用户名: 密码: 验证码:
CuNiTi类水滑石衍生物富氧丙烯选择性催化还原NO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机动车保有量的快速增加,其尾气造成的氮氧化物(NOχ)污染引起了人们的高度重视,尤其是传统三效催化剂在节约能源的贫燃发动机尾气环境中的失效问题,使富氧条件下NOχ的有效降解成为了机动车尾气脱硝领域的研究热点和重点。目前,利用尾气组分作为还原剂,采用选择性催化还原(SCR)技术对Noχ进行降解被认为是消除尾气中NOχ的有效方法。因此,开发高效的富氧SCR脱硝催化剂具有重要的理论和现实意义。
     已有的研究结果表明,金属氧化物催化剂具有一定的SCR脱硝活性,且价格低廉,具有很大的应用潜力。此外,水滑石类衍生物因其高比表面积、高分散性和高稳定性的特点被用作催化剂及催化剂载体。为了获得更高的催化活性,本文对水滑石的合成方法进行了优化,采用尿素均匀共沉淀法制备了CuTi、NiTi及CuNiTi类水滑石衍生物催化剂,考察其富氧C3H6-SCR脱硝活性。通过一系列现代仪器分析手段表征催化剂的结构、探讨反应机理,研究催化剂结构与功能之间的关系,取得以下主要研究成果:
     (1)共沉淀法、水热法、尿素均匀共沉淀法以及尿素水热复合法均能成功地合成水滑石。共沉淀法合成的催化剂表现为MgO和Al203的混合氧化物结构,以尿素为沉淀剂的其他三种方法合成的催化剂主要是尖晶石结构。尖晶石结构的催化剂具有更高含量的Lewis酸,其含量与催化活性成正比。尿素均匀共沉淀法合成的催化剂具有最高的Lewis酸含量,表现出最高的催化活性,是最有利于提高脱硝效率的合成方法。
     (2)采用尿素均匀共沉淀法制备了CuTi类水滑石衍生物催化剂(Cu-Ti摩尔比为2、3、4和5),Cu3Ti1催化剂的催化活性最高,在270℃时,NO的转化率达到74%。随着Cu含量增加,CuTi类水滑石衍生物催化剂由钛酸铜转变为氧化铜。六方晶系的钛酸铜晶格结构中的正电荷密度远远高于单斜晶系的氧化铜,导致钛酸铜的Lewis酸含量高于氧化铜,进而表现出更高的催化活性。Cu物种在CuTi类水滑石衍生物催化剂中分别以表面分散Cu和体相Cu两种形式存在,表面分散Cu2+是反应的活性物种,体相Cu是硝酸盐的吸附位。硝酸盐、乙酸盐和甲酸盐是CuTi类水滑石衍生物催化剂富氧C3H6选择性催化还原NO反应的活性中间体。
     (3)热解温度改变了CuTi类水滑石衍生物催化剂中体相Cu的结构。CuTi类水滑石在热解过程中表现出两个主要的相变过程:层问阴离子析出生成钛酸铜和钛酸铜分解生成氧化铜和金红石。450℃是类水滑石结构向钛酸铜结构转化最快的温度,该温度热解得到的催化剂以钛酸铜为主,且具有最高的比表面积、表面Lewis酸含量、表面分散Cu2+含量以及催化活性。因此,从提高催化活性的角度认为,450℃是CuTi类水滑石衍生物催化剂最佳的热解温度。
     (4)采用尿素均匀共沉淀法制备了NiTi类水滑石衍生物催化剂(Ni-Ti摩尔比为0.5,1,2,和3),Ni1Til催化剂的催化活性最高,在430℃时,NO转化率和N2收率分别为77%和66%。NiTi类水滑石衍生物催化剂具有较高的比表面积,结构以锐钛矿为主。Ni在催化剂中以正二价形式存在,当Ni2+与锐钛矿之间形成了强的相互作用时,能够提高表面氧的含量且有效地控制了C3H6的活化,因而有利于富氧C3H6-SCR反应活性的提高。与CuTi类水滑石衍生物催化剂相比,NiTi类水滑石衍生物催化剂具有更高的C3H6吸附以及氧化能力。
     (5)与CuTi类水滑石衍生物催化剂相比,Ni组分的引入提高了催化活性并且拓宽了反应温度窗口,这种催化活性的提高主要源于Ni组分良好的C3H6活化能力。Cu1Ni2Ti1催化剂的催化活性最高,在280℃时,NO转化率和N2收率分别为90%和84%。在富氧条件下,NO和C3H6分别被氧化生成硝酸盐和有机酸(乙酸盐和甲酸盐),硝酸盐和有机酸发生反应,最终生成无毒的N2,H2O和CO2。硝酸盐、乙酸盐和甲酸盐均是CuNiTi类水滑石衍生物催化剂富氧C3H6-SCR反应的重要中间体。Cu-Ni的同时引入提高了中间体的生成率,从而有利于催化活性的提高。
With the rapid increasing number of automobiles, growing attention is paid to pollution resulting from nitrogen oxides (NOx). Traditional three-way catalyst is no longer activitied in the lean-burn engines which are used to reduce energy consumption. Such issue has been viewed as a frotier scientific problem in the DeNOx field. Recently, selective catalytic reduction (SCR) is used as a potential method to remove NOx from these lean-burn gasoline engines using exhaust gas composition. Therefore the development of catalysts that can effecticely remove NOx under lean-burn conditions is of great importance in theoretical researches and practical applications.
