marine pollution bulletin,2008,56(5):895-902.
    [17] Garshelis, D.L. and Johnson, C.B. Prolonged recovery of sea otters from theExxon Valdez oil spill? A re-examination of the evidence[J]. Marine pollutionbulletin,2013.
    [18] Payne, J.R. and Phillips, C.R. Photochemistry of petroleum in water[J].Environmental science&technology,1985,19(7):569-79.
    [19] Wan, Z., Fingas, M., Owens, E.H., et al. Long-term fate and persistence of thespilled metula oil in a marine salt marsh environment degradation ofpetroleum biomarkers[J]. Journal of chromatography. A,2001,926(2):275-90.
    [20] KINGSTON, P.F. Long-term Environmental Impact of Oil Spills[J]. SpillScience&Technology Bulletin,2002,7:53-61.
    [21] Chu, Y. and Pan, Q.M. Three-Dimensionally Macroporous Fe/C NanocompositesAs Highly Selective Oil-Absorption Materials[J]. Acs Applied Materials&Interfaces,2012,4(5):2420-2425.
    [22] Choi, H.-M. and Cloud, R.M. Natural Sorbents in Oil Spill Cleanup[J]. Environ.Scl. Technol,1992,26(4):772-776.
    [23] Lin, Q., Mendelssohn, I.A., Bryner, N.P., et al. In situ burning of oil in coastalmarshes.1. Vegetation recovery and soil temperature as a function of waterdepth, oil type, and marsh type[J]. Environmental science&technology,2005,39(6):1848-54.
    [24] Lin, Q., Mendelssohn, I.A., Carney, K., et al. In-situ burning of oil in coastalmarshes.2. Oil spill cleanup efficiency as a function of oil type, marsh type,and water depth[J]. Environmental science&technology,2005,39(6):1855-60.
    [25] Trejo-Hernandez, M.R., Ortiz, A., Okoh, A.I., et al. Biodegradation of heavycrude oil Maya using spent compost and sugar cane bagasse wastes[J].Chemosphere,2007,68(5):848-55.
    [26] Oh, Y.S., Sim, D.S. and Kim, S.J. Effects of nutrients on crude oilbiodegradation in the upper intertidal zone[J]. Marine pollution bulletin,2001,42(12):1367-72.
    [27] Chen, Q., Bao, M., Fan, X., et al. Rhamnolipids enhance marine oil spillbioremediation in laboratory system[J]. Marine pollution bulletin,2013.
    [28] Sun, R.-C. Cereal Straw as a Resource for Sustainable Biomaterials andBiofuels2010: Elsevier.209-218.
    [29] Suni, S., Kosunen, A.L., Hautala, M., et al. Use of a by-product of peatexcavation, cotton grass fibre, as a sorbent for oil-spills[J]. Marine pollutionbulletin,2004,49(11-12):916-21.
    [30] Chiang, P.C., Chang, E.E. and Wu, J.S. Comparison of chemical and thermalregeneration of aromatic compounds on exhausted activated carbon[J]. WaterScience and Technology,1997,35(7):279-285.
    [31] Rowell, R.M., Young, R.A. and Rowell, J. Filters, sorbents, and geotextiles In:Paper and composites from agro-based resources1997, Boca Raton, FL: LewisPublishers.
    [32]王成彦,武装,魏明岩等.膨胀石墨除油机理及影响因素研究[J].环境科学与管理,2009,34(4):84-87.
    [33] John G. Reynolds, P.R.C. Hydrophobic Aerogels for Oil-Spill Cleanup? IntrinsicAbsorbing Properties[J]. Energy Sources,2001,23(9):831-843.
    [34] Inagakl, M., Konno, H., Toyoda, M., et al. Sorption and recovery of heavy oilsby using exfoliated graphite Part II-Recovery of heavy oil and recycling ofexfoliated graphite[J]. Desalination,2000,128213-218.
    [35] Choi, H.M., Kwon, H.J. and Moreau, J.P. Cotton Nonwovens as Oil-SpillCleanup Sorbents[J]. Textile Research Journal,1993,63(4):211-218.
    [36] Zheng, Y.-P., Wang, H.-N., Fei-YuKang, et al. Sorption capacity of exfoliatedgraphite for oils-sorption in and among worm-like particles[J]. Carbon2004,42:2603-2607.
    [37] Arbatan, T., Fang, X. and Shen, W. Superhydrophobic and oleophilic calciumcarbonate powder as a selective oil sorbent with potential use in oil spillclean-ups[J]. Chemical Engineering Journal,2011,166(2):787-791.
    [38] He, H.P., Ding, Z., Zhu, J.X., et al. Thermal characterization ofsurfactant-modified montmorillonites[J]. Clays and Clay Minerals,2005,53(3):287-293.
    [39] da Silva Jr, U.G., de F. Melo, M.A., da Silva, A.l.F., et al. Adsorption of crudeoil on anhydrous and hydrophobized vermiculite[J]. Journal of Colloid andInterface Science,2003,260(2):302-304.
    [40] Toyoda, M. and Inagaki, M. Heavy oil sorption using exfoliated graphite-Newapplication of exfoliated graphite to protect heavy oil pollution[J]. Carbon,2000,38(2):199-210.
    [41] Zhu, H., Qiu, S., Jiang, W., et al. Evaluation of electrospun polyvinylchloride/polystyrene fibers as sorbent materials for oil spill cleanup[J].Environmental Science&Technology,2011,45(10):4527-31.
    [42] Yuan, X.P. and Chung, T.C.M. Novel Solution to Oil Spill Recovery: UsingThermodegradable Polyolefin Oil Superabsorbent Polymer (Oil-SAP)[J].Energy&Fuels,2012,26(8):4896-4902.
    [43] Xu, N. and Xiao, C. Swelling and crystallization behaviors of absorptivefunctional fiber based on butyl methacrylate/hydroxyethyl methacrylatecopolymer[J]. Journal of Materials Science,2009,45(1):98-105.
    [44] Husseien, M., Amer, A.A., El-Maghraby, A., et al. A comprehensivecharacterization of corn stalk and study of carbonized corn stalk in dye andgas oil sorption[J]. Journal of Analytical and Applied Pyrolysis,2009,86(2):360-363.
    [45] Zheng, L., Dang, Z., Yi, X., et al. Equilibrium and kinetic studies of adsorptionof Cd(II) from aqueous solution using modified corn stalk[J]. Journal ofhazardous materials,2010,176(1-3):650-6.
    [46] Li, D., Zhu, F.Z., Li, J.Y., et al. Preparation and Characterization of CelluloseFibers from Corn Straw as Natural Oil Sorbents[J]. Industrial&EngineeringChemistry Research,2012:121224103114008.
