用户名: 密码: 验证码:
花岗岩崩岗崩积体侵蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
崩积体是崩岗的重要组成部分,土质疏松,粗颗粒含量高,坡度大,易侵蚀,其侵蚀直接影响崩壁及坡面物质的再分配,进而影响崩岗的危害程度,但目前对其土体易侵蚀的特性及侵蚀机理的研究还处于空白。本研究以福建省安溪县龙门镇洋坑村花岗岩发育的崩岗崩积体为研究对象,针对散落形崩积体的侵蚀机理开展研究。通过野外调查对崩积体的类型进行了初步分类;利用室内理化分析和岩土工程实验方法对崩积体的土壤特性进行了分析;在野外调查的基础上,利用土槽冲刷试验分析了不同流量(1.1,2.2,3.3,4.4,5.5L·min~(-1))和坡度(20,25,30,35,40°)条件下坡面水流特性及与散落型崩积体土壤分离的关系;利用人工模拟降雨试验,对不同雨强(1.00,1.33,1.67,2.00,2.33mm·min~(-1))和坡度(20,25,30,35,40°)、不同结皮程度(未结皮,5min结皮,10min结皮)、多场次降雨条件(1.00,1.67,2.33mm·min~(-1)分别降三场雨)下散落型崩积体坡面的产流产沙特征,侵蚀沟特征,侵蚀泥沙的颗粒特性,侵蚀的水动力学机制进行了分析,以阐明崩积体坡面侵蚀的机理。主要结论如下:
     (1)崩积体的类型与形态特征。野外调查发现,根据崩积体的产生方式,崩积体可分为散落型和滑动型两类,以散落型为主。滑动型崩积体的坡度大,可达40-70°,而散落型崩积体的坡度在20-40°之间,主要分布在30°附近;崩积体侵蚀严重,侵蚀沟分布密集。
     (2)崩积体的土壤特性。崩积体有机质含量极低,颗粒主要为砾石、砂粒和粉粒,粘粒含量低,土壤颗粒分形维数较小;崩积体土质疏松,造成其土壤的抗剪强度和硬度低,土壤的抗冲抗蚀性能弱,入渗性能强,但疏松的土体,更易造成土体的崩解。
     (3)陡坡坡面水流的水力学参数特征及与土壤分离的关系。水流的流速、水深及阻力系数主要受流量的控制;阻力系数随雷诺数及弗罗德数的增加呈幂函数减小。可通过流量和坡度、水深和坡度对土壤分离速率进行模拟;崩积体土壤分离速率与流速及剪切力呈指数函数关系,而崩岗集水坡面土壤分离速率与二者呈幂函数关系,说明崩积体比自然土体更易被水流分离;可首选分离速率与剪切力的指数函数方程作为水流分离崩积体能力方程。
     (4)不同条件下人工降雨试验崩积体的产流产沙过程。不同雨强和坡度条件下:入渗过程符合Ir=aT-n+If方程,径流过程符合Rr=-bT-m+Rf方程;产沙率和含沙量的变化过程有单峰型和多峰型两种类型;入渗量、径流量及产沙量均随雨强的增大而增大;入渗量随坡度的增大呈线性减小;径流量随坡度变化存在临界值,在30°附近;泥沙侵蚀存在临界坡度,且是一个变化值(25°以上);产沙率和含沙量随着径流量的增大而增加,含沙量与产沙量呈线性函数关系(Sr=aSc+b);可利用雨强和坡度对崩积体的入渗、径流、产沙量及含沙量进行预测。结皮条件下产流产沙特征:结皮的存在可以减缓侵蚀发生,而随着结皮程度的增加,径流对地表冲刷能力更强,造成侵蚀量增大。多场次降雨条件下产流产沙特征:坡面地形及侵蚀方式的变化,引起不同雨强下不同降雨场次泥沙侵蚀量的差别,1.00和1.67mm·min~(-1)雨强条件下三次降雨的侵蚀量差异不显著,但2.33mm·min~(-1)雨强下,随着降雨场次的增加,泥沙侵蚀愈加剧烈。
     (5)不同条件下人工降雨试验的细沟侵蚀特征。不同坡度和雨强下的细沟侵蚀特征:发生细沟的时间随着坡度和雨强的增大而缩短;随着雨强和坡度的增大,侵蚀沟密度增加,沟宽扩大;随着坡度的增大,宽深比减小;随着雨强和坡度的增大,侵蚀方式从片蚀为主逐渐转变至细沟侵蚀为主。不同结皮条件下的细沟侵蚀特征:结皮的出现使坡面出现细沟的时间延迟;结皮坡面的细沟侵蚀密度、侵蚀宽度、侵蚀深度均比未结皮的低;结皮坡面由细沟侵蚀引起的侵蚀量降低;结皮程度高的坡面细沟侵蚀程度大于结皮程度低的,说明结皮减缓侵蚀仅在一定程度上起作用。多场次降雨条件下的细沟侵蚀特征:由于侵蚀方式的差异,1.00和1.67mm·min~(-1)随着降雨场次的增加,宽深比呈减小的趋势,而2.33mm·min~(-1)雨强下却是相反;随着降雨场次的增加,侵蚀沟侵蚀程度愈严重。
     (6)崩积体侵蚀泥沙颗粒的分选特性及搬运机制。不同雨强和坡度条件下侵蚀泥沙颗粒特征:随着雨强和坡度的增大,泥沙粗颗粒含量及粗颗粒的富集率均增加,泥沙的流失呈粗颗粒化趋势;侵蚀泥沙颗粒随着坡面细沟间侵蚀-细沟侵蚀的过程逐渐变粗,最后趋于与供试土壤颗粒组成一致,表现出细沟侵蚀与泥沙的“整体搬运”相匹配的特性;崩积体侵蚀泥沙跃移质粒级较大,均大于0.537mm;在细沟间侵蚀阶段,悬移质+跃移质含量在71.26-97.64%之间,出现细沟侵蚀后,床移质的比列增加,达到了10.93-41.74%。不同结皮条件下侵蚀泥沙颗粒特征:结皮坡面表现出搬运较小颗粒的特征,但进入侵蚀后期,径流对泥沙颗粒的搬运也选择粗颗粒,且结皮程度高的10min结皮坡面对粗颗粒的选择搬运比5min结皮的早。多场次降雨条件下侵蚀泥沙颗粒特征:各雨强下三次降雨产生的泥沙不同粒级含量均表现出粗颗粒含量比例增加,细颗粒含量减少;在小雨强下,随着降雨场次的增加,径流搬运逐渐选择粗颗粒,但大雨强下各场次均表现出对供试土壤的“整体搬运”的特征。
     (7)降雨条件下崩积体侵蚀的动力学机制。细沟流速、水深、雷诺数、弗罗德数及动力学参数比细沟间水流大,而阻力系数和粗度系数则比细沟间水流小。细沟间输沙率与流速、粗度系数和阻力系数呈幂函数关系;细沟输沙率仅与流速呈线性函数关系;整个坡面平均输沙率与流速、阻力系数和粗度系数呈幂函数关系,与水深、雷诺数和弗罗德数呈线性函数关系。输沙率与5个动力学参数均呈线性函数关系,可首选单位水流功率、单宽能耗及断面单位能量作为崩积体降雨输沙的动力学参数。
In the tropical and subtropical South China, Benggang is widely distributed. Benggangmainly consists of colluvial deposits with high erosivity. The erosion of colluvial deposits caninfluence the redistribution of the materials from clasping walls and slope surfaces, and thusfurther affect the degree of erosion damage in Benggang. Through the field survey on thegranite colluvial deposits in Yang Keng Village of Longmen town in Anxi County, FujianProvince, the types and morphological characteristics of colluvial deposits are categorized;Though laboratory experiments, the soil characteristics of colluvial deposits are analyzed. Therelationships between the overland flow hydraulic, dynamic parameters and soil detachmentof scattered