     Previous researches demonstrated that metal oxides catalysts possessed great promising applications due to its activities for SCR and competitive cost. In addition, hydrotalcite-derived material is considered as a promising precursor for obtaining catalyst and catalyst supporting because of its small crystallite, high surface area and high stability. To reach high catalytic preformence. in this dissertation, the synthesis method for hydrotalcite is optimized, and the CuTi. NiTi. CuNiTi hydrotalcite-derived catalyst are prepared by urea homogeneous precipitation and employed for C3H6-SCR under lean-burn conditions. Moreover, a series of modern instruments are used to characterize the structure of the catalysts, and the relationship between catalyst structures and catalytic performance is explored. The detailed works are as follows:
     (1) Hydortalcites have been successfully prepared by four different methods including three strategies with urea as the base retardant, i. e., homogeneous precipitation, hydrothermal and homogeneous precipitation combined with hydrothermal. and the conventional coprecipitation. The hydortalcite-derived catalyst prepared by coprecipitation shows MgO and Al2O3mixed oxide structure, while the other three catalysts display spinel structure. The amount of Lewis acid sites on spinel is larger than that on mixed oxide, which is proportional to the catalytic activity of catalysts. The most active hydortalcite-derived catalyst with the highest amount of Lewis is synthesized by the homogeneous precipitation, which is the optimal strategy for the producing hydortalcite-derived catalyst to improving the catalytic performance for SCR.
     (2) CuTi hydortalcite-derived catalysts [CuxTi1(x=2.3.4,5)] are synthesized via urea homogeneous precipitation. Among them, the Cu3Ti1catalyst presents the highest activity at 270℃and the NO conversion achieves74%. With the elevation of Cu content.the crystal structure of the catalysts varys from copper titanate to copper oxide. Compared with the monoclinic copper oxide.the hexagonal copper titanate shows higher catalytic performance due to the larger amount of Lewis acid sites and positive charge density. Cu species in the CuTi hydortalcite-derived catalysts can be primarily grouped into two categories:surface and bulk species. The surface Cu2+species is the active sites. while the bulk Cu could provide the adsorption sites for nitrates. The nitrates. acetate and formate are key intermediates for the C3H6-SCR over series CuTi hydortalcite-derived catalysts under lean-burn conditions.
     (3) The various thermal decomposition temperatures change the bulk Cu structure of the CuTi hydortalcite-derived catalyst. Two phase transformations can be obtained with the increasing of the thermal decomposition temperature:one is that CuTi hydortalcite-like precursor loses the interlayer anions to produce copper titanate. and the other is that copper titanate transforms to copper oxide and rutile. The hydrotalcite-like precursor can be transformed to copper titanium oxide calcining at450℃rapidly, and the catalyst calcined at450℃displays major copper titanium crystal structure, as well as the highest surface area. amount of Lewis acid sites, amount of surface Cu2+species and catalytic activity. From the perspective of improvement for catalytic performance.450℃is the optimal thermal decomposition temperature for CuTi hydortalcite-derived catalyst.
     (4) NiTi hydortalcite-derived catalysts [NixTi1(x=0.5.1.2.3)] are synthesized via urea homogeneous precipitation. Among them, the Ni1Ti1catalyst presents the highest activity at430℃and the NO conversion and N2yeild achieve77%and66%. respectively. The catalysts show high surface areas and anatase structure.Ni in these catalysts demonstrates Ni2+. which can interact with anatase to increase the content of surface oxygen and effectively control the C3H6activation. Thus, the catalytic performance can be improved. Compared with CuTi hydortalcite-derived catalysts. NiTi hydortalcite-derived catalysts possess higher capability of adsorption and oxidation for C3H6.