    [47] Kato, Y., Umehara, K. and Aoyama, M. An oil sorbent from wood fiber by mildpyrolysis[J]. Holz als Roh-und Werkstoff,1997,55:399-401.
    [48] Huang, L.Y., Boving, T.B. and Xing, B.S. Sorption of PAHs by Aspen WoodFibers as Affected by Chemical Alterations[J]. Environmental Science&Technology,2006,40(10):3279-3284.
    [49] Hussein, M., Amer, A.A. and Sawsan, I.I. Heavy oil spill cleanup using lawgrade raw cotton fibers: Trial for practical application[J]. Journal of PetroleumTechnology and Alternative Fuels,2011,2(8):132-140.
    [50] Liu, J.-f., Chi, Y.-g., Jiang, G.-b., et al. Use of cotton as a sorbent for on-lineprecolumn enrichment of polycyclic aromatic hydrocarbons in waters prior toliquid chromatography determination[J]. Microchemical Journal,2004,77(1):19-22.
    [51] Adebajo, M.O. and Frost, R.L. Acetylation of raw cotton for oil spill cleanupapplication: an FTIR and C-13MAS NMR spectroscopic investigation[J].Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2004,60(10):2315-2321.
    [52] Deschamps, G., Caruel, H., Borredon, M.E., et al. Oil removal from water byselective sorption on hydrophobic cotton fibers.1. Study of sorption propertiesand comparison with other cotton fiber-based sorbents[J]. EnvironmentalScience&Technology,2003,37(5):1013-1015.
    [53] Deschamps, G., Caruel, H., Borredon, M.E., et al. Oil removal from water bysorption on hydrophobic cotton fibers.2. Study of sorption properties indynamic mode[J]. Environmental Science&Technology,2003,37(21):5034-5039.
    [54] Wang, J., Zheng, Y. and Wang, A. Effect of kapok fiber treated with varioussolvents on oil absorbency[J]. Industrial Crops and Products,2012,40:178-184.
    [55] Rengasamy, R.S., Das, D. and Karan, C.P. Study of oil sorption behavior offilled and structured fiber assemblies made from polypropylene, kapok andmilkweed fibers[J]. Journal of hazardous materials,2011,186(1):526-32.
    [56] Lim, T.T. and Huang, X. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as anatural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup[J].Chemosphere,2007,66(5):955-63.
    [57] Aber, S., Khataee, A. and Sheydaei, M. Optimization of activated carbon fiberpreparation from Kenaf using K2HPO4as chemical activator for adsorption ofphenolic compounds[J]. Bioresource Technology,2009,100(24):6586-91.
    [58] Lee, B.G., Lee, H.J., Shin, D.Y., et al. Oil Removal Using Diethyl EtherExtracted and Ground Kenaf Core[J]. Materials Science Forum,2008,569:229-232.
    [59] Ni o, G.R., González, D.P.O., Fonseca, F.A., et al. TROPICALS SPHAGNUMPEAT MOSS, AN EFFICIENT ALTERNATIVE TO CLEAN UP OILSPILLS[J].2nd Mercosur Congress on Chemical Engineering.
    [60] Ding, Y., Jing, D., Gong, H., et al. Biosorption of aquatic cadmium(II) byunmodified rice straw[J]. Bioresource Technology,2012,114:20-5.
    [61] Sun, X.F., Sun, R.C. and Sun, J.X. Acetylation of rice straw with or withoutcatalysts and its characterization as a natural sorbent in oil spill cleanup[J].Journal of Agricultural and Food Chemistry,2002,50(22):6428-6433.
    [62] Angelova, D., Uzunov, I., Uzunova, S., et al. Kinetics of oil and oil productsadsorption by carbonized rice husks[J]. Chemical Engineering Journal,2011,172(1):306-311.
    [63] Thompson, N.E., Emmanuel, G.C., Adagadzu, K.J., et al. Sorption studies ofcrude oil on acetylated rice husks[J]. Archives of Applied Science Research,2010,2(5):142-151.
    [64] Kumagai, S., Noguchi, Y., Kurimoto, Y., et al. Oil adsorbent produced by thecarbonization of rice husks[J]. Waste management,2007,27(4):554-61.
    [65] Cojocaru, C., Macoveanu, M. and Cretescu, I. Peat-based sorbents for theremoval of oil spills from water surface: Application of artificial neuralnetwork modeling[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2011,384(1-3):675-684.
    [66] Suni, S., Kosunen, A.L. and Romantschuk, M. Microbially treated peat-cellulosefabric as a biodegradable oil-collection cloth[J]. Journal of environmentalscience and health. Part A, Toxic/hazardous substances&environmentalengineering,2006,41(6):999-1007.
    [67] Sun, R. and Sun, X.F. Structural and thermal characterization of acetylated rice,wheat, rye, and barley straws and poplar wood fibre[J]. Industrial Crops andProducts,2002,16(3):225-235.
    [68] Sun, R.C., Sun, X.F. and Ren, J.L. Fractional isolation and structuralcharacterization of lignins isolated by alkali and alkaline peroxide from barleystraw[J]. J. Agric. Food Chem.,2001,49:5322-5330.
    [69] Mahvi, A.H. Application of agricultural fibers in pollution removal from aqueoussolution[J]. International Journal of Environmental Science and Technology,2008,5(2):275-285.
    [70] Moreira, L.R.S., Milanezi, N.v. and Filho, E.X.F. Enzymology of Plant Cell WallBreakdown: An Update[J].2011:73-96.
    [71] Yang, S., Ding, W. and Chen, H. Enzymatic hydrolysis of corn stalk in a hollowfiber ultrafiltration membrane reactor[J]. Biomass and Bioenergy,2009,33(2):332-336.
    [72] Zhao, L., Cao, G.L., Wang, A.J., et al. Fungal pretreatment of cornstalk withPhanerochaete chrysosporium for enhancing enzymatic saccharification andhydrogen production[J]. Bioresource Technology,2012,114:365-9.
    [73] Ververis, C. Fiber dimensions, lignin and cellulose content of various plantmaterials and their suitability for paper production[J]. Industrial Crops andProducts,2004,19(3):245-254.
    [74] Op de Beeck, B., Geboers, J., Van de Vyver, S., et al. Conversion of(ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon[J].ChemSusChem,2013,6(1):199-208.
    [75] Van de Vyver, S., Geboers, J., Dusselier, M., et al. Selective bifunctionalcatalytic conversion of cellulose over reshaped Ni particles at the tip of carbonnanofibers[J]. ChemSusChem,2010,3(6):698-701.
    [76] Geboers, J., Van de Vyver, S., Carpentier, K., et al. Efficient catalytic conversionof concentrated cellulose feeds to hexitols with heteropoly acids and Ru oncarbon[J]. Chemical communications,2010,46(20):3577-9.
    [77] Sud, D., Mahajan, G. and Kaur, M.P. Agricultural waste material as potentialadsorbent for sequestering heavy metal ions from aqueous solutions-areview[J]. Bioresource Technology,2008,99(14):6017-27.
    [78] Sun, J. Isolation and characterization of cellulose from sugarcane bagasse[J].Polymer Degradation and Stability,2004,84(2):331-339.
    [79] Dizhbite, T., Zakis, G., Kizima, A., et al. Lignin-a useful bioresource for theproduction of sorption-active materials[J]. Bioresource Technology,1999,67(3):221-228.
    [80] Pandey, K.K. A study of chemical structure of soft and hardwood and woodpolymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science,1999,71(12):1969-1975.
    [81] Suhas, Carrott, P.J. and Ribeiro Carrott, M.M. Lignin--from natural adsorbent toactivated carbon: a review[J]. Bioresource Technology,2007,98(12):2301-12.
    [82] Dixon, R.A., Chen, F., Guo, D., et al. The biosynthesis of monolignols: a"metabolic grid", or independent pathways to guaiacyl and syringyl units?[J].Phytochemistry,2001,57(7):1069-84.
    [83] Hu, W.J., Harding, S.A., Lung, J., et al. Repression of lignin biosynthesispromotes cellulose accumulation and growth in transgenic trees[J]. Naturebiotechnology,1999,17(8):808-12.
    [84] Sederoff, R.R., MacKay, J.J., Ralph, J., et al. Unexpected variation in lignin[J].Current opinion in plant biology,1999,2(2):145-52.
    [85] Wenck, A.R., Quinn, M., Whetten, R.W., et al. High-efficiencyAgrobacterium-mediated transformation of Norway spruce (Picea abies) andloblolly pine (Pinus taeda)[J]. Plant molecular biology,1999,39(3):407-16.
    [86] Ho, B.T., McIsaac, W.M. and Tansey, L.W. Hydroxyindole-O-methyltransferase.I. Substrate binding[J]. Journal of pharmaceutical sciences,1969,58(1):130-1.
    [87] Bouxin, F., Baumberger, S., Pollet, B., et al. Acidolysis of a lignin model:investigation of heterogeneous catalysis using Montmorillonite clay[J].Bioresource technology,2010,101(2):736-44.
    [88] Cathala, B. and Monties, B. Influence of pectins on the solubility and the molarmass distribution of dehydrogenative polymers (DHPs, lignin modelcompounds)[J]. International journal of biological macromolecules,2001,29(1):45-51.
    [89] Cathala, B., Saake, B., Faix, O., et al. Association behaviour of lignins and ligninmodel compounds studied by multidetector size-exclusion chromatography[J].Journal of chromatography. A,2003,1020(2):229-39.
    [90] Jovan i, P. and Radeti, M. Advanced Sorbent Materials for Treatment ofWastewaters[J].2008,5S/2:239-264.
    [91] Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents:A review[J]. Advances in colloid and interface science,2008,143(1-2):48-67.
    [92] Bhatnagar, A. and Sillanp, M. Utilization of agro-industrial and municipalwaste materials as potential adsorbents for water treatment—A review[J].Chemical Engineering Journal,2010,157(2-3):277-296.
    [93] She, D., Sun, R.-C. and Jones, G.L. Chemical Modification of Straw as NovelMaterials for Industries[J].2010.
    [94] Wan Ngah, W.S. and Hanafiah, M.A. Removal of heavy metal ions fromwastewater by chemically modified plant wastes as adsorbents: a review[J].Bioresource Technology,2008,99(10):3935-48.
    [95] Lin, J., Shang, Y., Ding, B., et al. Nanoporous polystyrene fibers for oil spillcleanup[J]. Marine pollution bulletin,2012,64(2):347-52.
    [96] Lin, C., Hong, Y.J. and Hu, A.H. Using a composite material containing wastetire powder and polypropylene fiber cut end to recover spilled oil[J]. Wastemanagement,2010,30(2):263-7.
    [97] Rajakovic Ognjanovic, V., Aleksic, G. and Rajakovic, L. Governing factors formotor oil removal from water with different sorption materials[J]. Journal ofhazardous materials,2008,154(1-3):558-63.
    [98] Zaveri, M.D., Absorbency Characteristics of Kenaf Core Particles, in NORTHCAROLINA STATE UNIVERSITy,2004.
    [99] Sun, X.F., Sun, R.C. and Sun, J.X. Acetylation of sugarcane bagasse using NBSas a catalyst under mild reaction conditions for the production of oilsorption-active materials[J]. Bioresource Technology,2004,95(3):343-50.
    [100] Sun, R.C., Sun, X.F., Sun, J.X., et al. Effect of tertiary amine catalysts on theacetylation of wheat straw for the production of oil sorption-active materials[J].Comptes Rendus Chimie,2004,7(2):125-134.
    [101] Teli, M.D. and Valia, S.P. Acetylation of Banana Fibre to Improve OilAbsorbency[J]. Carbohydrate Polymers,2012.
    [102] Steinmeier, H.3. Acetate manufacturing, process and technology—3.1Chemistry of cellulose acetylation[J]. Macromolecular Symposia,2004,208(1):49-60.
    [103] SIDIRAS, D., BATZIAS, F., KONSTANTINOU, I., et al. Development of aNew Oil Spill Adsorbent from Autohydrolysis Modified LignocellulosicWaste Material[J]. Recent Researches in Chemistry, Biology, Environmentand Culture,2012.
    [104] Karr, G.S. and Sun, X.S. Strawboard from vapor phase acetylation of wheatstraw òü[J]. Industrial Crops and Products,2000,11(1):31-41.
    [105] Mitsui, K. Acetylation of wood causes photobleaching[J]. Journal ofphotochemistry and photobiology. B, Biology,2010,101(3):210-4.
    [106] Hill, C.A.S., Jones, D., Strickland, G., et al. Kinetic and mechanistic aspects ofthe acetylation of wood with acetic anhydride[J]. Holzforschung,1998,52(6):623-629.
    [107] H fle, G., Steglich, W. and Vorbrüggen, H.4-Dialkylaminopyridines as HighlyActive Acylation Catalysts.[New synthetic method (25)][J]. AngewandteChemie International Edition in English,1978,17(8):569-583.
    [108] Hill, C.A.S., Khalil, H.P.S.A. and Hale, M.D. A study of the potential ofacetylation to improve the properties of plant fibres[J]. Industrial Crops andProducts,1998,8(1):53-63.