     (5) Comperaed with the CuTi hydortalcite-derived catalysts, addition of Ni component leads to an increased catalytic activity, as well as a widened temperature widonw. Such improvement of catalytic performance can be attributed to the high activation for C3H6of Ni component. The Cu1Ni2Ti1catalyst presented the highest activity among the CuNiTi hydortalcite-derived catalysts, and the NO conversion and N2yeild achieve90%and84%. respectively. Under lean-burn conditions, the reaction started with the formation of the adsorbed nitrates via NO oxidation by O2and the products from the partial oxidation of C3H6. i.e., acetate and formate. Subsequently, nitrates reacted with acetate and formate to yield N2. CO2and H2O. The catalytic performance over CuNiTi hydortalcite-derived catalysts can be improved by introduction of Cu-Ni,which can increase the production rate of intermediate.
引文
[1]张志翔.富氧条件下低温选择性催化丙烯还原氮氧化物的研究[D].上海:上海交通大学,2010.
    [2]曲虹霞.催化脱除燃煤烟气中NOχ的研究[D].南京:南京理工大学,2004.
    [3]张惠.甲烷选择性催化还原氮氧化物的基础研究[D].杭州:浙江大学,2005.
    [4]KWAK J H, TONKYN R G, KIM D H, et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO, with NH3 [J]. Journal of Catalysis.2010,275(2):187-190.
    [5]THIRUPATHI B, SMIRNIOTIS P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3:Catalytic evaluation and characterizations [J]. Journal of Catalysis.2012,288(74-83.
    [6]贺泓.环境催化—原理及应用[M].北京:科学出版社,2008.
    [7]WU Y, WANG R J, ZHOU Y, et al. On-road vehicle emission control in beijing:past, present, and future [J]. Environmental Science & Technology.2011,45(1):147-153.
    [8]WU Y, ZHANG S J, LI M L, et al. The challenge to NOx emission control for heavy-duty diesel vehicles in China [J]. Atmospheric Chemistry And Physics.2012,12(19):9365-9379.
    [9]IMANAKA N, MASUI T. Advances in direct NOx decomposition catalysts [J]. Applied Catalysis A-General.2012,431:1-8.
    [10]KLINGSTEDT F, ARVE K, ERANEN K, et al. Toward improved catalytic low-temperature NO, removal in diesel-powered vehicles [J]. Accounts of Chemical Research.2006,39(4):273-282.
    [11]TWIGG M V. Roles of catalytic oxidation in control of vehicle exhaust emissions [J]. Catalysis Today. 2006,117(4):407-418.
    [12]TWIGG M V. Catalytic control of emissions from cars [J]. Catalysis Today.2011,163(1):33-41.
    [13]DE LUCAS-CONSUEGRA A, CARAVACA A, SANCHEZ P, et al. A new improvement of catalysis by solid-state electrochemistry:An electrochemically assisted NOx storage/reduction catalyst [J]. Journal of Catalysis.2008,259(1):54-65.
    [14]ROY S, BAIKER A. NOx Storage-reduction catalysis:from mechanism and materials properties to storage-reduction performance [J]. Chemical Reviews.2009,109(9):4054-4091.
    [15]GRANGER P, PARVULESCU V I. Catalytic NO, abatement systems for mobile sources:from three-way to lean burn after-treatment technologies [J]. Chemical Reviews.2011,111(5):3155-3207.
    [16]贾海亭,满瑞林.稀燃发动机尾气净化催化技术进展[J].汽车科技,2004,3:8-11.
    [17]KUMAR A, HAROLD M P, BALAKOTAIAH V. Isotopic studies of NOx storage and reduction on Pt/BaO/Al2O3 catalyst using temporal analysis of products [J]. Chemical Reviews.2010,270(2): 214-223.
    [18]IWAMOTO M, MIZUNO N, YAHIRO H. Selective Catalytic Reduction of no by Hydrocarbon in Oxidizing Atmosphere [J]. Studies in Surface Science and Catalysis.1993, Volume 75,1285-1298.
    [19]POIGNANT F, FREYSZ J L, DATURI M, et al. Mechanism of the selective catalytic reduction of NO in oxygen excess by propane on H-Cu-ZSM-5-Formation of isocyanide species via acrylonitrile intermediate [J]. Catalysis Today.2001,70(1-3):197-211.
    [20]LI L D, ZHANG F X, GUAN N J, et al. Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst [J]. Catalysis Communications.2007,8(3):583-588.
    [21]JANAS J, WOJCIECH R, TETSUYA S, et al. Selective catalytic reduction of NO on single site FeSiBEA zeolite catalyst:Influence of the C1 and C2 reducing agents on the catalytic properties [J]. Applied Catalysis B:Environmental.2012,123-124:134-140.