    [109] Babak, K. and Hassan, S. N-Bromosuccinimide (NBS), a Novel and HighlyEffective Catalyst for Acetylation of Alcohols under Mild ReactionConditions[J]. ChemInform,2001,32(29):74-74.
    [110] Inagaki, M., Kawahara, A. and Konno, H. Sorption and recovery of heavy oilsusing carbonized fir fibers and recycling[J]. Carbon,2002,40:105-111.
    [111] Cao, X., Liu, F., Li, S., et al. Study on optimization production process ofporous starch with high capacity of adsorption for oil[J]. International Journalof Modern Organic Chemistry,2012.
    [112] Fanta, G.F., Abbott, T.P., Burr, R.C., et al. Ion exchange reactions of quaternaryammonium halides with wheat straw Preparation of oilabsorbents[J].Carbohydrate Polymers,1987,7:97-109.
    [113] Rowell, R., Simonson, R., Hess, S., et al. Acetyl Distribution in AcetylatedWhole Wood and Reactivity of Isolated Wood Cell-Wall Components toAcetic Anhydride[J]. Wood and Fiber Science,1994,26(1):11-18.
    [114] Rodriguez-Gomez, D. and Hobley, T.J. Is an organic nitrogen source needed forcellulase production by Trichoderma reesei Rut-C30?[J]. World journal ofmicrobiology&biotechnology,2013.
    [115] Sharma, S.K., Kalra, K.L. and Grewal, H.S. Fermentation of enzymaticallysaccharified sunflower stalks for ethanol production and its scale up[J].Bioresource technology,2002,85(1):31-3.
    [116] HELMI, S., KHALIL, A.I., TAHOUN, M.K., et al. Induction of Mutation inAspergillus niger for Conversion of Cellulose into Glucose[J]. AppliedBiochernistry and Biotechnology,1991,28/29:203-210.
    [117]吴发远.黑曲霉发酵生产纤维素酶条件的研究[J].中国农学通报,2009,25(09):74-77.
    [118]王晓林,张西玉,白方文等.高效降解秸秆纤维素菌株的筛选鉴定及产酶条件优化[J].四川师范大学学报,2011,34(1):105-109.
    [119] Martins, L.F., Kolling, D., Camassola, M., et al. Comparison of Penicilliumechinulatum and Trichoderma reesei cellulases in relation to their activityagainst various cellulosic substrates[J]. Bioresource Technology,2008,99(5):1417-24.
    [120] Harman, G.E., Herrera-Estrella, A.H., Horwitz, B.A., et al. Special issue:Trichoderma--from basic Biology to Biotechnology[J]. Microbiology,2012,158(Pt1):1-2.
    [121] Ganner, T., Bubner, P., Eibinger, M., et al. Dissecting and reconstructingsynergism: in situ visualization of cooperativity among cellulases[J]. TheJournal of biological chemistry,2012,287(52):43215-22.
    [122] Schuster, A. and Schmoll, M. Biology and biotechnology of Trichoderma[J].Applied microbiology and biotechnology,2010,87(3):787-99.
    [123] Stricker, A.R., Mach, R.L. and de Graaff, L.H. Regulation of transcription ofcellulases-and hemicellulases-encoding genes in Aspergillus niger andHypocrea jecorina (Trichoderma reesei)[J]. Applied microbiology andbiotechnology,2008,78(2):211-20.
    [124] Dashtban, M., Schraft, H. and Qin, W. Fungal bioconversion of lignocellulosicresidues; opportunities&perspectives[J]. International journal of biologicalsciences,2009,5(6):578-95.
    [125] Contesini, F.J., Lopes, D.B., Macedo, G.A., et al. Aspergillus sp. lipase:Potential biocatalyst for industrial use[J]. Journal of Molecular Catalysis B:Enzymatic,2010,67(3-4):163-171.
    [126] Barrington, S. and Kim, J.W. Response surface optimization of mediumcomponents for citric acid production by Aspergillus niger NRRL567grownin peat moss[J]. Bioresource Technology,2008,99(2):368-77.
    [127]张福元,宋燕青,程文晓.黑曲霉发酵玉米秸秆产纤维素酶的研究[J].山西农业大学学报(自然科学版),2009,3:206-210.
    [128] Sternberg, D., Vijayakumar, P. and Reese, E.T. beta-Glucosidase: microbialproduction and effect on enzymatic hydrolysis of cellulose[J]. Canadianjournal of microbiology,1977,23(2):139-47.
    [129] Ponte, P.I., Lordelo, M.M., Guerreiro, C.I., et al. Crop beta-glucanase activitylimits the effectiveness of a recombinant cellulase used to supplement abarley-based feed for free-range broilers[J]. British poultry science,2008,49(3):347-59.
    [130] Francoeur, S.N., Schaecher, M., Neely, R.K., et al. Periphytic photosyntheticstimulation of extracellular enzyme activity in aquatic microbial communitiesassociated with decaying typha litter[J]. Microbial ecology,2006,52(4):662-9.
    [131] Woodward, J., Marquess, H.J. and Picker, C.S. Affinity chromatography ofbeta-glucosidase and endo-beta-glucanase from Aspergillus niger onconcanavalin A-Sepharose: implications for cellulase component purificationand immobilization[J]. Preparative biochemistry,1986,16(4):337-52.
    [132] Alfani, F., Cantarella, L., Gallifuoco, A., et al. Characterization of thebeta-glucosidase activity associated with immobilized cellulase of Aspergillusniger[J]. Annals of the New York Academy of Sciences,1987,501:503-7.
    [133] Adikane, H.V. and Patil, M.B. Isolation and properties of beta-glucosidase fromAspergillus niger[J]. Indian journal of biochemistry&biophysics,1985,22(2):97-101.
    [134] Watanapokasin, R., Sawasjirakij, N., Usami, S., et al. Polyploid formationbetween Aspergillus niger and Trichoderma viride for enhanced citric acidproduction from cellulose[J]. Applied biochemistry and biotechnology,2007,143(2):176-86.
    [135] Ikram-ul-Haq, Javed, M.M. and Khan, T.S. An innovative approach forhyperproduction of cellulolytic and hemicellulolytic enzymes by consortiumof Aspergillus niger MSK-7and Trichoderma viride MSK-10[J]. AfricanJournal of Biotechnology,2006,5(8):609-614.
    [136]宋娜娜,宋向阳,欧阳嘉.里氏木霉与黑曲霉混合发酵产纤维素酶及其水解特性[J].生物加工过程,2010,5:5-10.
    [137] Gutierrez-Correa, M., Portal, L., Moreno, P., et al. Mixed culture solidsubstrate fermentation of Trichoderma reesei with Aspergillus niger on sugarcane bagasse[J]. Bioresource Technology,1999,68(2):173-178.