    [22]MOSQUEDA-JIMENEZ B I, JENTYS A, SESHAN K, et al. Structure-activity relations for Ni-containing zeolites during NO reduction-Ⅱ. Role of the chemical state of Ni [J]. Journal of Catalysis.2003,218(2):375-385.
    [23]PARK S K, PARK Y K, PARK S E, et al. Comparison of selective catalytic reduction of NO with C3H6 and C3H8 over Cu(II)-ZSM-5 and Co(II)-ZSM-5 [J]. Physical Chemistry Chemical Physics. 2000,2(23):5500-5509.
    [24]JIANG J Q, PAN H, SUN G J, et al. Promotion of Ni/H-BEA by Fe for NOx Reduction with Propane in a Lean-Burn Condition [J]. Energy & Fuels.2011,25(10):4377-4383.
    [25]LI G, WANG X, JIA C, et al. An in situ Fourier transform infrared study on the mechanism of NO reduction by acetylene over mordenite-based catalysts [J]. Journal of Catalysis.2008,257(2): 291-296.
    [26]ZHANG Z X, CHEN M X, SHANGGUAN W F. Low-temperature SCR of NO with propylene in excess oxygen over the Pt/TiO2 catalyst [J]. Catalysis Communications.2009,10(9):1330-1333.
    [27]KOTSIFA A, KONDARIDES D I, VERYKIOS X E. Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene [J]. Applied Catalysis B-Environmental.2007,72(1-2):136-148.
    [28]LIOTTA L F, LONGO A, PANTALEO G, et al. Alumina supported Pt(1%)/Ceo.6Zro.402 monolith: Remarkable stabilization of ceria-zirconia solution towards CeAlO3 formation operated by Pt under redox conditions [J]. Applied Catalysis B-Environmental.2009,90(3-4):470-477.
    [29]KOTSIFA A, KONDARIDES D I, VERYKIOS X E. A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts [J]. Applied Catalysis B-Environmental.2008,80(3-4):260-270.
    [30]LIU L C, GUAN X, LI Z M, et al. Supported bimetallic AuRh/gamma-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene [J]. Applied Catalysis B-Environmental.2009, 90(1-2):1-9.
    [31]JAGTAP N, UMBARKAR S B, MIQUEL P, et al. Support modification to improve the sulphur tolerance of Ag/Al2O3 for SCR of NOx with propene under lean-burn conditions [J]. Applied Catalysis B-Environmental.2009,90(3-4):416-425.
    [32]WANG J, HE H, FENG Q C, et al. Selective catalytic reduction of NOx with C3H6 over an Ag/Al2O3 catalyst with a small quantity of noble metal [J]. Catalysis Today.2004,93-5:783-789.
    [33]YANG D, LI J, WEN M, et al. Enhanced activity of Ca-doped Cu/ZrO2 for nitrogen oxides reduction with propylene in the presence of excess oxygen [J]. Catalysis Today.2008,139(1-2):2-7.
    [34]ADAMOWSKA M, MULLER S, COSTA P D, et al. Correlation between the surface properties and deNOx activity of ceria-zirconia catalysts [J]. Applied Catalysis B:Environmental.2007,74:278-289.
    [35]LIOTTA L F, PANTALEO G, MACALUSO A, et al. CoOx catalysts supported on alumina and alumina-baria:influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions [J]. Applied Catalysis A:General.2003,245:167-177.
    [36]HE C H, PAULUS M, FIND J, et al. In situ infrared spectroscopic studies on the mechanism of the selective catalytic reduction of NO by C3H8 over Ga2/Al2O3 High efficiency of the reducing agent [J]. Journal of Physical Chemistry B.2005,109(33):15906-15914.
    [37]LIU Z M, WOO S I, LEE W S. In situ FT-IR studies on the mechanism of selective catalytic reduction of NOx by propene over SnO2/A12O3 catalyst [J]. Journal of Physical Chemistry B.2006,110(51): 26019-26023.
    [38]HE C H, PAULUS M, CHU W, et al. Selective catalytic reduction of NO by C3H8 over CoOx/Al2O3: An investigation of structure-activity relationships [J]. Catalysis Today.2008,131(1-4):305-313.
    [39]LI X, LU G, QU Z, et al. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene [J]. Applied Catalysis A:General.2011,398(1-2): 82-87.
    [40]王仲鹏.类水滑石衍生混合氧化物同时催化去除碳颗粒物和氮氧化物的研究[D].上海:上海交通大学,2007.
    [41]谢鲜梅.类水滑石化合物的制备、性能及应用研究[D].太原:太原理工大学,2006.
    [42]REICHLE W T. Synthesis of anionic clay-minerals (mixed metal-hydroxides, hydrotalcite) [J].Solid State Ionics.1986,22(1):135-141.
    [43]LI Q, MENG M, XIAN H, et al. Hydrotalcite-Derived MnxMg3-xAIO catalysts used for soot combustion, NOx storage and simultaneous soot-NO, removal [J]. Environmental Science & Technology.2010,44:4747-4752.
    [44]LI L D, YU J J, HAO Z P, et al. Novel Ru-Mg-Al-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition/reduction [J]. Journal of Physical Chemistry C.2007,111(28): 10552-10559.
    [45]YU J B, JIANG Z, ZHU L, et al. Adsorption/desorption studies of NO, on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds [J]. Journal of Physical Chemistry B.2006,110(9): 4291-4300.
    [46]CHMIELARZ L, KUSTROWSKI P, RAFALSKA-LASOCHA A, et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia [J]. Applied Catalysis B:Environmental.2002,35(3):195-210.
    [47]BASILE F, FORNASARI G, LIVI M, et al. Performance of new Pt and Pt-Cu on hydrotalcite-derived materials for NOx storage/reduction [J]. Topics in Catalysis.2004,30-1(1-4):223-227.
    [48]NI Z M, CHEN A M, FANG C P, et al. Enhanced NOx adsorption using calcined Zn/Mg/Ni/Al hydrotalcite-like compounds [J]. Journal of Physics and Chemistry of Solids.2009,70(3-4):632-638.
    [49]XUE L, HE H, LIU C, et al. Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition [J]. Environmental Science & Technology.2009,43(3):890-895.
    [50]ARAMENDIA M A, AVILES Y, BORAU V, et al. Thermal decomposition of Mg Al and Mg Ga layered-double hydroxides:a spectroscopic study [J]. Journal of Materials Chemistry.1999,9(7): 1603-1607.
    [51]HAMADA S, IKEUE K, MACHIDA M. Catalytic role of intercalated Pt complex in thermal decomposition of nitrate-type hydrotalcite to porous structure [J]. Chemistry of Materials.2005, 17(19):4873-4879.
    [52]VALENTE J S, CANTU M S, FIGUERAS F. A simple environmentally friendly method to prepare versatile hydrotalcite-like compounds [J]. Chemistry of Materials.2008,20(4):1230-1232.
    [53]CHOUDARY B M, JAYA V S, REDDY B R, et al. Synthesis, characterization, ion exchange, and catalytic properties of nanobinary and ternary metal oxy/hydroxides [J]. Chemistry of Materials.2005, 17(10):2740-2743.
    [54]LIU Y, LOTERO E, GOODWIN JR. J G, et al. Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts [J]. Applied Catalysis A:General.2007,331:138-148.
    [55]GUIL-LPEZ R, La PAROLA V, PEA M A, et al. Hydrogen production via CH4 pyrolysis: Regeneration of ex hydrotalcite oxide catalysts [J]. Catalysis Today.2006,116(3):289-297.
    [56]CHOUDARY B M, KANTAM M L, RAHMAN A, et al. The first example of activation of molecular oxygen by nickel in Ni-Al hydrotalcite:A novel protocol for the selective oxidation of alcohols [J]. Angewandte Chemie-International Edition.2001,40(4):763-766.
    [57]CANTU M, LOPEZ-SALINAS B, VALENTE J S. SOx removal by calcined MgAlFe hydrotalcite-like materials:effect of the chemical composition and the cerium incorporation method [J]. Environmental Science & Technology.2005,39:9715-9720.
    [58]ZHAO L, LI X, QUAN X, et al. effects of surface features on sulfur dioxide adsorption on calcined NiAl hydrotalcite-like compounds [J]. Environmental Science & Technology.2011,69:1122-1135.
    [59]YU J J, CHENG J, MA C Y, et al. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds [J]. Journal of Colloid and Interface Science.2009, 333(2):423-430.
    [60]ZHANG Z, ZHANG Y, SU Q, et al. Determination of intermediates and mechanism for soot combustion with NOx/O2 on potassium-supported Mg-Al hydrotalcite mixed oxides by in situ FTIR [J]. Environmental Science & Technology.2010,44):8254-8258.
    [61]TICHIT D, LUTIC D, COQ B, et al. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts [J]. Journal of Catalysis.2003,219(1):167-175.