    [138] Manonmani, H.K. and Sreekantiab, K.R. Saccharification of sugar-cane bagassewith enzymes from Aspergillus ustus and Trichoderma viride[J]. Enzyme andMicrobial Technology,1987,8(5):305-308.
    [139] Wilson, D.B. Cellulases and biofuels[J]. Current Opinion in Biotechnology,2009,20(3):295-9.
    [140] Whitaker, D.R., Cellulases,1971.273-290.
    [141] Spigno, G., Pizzorno, T. and De Faveri, D.M. Cellulose and hemicellulosesrecovery from grape stalks[J]. Bioresource Technology,2008,99(10):4329-37.
    [142] Reddy, N. and Yang, Y.Q. Preparation and characterization of long naturalcellulose fibers from wheat straw[J]. Journal of Agricultural and FoodChemistry,2007,55(21):8570-8575.
    [143] Percival Zhang, Y.H., Himmel, M.E. and Mielenz, J.R. Outlook for cellulaseimprovement: screening and selection strategies[J]. Biotechnology advances,2006,24(5):452-81.
    [144] Pavan, R., Jain, S., Shraddha, et al. Properties and therapeutic application ofbromelain: a review[J]. Biotechnology research international,2012,2012:976203.
    [145] Parawira, W. Enzyme research and applications in biotechnologicalintensification of biogas production[J]. Critical reviews in biotechnology,2012,32(2):172-86.
    [146] Kasana, R.C. and Gulati, A. Cellulases from psychrophilic microorganisms: areview[J]. Journal of basic microbiology,2011,51(6):572-9.
    [147] Dogaris, I., Mamma, D. and Kekos, D. Biotechnological production of ethanolfrom renewable resources by Neurospora crassa: an alternative to conventionalyeast fermentations?[J]. Applied microbiology and biotechnology,2013,97(4):1457-73.
    [148] Chandel, A.K., Chandrasekhar, G., Silva, M.B., et al. The realm of cellulases inbiorefinery development[J]. Critical reviews in biotechnology,2012,32(3):187-202.
    [149] Bubner, P., Plank, H. and Nidetzky, B. Visualizing cellulase activity[J].Biotechnology and bioengineering,2013,110(6):1529-49.
    [150] Hall, M., Bansal, P., Lee, J.H., et al. Cellulose crystallinity--a key predictor ofthe enzymatic hydrolysis rate[J]. The FEBS journal,2010,277(6):1571-82.
    [151] Bose, S., Armstrong, D.W. and Petrich, J.W. Enzyme-catalyzed hydrolysis ofcellulose in ionic liquids: a green approach toward the production ofbiofuels[J]. The journal of physical chemistry. B,2010,114(24):8221-7.
    [152] Andric, P., Meyer, A.S., Jensen, P.A., et al. Reactor design for minimizingproduct inhibition during enzymatic lignocellulose hydrolysis: II.Quantification of inhibition and suitability of membrane reactors[J].Biotechnology advances,2010,28(3):407-25.
    [153] Al-Zuhair, S. The effect of crystallinity of cellulose on the rate of reducingsugars production by heterogeneous enzymatic hydrolysis[J]. BioresourceTechnology,2008,99(10):4078-85.
    [154] Huang, d. Degradation of Lead-Contaminated Lignocellulosic Waste byPhanerochaete chrysosporium and the Reduction of Lead Toxicity[J]. Environ.Sci. Technol.,2008.
    [155] Huang, D.L., Zeng, G.M., Feng, C.L., et al. Mycelial growth and solid-statefermentation of lignocellulosic waste by white-rot fungus Phanerochaetechrysosporium under lead stress[J]. Chemosphere,2010,81(9):1091-7.
    [156] Tien, M. and Kirk, T.K. Lignin-Degrading Enzyme from the HymenomycetePhanerochaete chrysosporium Burds[J]. Science,1983,221(4611):661-3.
    [157] Kirk, T.K., Tien, M. and Faison, B.D. Biochemistry of the oxidation of ligninby Phanerochaete chrysosporium[J]. Biotechnology advances,1984,2(2):183-99.
    [158] Orth, A.B., Denny, M. and Tien, M. Overproduction of lignin-degradingenzymes by an isolate of Phanerochaete chrysosporium[J]. Applied andenvironmental microbiology,1991,57(9):2591-6.
    [159] Tien, M. and Kirk, T.K. Lignin-degrading enzyme from Phanerochaetechrysosporium: Purification, characterization, and catalytic properties of aunique H(2)O(2)-requiring oxygenase[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,1984,81(8):2280-4.
    [160] Kersten, P.J., Tien, M., Kalyanaraman, B., et al. The ligninase of Phanerochaetechrysosporium generates cation radicals from methoxybenzenes[J]. TheJournal of biological chemistry,1985,260(5):2609-12.
    [161] Ofori-Sarpong, G., Tien, M. and Osseo-Asare, K. Myco-hydrometallurgy: Coalmodel for potential reduction of preg-robbing capacity of carbonaceous goldores using the fungus, Phanerochaete chrysosporium[J]. Hydrometallurgy,2010,102:66-72.
    [162] Ofori-Sarpong, G., Osseo-Asare, K. and Tien, M. Fungal pretreatment ofsulfides in refractory gold ores[J]. Minerals Engineering,2011,24:499-504.
    [163] Orth, A.B., Royse, D.J. and Tien, M. Ubiquity of Lignin-Degrading Peroxidasesamong Various Wood-Degrading Fungi[J]. Applied and EnvironmentalMicrobiology,1993,59(12):4017-4023.
    [164] Ibrahim, S., Ang, H.M. and Wang, S. Removal of emulsified food and mineraloils from wastewater using surfactant modified barley straw[J]. BioresourceTechnology,2009,100(23):5744-9.
    [165] Chung, S., Suidan, M.T. and Venosa, A.D. Partially Acetylated SugarcaneBagasse for Wicking Oil from Contaminated Wetlands[J]. ChemicalEngineering&Technology,2011,34(12):1989-1996.
    [166] Segal, L., Creely, J.J., Martin, A.E., et al. An Empirical Method for Estimatingthe Degree of Crystallinity of Native Cellulose Using the X-RayDiffractometer[J]. Textile Research Journal,1959,29(10):786-794.
    [167] Ceylan, D., Dogu, S., Karacik, B., et al. Evaluation of Butyl Rubber as SorbentMaterial for the Removal of Oil and Polycyclic Aromatic Hydrocarbons fromSeawater[J]. Environmental Science&Technology,2009,43(10):3846-3852.
    [168] Abdullah, M.A., Rahmah, A.U. and Man, Z. Physicochemical and sorptioncharacteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oilsorbent[J]. Journal of hazardous materials,2010,177(1-3):683-91.