    [62]JENSEN W B. The Lewis acid-base concepts:an overview. [J]. New York:Wiley.1980.
    [63]COSTANTINO U, COLETTI N, NOCCHETTI M, et al. Surface uptake and intercalation of fluorescein anions into Zn-Al-hydrotalcite. Photophysical characterization of materials obtained [J]. Langmuir.2000,16(26):10351-10358.
    [64]OGAWA M, KAIHO H. Homogeneous precipitation of uniform hydrotalcite particles [J]. Langmuir. 2002,18(11):4240-4242.
    [65]ARAI Y, OGAWA M. Preparation of Co-Al layered double hydroxides by the hydrothermal urea method for controlled particle size [J]. Applied Clay Science.2009,42(3-4):601-604.
    [66]MIYATA S. Physico-chemical properties of synthetic hydrotalcites in relation to composition [J]. Clays and Clay Minerals.1980,28(1):50-56.
    [67]ADACHI-PAGANO M, FORANO C, BESSE J P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. Journal of Materials Chemistry.2003,13(8):1988-1993.
    [68]LI K W, KUMADA N, YONESAKI Y, et al. The pH effects on the formation of Ni/Al nitrate form layered double hydroxides (LDHs) by chemical precipitation and hydrothermal method [J].Materials Chemistry and Physics.2010,121(1-2):223-229.
    [69]VENUGOPAL A, PALGUNADI J, DEOG J, et al. Hydrotalcite derived Cu-Zn-Cr catalysts admixed with γ-Al2O3 for single step dimethyl ether synthesis from syngas:Influence of hydrothermal treatment [J]. Catalysis Today.2009,147(2):94-99.
    [70]KUMAR P A, REDDY M P, JU L K, et al. Low temperature propylene SCR of NO by copper alumina catalyst [J]. Journal of Molecular Catalysis A:Chemical.2008,291(1-2):66-74.
    [71]WU G, WANG X, WEI W, et al. Fluorine-modified Mg-Al mixed oxides:A solid base with variable basic sites and tunable basicity [J]. Applied Catalysis A:General.2010,377(1-2):107-113.
    [72]ZHANG Z, ZHANG Y, WANG Z, et al. Catalytic performance and mechanism of potassium-promoted Mg-Al hydrotalcite mixed oxides for soot combustion with O2 [J]. Journal of Catalysis.2010,271(1):12-21.
    [73]LPEZ T, GOMEZ R, LLANOS M E, et al. Acidic-base properties of silica-magnesia sol-gel mixed oxides:use of 2 butanol as test reaction [J]. Materials Letters.1999,38(4):283-288.
    [74]KUSTROWSKI P, SULKOWSKA D, CHMIELARZ L, et al. Influence of thermal treatment conditions on the activity of hydrotalcite-derived Mg-Al oxides in the aldol condensation of acetone [J]. Microporous and Mesoporous Materials.2005,78(1):11-22.
    [75]NAKATANI T, WATANABE T, TAKAHASHI M, et al. Characterization of γ-Ga2O3-Al2O3 prepared by solvothermal method and its performance for methane-SCR of NO [J]. Journal of Physical Chemistry A.2009,113(25):7021-7029.
    [76]ZHANG R, VILLANUEVA A, ALAMDARI H, et al. Catalytic reduction of NO by propene over LaCo1-xCuxO3 perovskites synthesized by reactive grinding [J]. Applied Catalysis B:Environmental. 2006,63):220-233.
    [77]LEI X, LU W, PENG Q, et al. Activated MgAl-layered double hydroxide as solid base catalysts for the conversion of fatty acid methyl esters to monoethanolamides [J]. Applied Catalysis A:General. 2011,399(1-2):87-92.
    [78]TAMM S, INGELSTEN H H, PALMQVIST A E C. On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina [J]. Journal of Catalysis.2008,255(2):304-312.
    [79]LIU Z, WOO S I, LEE W S. In situ FT-IR studies on the mechanism of selective catalytic reduction of NOx by propene over SnO2/Al2O3 catalyst [J]. Journal of Physical Chemistry B.2006,110: 26019-26023.
    [80]CAN F, FLURA A, COURTOIS X, et al. Role of the alumina surface properties on the ammonia production during the NOx SCR with ethanol over Ag/Al2O3 catalysts [J]. Catalysis Today.2011, 164(1):474-479.
    [81]JING G, LI J, YANG D, et al. Promotional mechanism of tungstation on selective catalytic reduction of NO., by methane over In/WO3/ZrO2 [J]. Applied Catalysis B:Environmental.2009,91:123-134.
    [82]SHAN W, LIU F, HE H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NO, with NH3 [J]. Applied Catalysis B-Environmental.2012,100-106:115-116.
    [83]BRIDIER B, LOPEZ N, PEREZ-RAMIREZ J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues [J]. Journal of Catalysis.2010,269(1):80-92.
    [84]HOUEL V, JAMES D, MILLINGTON P, et al. A comparison of the activity and deactivation of and Cu/ZSM-5 for HC-SCR under simulated diesel exhaust emission conditions [J]. Journal of Catalysis.2005,230(1):150-157.
    [85]KWAK J H, ZHU H Y, LEE J H, et al. Two different cationic positions in Cu-SSZ-13 [J]. Chemical Communications.2012,48(39):4758-4760.
    [86]LU G, LI X, QU Z, et al. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene [J]. Chemical Engineering Journal.2011,168(3):1128-1133.
    [87]KOMOVA O V, SIMAKOV A V, ROGOV V A, et al. Investigation of the state of copper in supported copper-titanium oxide catalysts [J]. Journal of Molecular Catalysis A:Chemical.2000, 161(1-2):191-204.
    [88]BOCCUZZI F, CHIORINO A, MARTRA G, et al. Preparation, characterization, and activity of Cu/TiO2 catalysts [J]. Journal of Catalysis.1997,165:129-139.
    [89]LEE Y, CHOI J H, JEON H J, et al. Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light [J]. Energy & Environmental Science.2011,4(3): 914-920.
    [90]LI N, WANG A, ZHENG M, et al. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane [J]. Journal of Catalysis.2004,225(2):307-315.
    [91]KALITA P, GUPTA N M, KUMAR R. Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions:FTIR and TPD-ammonia studies [J]. Journal of Catalysis.2007,245(2):338-347.
    [92]PIETA I S, ISHAQ M, WELLS R, et al. Quantitative determination of acid sites on silica--alumina [J]. Applied Catalysis A:General.2010,390(1):127-134.
    [93]ZAKI M I, HASAN M A, AL-SAGHEER F A, et al. In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2:general considerations for the identification of acid sites on surfaces of finely divided metal oxides [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,190(3):261-274.
    [94]PENA D A, UPHADE B S, SMIRNIOTIS P G. Ti02-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:I. Evaluation and characterization of first row transition metals [J]. Journal of Catalysis.2004,221:421-431.
    [95]LIU F, HE H. Structure-Activity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NOx with NH3 [J]. The Journal of Physical Chemistry C.2010,114(40):16929-16936.
    [96]FU W, BAO Z, DING W, et al. The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water-gas shift reaction [J].Catalysis Communications.2011,12(6):505-509.
    [97]SUN C, ZHU J, LV Y, et al. Dispersion, reduction and catalytic performance of CuO supported on Zr02-doped TiO2 for NO removal by CO [J]. Applied Catalysis B:Environmental.2011,103(1-2): 206-220.
    [98]DE MELLO L F, NORONHA F B, SCHMAL M. NO reduction with ethanol on Pd-Mo/Al2O3 catalysts [J]. Journal of Catalysis.2003,220(2):358-371.
    [99]JIANG X, DING G, LOU L, et al. Catalytic activities of CuO/TiO2 and CuO/ZrO2TiO2 in NO+CO reaction [J]. Journal of Molecular Catalysis A:Chemical.2004,218:189-199.
    [100]LORENA PICONE A, WARRENDER S J, SLAWIN A M Z, et al. A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO [J]. Microporous and Mesoporous Materials.2011,146(1-3):36-47.
    [101]CAPTAIN D K, AMIRIDIS M D. In situ FTIR studies of the selective catalytic reduction of NO by C3H6over Pt/Al2O3 [J]. Journal of Catalysis.1999,184(2):377-389.
    [102]CHI Y, CHUANG S S C. Infrared Study of NO Adsorption and reduction with C3H6 in the presence of O2 over CuO/Al2O, [J]. Journal of Catalysis.2000,190(1):75-91.
    [103]SOBCZAK I, MUSIALSKA K, PAWLOWSKI H, et al. NO and C3H6 adsorption and coadsorption in oxygen excess-A comparative study of different type zeolites modified with gold [J]. Catalysis Today. 2011,176:393-398.
    [104]KAMEOKA S, YUZAKI K, TAKEDA T, et al. Selective catalytic reduction of N2O with C3H6 over Fe-ZSM5 catalyst in the presence of excess O2:The correlation between the induction period and the surface species produced [J]. Physical Chemistry Chemical Physics.2001,3(2):256-260.