    [169] Esteghlalian, A.R., Mansfield, S.D. and Saddler, J. Cellulases: Agents for FiberModification or Bioconversion? The effect of substrate accessibility oncellulose enzymatic hydrolyzability[J]. Biotechnology in the Pulp and PaperIndustry:8th Icbppi,2002.
    [170] Ribeiro, T.H., Smith, R.W. and Rubio, J. Sorption of Oils by the NonlivingBiomass of a Salvinia sp.[J]. Environmental Science&Technology,2000,34(24):5201-5205.
    [171] Ribeiro, T. A Dried Hydrophobic Aquaphyte as an Oil Filter for Oil/WaterEmulsions[J]. Spill Science&Technology Bulletin,2003,8(5-6):483-489.
    [172] ROWELL, R.M. and BANKS, W.B. Tensile strength and toughness ofacetylated pine and lime flakes. Vol.19.1987, London, ROYAUME-UNI:Society of Chemical Industry.
    [173] Pandey, K.K. and Pitman, A.J. Examination of the lignin content in a softwoodand a hardwood decayed by a brown-rot fungus with the acetyl bromidemethod and Fourier transform infrared spectroscopy[J]. Journal of PolymerScience Part a-Polymer Chemistry,2004,42(10):2340-2346.
    [174] Pawlak, Z. and Pawlak, A.S. A review of infrared spectra from wood and woodcomponents following treatment with liquid ammonia and solvated electronsin liquid ammonia[J]. Applied Spectroscopy Reviews,1997,32(4):349-383.
    [175] Liu, C.F., Sun, R.C., Zhang, A.P., et al. Structural and thermal characterizationof sugarcane bagasse cellulose succinates prepared in ionic liquid[J]. PolymerDegradation and Stability,2006,91(12):3040-3047.
    [176] Zheng, L., Dang, Z., Zhu, C., et al. Removal of cadmium(II) from aqueoussolution by corn stalk graft copolymers[J]. Bioresource Technology,2010,101(15):5820-6.
    [177] Jeoh, T., Ishizawa, C.I., Davis, M.F., et al. Cellulase digestibility of pretreatedbiomass is limited by cellulose accessibility[J]. Biotechnology andbioengineering,2007,98(1):112-22.
    [178] Liu, L., Sun, J., Li, M., et al. Enhanced enzymatic hydrolysis and structuralfeatures of corn stover by FeCl3pretreatment[J]. Bioresource Technology,2009,100(23):5853-8.
    [179] Franca, A.S., Oliveira, L.S., Nunes, A.A., et al. Microwave assisted thermaltreatment of defective coffee beans press cake for the production ofadsorbents[J]. Bioresource Technology,2010,101(3):1068-74.
    [180] Sokker, H.H., El-Sawy, N.M., Hassan, M.A., et al. Adsorption of crude oil fromaqueous solution by hydrogel of chitosan based polyacrylamide prepared byradiation induced graft polymerization[J]. Journal of Hazardous Materials,2011,190(1-3):359-365.
    [181] Peng, D., Lan, Z., Guo, C., et al. Application of cellulase for the modification ofcorn stalk: Leading to oil sorption[J]. Bioresource technology,2013,137:414-8.
    [182] Li, M., Foster, C., Kelkar, S., et al. Structural characterization of alkalinehydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes[J].Biotechnology for biofuels,2012,5(1):38.
    [183] Sangnark, A. and Noomhorm, A. Chemical, physical and baking properties ofdietary fiber prepared from rice straw[J]. Food Research International,2004,37(1):66-74.
    [184] Mancera, A., Fierro, V., Pizzi, A., et al. Physicochemical characterisation ofsugar cane bagasse lignin oxidized by hydrogen peroxide[J]. PolymerDegradation and Stability,2010,95(4):470-476.
    [185] Ho, Y.S. and Ofomaja, A.E. Pseudo-second-order model for lead ion sorptionfrom aqueous solutions onto palm kernel fiber[J]. Journal of hazardousmaterials,2006,129(1-3):137-42.
    [186] Ho, Y.S. and McKay, G. Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34:451-465.
    [187] Nanseu-Njiki, C.P., Dedzo, G.K. and Ngameni, E. Study of the removal ofparaquat from aqueous solution by biosorption onto Ayous (Triplochitonschleroxylon) sawdust[J]. Journal of hazardous materials,2010,179(1-3):63-71.
    [188] Liu, C., Ngo, H.H., Guo, W., et al. Optimal conditions for preparation of bananapeels, sugarcane bagasse and watermelon rind in removing copper fromwater[J]. Bioresource Technology,2012,119:349-54.
    [189] Deng, L., Geng, M., Zhu, D., et al. Effect of chemical and biologicaldegumming on the adsorption of heavy metal by cellulose xanthogenatesprepared from Eichhornia crassipes[J]. Bioresource Technology,2012,107:41-5.
    [190] Bingol, D., Hercan, M., Elevli, S., et al. Comparison of the results of responsesurface methodology and artificial neural network for the biosorption of leadusing black cumin[J]. Bioresource technology,2012,112:111-5.
    [191] Chen, G.Q., Zou, Z.J., Zeng, G.M., et al. Coarsening of extracellularlybiosynthesized cadmium crystal particles induced by thioacetamide insolution[J]. Chemosphere,2011,83(9):1201-7.
    [192] Zuyi, T. and Taiwei, C. On the Applicability of the Langmuir Equation toEstimation of Adsorption Equilibrium Constants on a Powdered Solid fromAqueous Solution[J]. Journal of colloid and interface science,2000,231(1):8-12.
    [193] Gong, Z., Alef, K., Wilke, B.M., et al. Activated carbon adsorption of PAHsfrom vegetable oil used in soil remediation[J]. Journal of hazardous materials,2007,143(1-2):372-8.
    [194] Conrad, K. and Bruun Hansen, H.C. Sorption of zinc and lead on coir[J].Bioresource Technology,2007,98(1):89-97.
    [195] Arica, M.Y. and Bayramoglu, G. Biosorption of Reactive Red-120dye fromaqueous solution by native and modified fungus biomass preparations ofLentinus sajor-caju[J]. Journal of hazardous materials,2007,149(2):499-507.
    [196] Harmita, H., Karthikeyan, K.G. and Pan, X. Copper and cadmium sorption ontokraft and organosolv lignins[J]. Bioresource Technology,2009,100(24):6183-91.
    [197] Deng, H., Yang, L., Tao, G., et al. Preparation and characterization of activatedcarbon from cotton stalk by microwave assisted chemicalactivation--application in methylene blue adsorption from aqueous solution[J].Journal of hazardous materials,2009,166(2-3):1514-21.
    [198] Ng, I.S., Wu, X., Yang, X., et al. Synergistic effect of Trichoderma reeseicellulases on agricultural tea waste for adsorption of heavy metal Cr(VI)[J].Bioresource Technology,2013.
    [199] Berlin, A., Maximenko, V., Gilkes, N., et al. Optimization of enzymecomplexes for lignocellulose hydrolysis[J]. Biotechnology and bioengineering,2007,97(2):287-96.
    [200] Sun, X. Isolation and characterisation of cellulose obtained by a two-stagetreatment with organosolv and cyanamide activated hydrogen peroxide fromwheat straw[J]. Carbohydrate Polymers,2004,55(4):379-391.
    [201] Kerley, M.S., Fahey, G.C., Jr., Berger, L.L., et al. Effects of alkaline hydrogenperoxide treatment of wheat straw on site and extent of digestion in sheep[J].Journal of animal science,1986,63(3):868-78.
    [202] Kerley, M.S., Garleb, K.A., Fahey, G.C., Jr., et al. Effects of alkaline hydrogenperoxide treatment of cotton and wheat straw on cellulose crystallinity and oncomposition and site and extent of disappearance of wheat straw cell wallphenolics and monosaccharides by sheep[J]. Journal of animal science,1988,66(12):3235-44.
    [203] Kerley, M.S., Fahey, G.C., Jr., Berger, L.L., et al. Effects of treating wheatstraw with pH-regulated solutions of alkaline hydrogen peroxide on nutrientdigestion by sheep[J]. Journal of dairy science,1987,70(10):2078-84.
    [204] Kerley, M.S., Fahey, G.C., Jr., Berger, L.L., et al. Alkaline hydrogen peroxidetreatment unlocks energy in agricultural by-products[J]. Science,1985,230(4727):820-2.
    [205] Wu, J., Zhang, X., Wan, J., et al. Production of fiberboard using corn stalkpretreated with white-rot fungus Trametes hirsute by hot pressing withoutadhesive[J]. Bioresource Technology,2011,102(24):11258-61.
    [206] Wei, Q.F., Mather, R.R. and Fotheringham, A.F. Oil removal from usedsorbents using a biosurfactant[J]. Bioresource Technology,2005,96(3):331-4.
    [207] Othman, M.R., Akil, H.M. and Kim, J. Carbonaceous Hibiscus cannabinus L.for treatment of oil-and metal-contaminated water[J]. BiochemicalEngineering Journal,2008,41(2):171-174.
    [208] Aboul-Gheit, A.K., Khalil, F.H. and Abdel-Moghny, T. Adsorption of SpilledOil from Seawater[J]. Oil&Gas Science and Technology-Revue de l'IFP,2006,61(2):259-268.
    [209] Chao, A. Enzymatic grafting of carboxyl groups on to chitosan––to confer onchitosan the property of a cationic dye adsorbent[J]. Bioresource Technology,2004,91(2):157-162.
    [210] Wang, G., Sun, Q., Zhang, Y., et al. Sorption and regeneration of magneticexfoliated graphite as a new sorbent for oil pollution[J]. Desalination,2010,263(1-3):183-188.
    [211] Gui, X., Li, H., Wang, K., et al. Recyclable carbon nanotube sponges for oilabsorption[J]. Acta Materialia,2011,59(12):4798-4804.
    [212] Singanan, M. Removal of lead(II) and cadmium(II) ions from wastewater usingactivated biocarbon[J]. ScienceAsia,2011,37(2):115-119.
    [213] Alihosseini, A., Taghikhani, V., Safekordi, A.A., et al. Equilibrium sorption ofcrude oil by expanded perlite using different adsorption isotherms at298.15k[J]. International Journal of Environmental Science and Technology,2010,7(3):591-598.
    [214] Keane, A. and Ghoshal, S. Acid hydrolysis lignin as a sorbent fornaphthalene[J]. Water Quality Research Journal of Canada,2001,36(4):719-735.
    [215] Rodriguez-Cruz, S., Andrades, M.S., Sanchez-Camazano, M., et al.Relationship between The Adsorption Capacity of Pesticides by WoodResidues and The Properties of Woods and Pesticides[J]. EnvironmentalScience&Technology,2007,41(10):3613-3619.
    [216] Chen, Y., Knappe, D.R.U. and Barlaz, N.A. Effect of cellulose/hemicelluloseand lignin on the bioavailability of toluene sorbed to waste paper[J].Environmental Science&Technology,2004,38(13):3731-3736.
    [217] Liu, J., Wang, M.L., Tonnis, B., et al. Fungal pretreatment of switchgrass forimproved saccharification and simultaneous enzyme production[J].Bioresource Technology,2012.
    [218] Sanchez, C. Lignocellulosic residues: biodegradation and bioconversion byfungi[J]. Biotechnology advances,2009,27(2):185-94.
    [219] Wen, Z., Liao, W. and Chen, S. Production of cellulase/β-glucosidase by themixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairymanure[J]. Process Biochemistry,2005,40(9):3087-3094.
    [220] Cao, Y. and Tan, H. Study on crystal structures of enzyme-hydrolyzedcellulosic materials by X-ray diffraction[J]. Enzyme and MicrobialTechnology,2005,36(2-3):314-317.
    [221] Wan, C. and Li, Y. Microbial pretreatment of corn stover with Ceriporiopsissubvermispora for enzymatic hydrolysis and ethanol production[J].Bioresource technology,2010,101(16):6398-403.
    [222] Perez, J., Munoz-Dorado, J., de la Rubia, T., et al. Biodegradation andbiological treatments of cellulose, hemicellulose and lignin: an overview[J].International microbiology: the official journal of the Spanish Society forMicrobiology,2002,5(2):53-63.
    [223] Oduguwa, O.O., Edema, M.O. and Ayeni, A.O. Physico-chemical andmicrobiological analyses of fermented corn cob, rice bran and cowpea huskfor use in composite rabbit feed[J]. Bioresource Technology,2008,99(6):1816-20.
    [224] Dinis, M.J., Bezerra, R.M., Nunes, F., et al. Modification of wheat straw ligninby solid state fermentation with white-rot fungi[J]. Bioresource Technology,2009,100(20):4829-35.
    [225] Bak, J.S., Ko, J.K., Choi, I.G., et al. Fungal pretreatment of lignocellulose byPhanerochaete chrysosporium to produce ethanol from rice straw[J].Biotechnology and bioengineering,2009,104(3):471-82.
    [226] Wan, C. and Li, Y. Microbial delignification of corn stover by Ceriporiopsissubvermispora for improving cellulose digestibility[J]. Enzyme and MicrobialTechnology,2010,47(1-2):31-36.