    [105]SHIMIZU K, SATSUMA A. Selective catalytic reduction of NO over supported silver catalysts-practical and mechanistic aspects [J]. Physical Chemistry Chemical Physics.2006,8(23): 2677-2695.
    [106]李蕾.类水滑石材料新制备方法及结构与性能的理论研究[D].北京:北京化工大学,2002.
    [107]XU Z P, ZENG H C. Ionic interactions in crystallite growth of CoMgAl-hydrotalcite-like compounds [J]. Chemistry of Materials.2001,13(12):4555-4563.
    [108]BENITO P, LABAJOS F M, RIVES V. Uniform fast growth of hydrotalcite-like compounds [J]. Crystal Growth & Design.2006,6(8):1961-1966.
    [109]SHANG S Q, JIAO X L, CHEN D R. Template-Free Fabrication of TiO2 Hollow Spheres and Their Photocatalytic Properties [J]. ACS Applied Materials & Interfaces.2012,4(2):860-865.
    [110]ISMAIL A A, BAHNEMANN D W, BANNAT I, et al. Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies [J]. Journal of Physical Chemistry C.2009,113(17):7429-7435.
    [111]GERVASINI A, MANZOLI M, MARTRA G, et al. Dependence of copper species on the nature of the support for dispersed CuO catalysts [J]. Journal of Physical Chemistry B.2006,110(15): 7851-7861.
    [112]MOSQUEDA-JIMENEZ B I, JENTYS A, SESHAN K, et al. Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite [J]. Applied Catalysis B-Environmental.2003,43(2): 105-115.
    [113]BARAN R, KAMINSKA I I, SREBOWATA A, et al. Selective hydrodechlorination of 1,2-dichloroethane on NiSiBEA zeolite catalyst:Influence of the preparation procedure on a high dispersion of Ni centers [J]. Microporous and Mesoporous Materials.2013,169:120-127.
    [114]SMOLAKOVA L, CAPEK L, BOTKOVA S, et al. Activity of the Ni-Al mixed oxides prepared from hydrotalcite-like precursors in the oxidative dehydrogenation of ethane and propane [J].Topics in Catalysis.2011,54(16-18):1151-1162.
    [115]UNGUREANU A, DRAGOI B, CHIRIEAC A, et al. Composition-dependent morphostructural properties of Ni-Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica [J]. ACS Applied Materials & Interfaces.2013,5(8):3010-3025.
    [116]PENKOVA A, BOBADILLA L, IVANOVA S, et al. Hydrogen production by methanol steam reforming on NiSn/MgO-Al2O3 catalysts:The role of MgO addition [J]. Applied Catalysis A-General. 2011,392(1-2):184-191.
    [117]WANG Y H, LIU H M, XU B Q. Durable Ni/MgO catalysts for CO2 reforming of methane:Activity and metal-support interaction [J]. Journal of Molecular Catalysis A-Chemical.2009,299(1-2):44-52.
    [118]JIANG H T, LI H Q, XU H B, et al. Preparation of Ni/MgxTi1-xO catalysts and investigation on their stability in tri-reforming of methane [J]. Fuel Processing Technology.2007,88(10):988-995.
    [119]JIANG J Q, PAN H, SUN G J, et al. Promotion of Ni/H-BEA by Fe for NOx reduction with propane in a lean-burn condition [J]. Energy & Fuels.2011,25(10):4377-4383.
    [120]HOU Z Y, YOKOTA O, TANAKA T, et al. Characterization of Ca-promoted Ni/alpha-Al2O3 catalyst for CH4 reforming with CO2 [J]. Applied Catalysis A-General.2003,253(2):381-387.
    [121]JI L, SREEKANTH P M, SMIRNIOTIS P G, et al. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas [J]. Energy & Fuels.2008,22(4):2299-2306.
    [122]GUAN B, LIN H, ZHU L, et al. Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-delta nanocomposites catalysts prepared by self-propagating high-temperature synthesis method [J]. Journal of Physical Chemistry C.2011,115(26):12850-12863.
    [123]Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn308 Phase [J]. Industrial & Engineering Chemistry Research.2012,51(1):202-212
    [124]NGUYEN L Q, SALIM C, HINODE H. Roles of nano-sized Au in the reduction of NOx by propene over Au/TiO2:An in situ DRIFTS study [J]. Applied Catalysis B-Environmental.2010,96(3-4): 299-306.
    [125]ZHANG L F, LIU J, LI W, et al. Ethanol steam reforming over Ni-Cu/Al2O3-MyOz(M= Si, La, Mg, and Zn) catalysts [J]. Journal of Natural Gas Chemistry.2009,18(1):55-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700