    [227] Sun, F.-h., Li, J., Yuan, Y.-x., et al. Effect of biological pretreatment withTrametes hirsuta yj9on enzymatic hydrolysis of corn stover[J]. InternationalBiodeterioration&Biodegradation,2011,65(7):931-938.
    [228] Tien, M. Properties of ligninase from Phanerochaete chrysosporium and theirpossible applications[J]. Critical reviews in microbiology,1987,15(2):141-68.
    [229] Abbas, A., Koc, H., Liu, F., et al. Fungal degradation of wood: initial proteomicanalysis of extracellular proteins of Phanerochaete chrysosporium grown onoak substrate[J]. Current genetics,2005,47(1):49-56.
    [230] Sato, S., Feltus, F.A., Iyer, P., et al. The first genome-level transcriptome of thewood-degrading fungus Phanerochaete chrysosporium grown on red oak[J].Current genetics,2009,55(3):273-86.
    [231] Zeng, G., Yu, M., Chen, Y., et al. Effects of inoculation with Phanerochaetechrysosporium at various time points on enzyme activities during agriculturalwaste composting[J]. Bioresource technology,2010,101(1):222-7.
    [232] Kim, S. and Holtzapple, M.T. Lime pretreatment and enzymatic hydrolysis ofcorn stover[J]. Bioresource Technology,2005,96(18):1994-2006.
    [233] Kim, S. and Holtzapple, M.T. Effect of structural features on enzymedigestibility of corn stover[J]. Bioresource Technology,2006,97(4):583-91.
    [234] Dong, Y.C., Wang, W., Hu, Z.C., et al. The synergistic effect on production oflignin-modifying enzymes through submerged co-cultivation of Phlebiaradiata, Dichomitus squalens and Ceriporiopsis subvermispora usingagricultural residues[J]. Bioprocess and biosystems engineering,2012,35(5):751-60.
    [235] Chen, Y., Dong, B., Qin, W., et al. Xylose and cellulose fractionation fromcorncob with three different strategies and separate fermentation of them tobioethanol[J]. Bioresource Technology,2010,101(18):7005-10.
    [236] Potumarthi, R., Baadhe, R.R. and Jetty, A. Mixing of acid and base pretreatedcorncobs for improved production of reducing sugars and reduction in wateruse during neutralization[J]. Bioresource Technology,2012,119:99-104.
    [237] Petruzzi, L., Bevilacqua, A., Ciccarone, C., et al. Use of microfungi in thetreatment of oak chips: possible effects on wine[J]. Journal of the Science ofFood and Agriculture,2010,90(15):2617-26.
    [238] Yang, H., Wang, K., Wang, W., et al. Improved bioconversion of poplar bysynergistic treatments with white-rot fungus Trametes velutina D10149pretreatment and alkaline fractionation[J]. Bioresource Technology,2013,130:578-83.
    [239] Shi, J., Sharma-Shivappa, R.R. and Chinn, M.S. Microbial pretreatment ofcotton stalks by submerged cultivation of Phanerochaete chrysosporium[J].Bioresource Technology,2009,100(19):4388-95.
    [240] Cai, D. and Tien, M. Lignin-degrading peroxidases of Phanerochaetechrysosporium[J]. Journal of biotechnology,1993,30(1):79-90.
    [241] Reddy, C.A. An overview of the recent advances on the physiology andmolecular biology of lignin peroxidases of Phanerochaete chrysosporium[J].Journal of biotechnology,1993,30(1):91-107.
    [242] Gold, M.H. and Alic, M. Molecular biology of the lignin-degradingbasidiomycete Phanerochaete chrysosporium[J]. Microbiological reviews,1993,57(3):605-22.
    [243] Henriksson, G., Johansson, G. and Pettersson, G. A critical review of cellobiosedehydrogenases[J]. Journal of biotechnology,2000,78(2):93-113.
    [244] Saha, T., Chakraborty, T.K., Saha, R., et al. Interference of laccase indetermination of cellobiose dehydrogenase activity of Pleurotus ostreatus(Florida) using dichlorophenol indophenol as the electron acceptor[J]. Journalof basic microbiology,2005,45(2):142-6.
    [245] Xu, C., Ma, F., Zhang, X., et al. Biological Pretreatment of Corn Stover byIrpex lacteus for Enzymatic Hydrolysis[J]. Journal of agricultural and foodchemistry,2010.
    [246] Xu, C., Ma, F. and Zhang, X. Lignocellulose degradation and enzymeproduction by Irpex lacteus CD2during solid-state fermentation of cornstover[J]. Journal of bioscience and bioengineering,2009,108(5):372-5.
    [247] Wan, C. and Li, Y. Effectiveness of microbial pretreatment by Ceriporiopsissubvermispora on different biomass feedstocks[J]. Bioresource technology,2011,102(16):7507-12.
    [248] Costa, S.M., Goncalves, A.R. and Esposito, E. Ceriporiopsis subvermisporaused in delignification of sugarcane bagasse prior to soda/anthraquinonepulping[J]. Applied biochemistry and biotechnology,2005,121-124:695-706.
    [249] Fernandes, D.L., Silva, C.M., Xavier, A.M., et al. Fractionation of sulphitespent liquor for biochemical processing using ion exchange resins[J]. Journalof biotechnology,2012,162(4):415-21.
    [250] Lebedeva, E.V. and Fogden, A. Wettability alteration of kaolinite exposed tocrude oil in salt solutions[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2011,377(1-3):115-122.
    [251] Inagaki, M., Kawahara, A. and Konno, H. Recovery of heavy oil fromcontaminated sand by using exfoliated graphite[J]. Desalination,2004,170(1):77-82.
    [252] Yang, Y., Shu, L., Wang, X.L., et al. Effects of Composition and DomainArrangement of Biopolymer Components of Soil Organic Matter on theBioavailability of Phenanthrene[J]. Environmental Science&Technology,2010,44(9):3339-3344.
    [253] Nishi, Y., Iwashita, N., Sawada, Y., et al. Sorption kinetics of heavy oil intoporous carbons[J]. Water Research,2002,36:5029–5036.
    [254] Suzuki, T., Takahashi, E., Oishi, S., et al. Evaluation of inter-particle spacenetwork of carbon material using capillary rise of liquid[J]. Carbon,2004,42(12-13):2771-2773.
    [255] Tavisto, M. Wetting and wicking of fibre plant straw fractions[J]. IndustrialCrops and Products,2003,18(1):25-35.
    [256] Chakraborty, S., Chowdhury, S. and Das Saha, P. Adsorption of Crystal Violetfrom aqueous solution onto NaOH-modified rice husk[J]. CarbohydratePolymers,2011,86(4):1533-1541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700