colluvial deposits are analyzed on the conditions of the flow discharge (1.1,2.2,3.3,4.4,5.5L·min~(-1)) and slope gradient (20,25,30,35,40°). The erosion mechanisms ofscattered colluvial deposits are stutied via the artificial rainfall tests under various conditionswhich includ different rainfall intensities (1.00,1.33,1.67,2.00,2.33mm·min~(-1)) and slopes(20,25,30,35,40°), different crusts degree (uncrust,5min curst,10min crust), and repetitiverainfalls (1.00,1.67,2.33mm·min~(-1)three times respectively). The main conclusions are asfollows:
     (1) The types and morphological characteristics. Colluvial deposits are divided intoscattered and slide types, and dominated by the scattered type. The slide type has steep slope,up to40-70°, while the slope of the scattered type is between20°and40°, and mainly in thevicinity of30°.
     (2) The soil characteristics. There is very low organic matter content in colluvial deposits.The soil particles are mainly gravel, sand and sediment, and the clay content is low; colluvialdeposits have loose soil which results in low soil shear strength and soil hardness, weakerosion corrosion resistance, but strong infiltration. However, loose soil can easily cause soildisintegration.
     (3) The relationship between the characteristics of overland flow hydraulic parameters andsoil detachment. Flow velocity, water depth and the resistance coefficient are mainly affectedby the flow control; Resistance coefficient shows a power function decrease with the increaseof Reynolds and Frode number. It is feasible to simulate the soil detachment rate throughtraffic and slope, depth and slope. The soil detachment rate of colluvial deposits and the flow velocity/shear stress exit an exponential function relationship, but the soil detachment rate ofcatchment slope (nature soil) performs a power function relationship with them. Therefore,the colluvial deposits is more easily separated by water currents than natural soil. Theexponential equation of detachment rate and shear stress is the preferred equation to analyzethe flow detachment on colluvial deposits.
     (4) The runoff and sediment characteristics of colluvial deposits under different conditionsby artificial rainfall experiments. The erosion characteristics under different rainfall intensityand slop conditions: The infiltration processes are fitted by the model: Ir=aT-n+If, and therunoff processes are fitted by the model: Rr=-bT-m+Rf. There are two types of changes in theyield and sediment content: single peak and multiple peak models. The infiltration, runoff andsediment yield increase with increasing rainfall intensity with a liner, exponential, powerfunction respectively; The infiltration decreases with increasing slope gradient with a linerfunction; the runoff and sediment erosion have a critical slope gradient of erosion:~30°and>25°respectively; The sediment concentration increases with increasing rainfall intensity,while the sediment content of different rainfall intensities varies according to the slopegradient. The average rate of runoff exhibit an exponential function relationship with theaverage yield and a power function with the sediment concentration, and the average sedimentconcentration has a linear function relationship with the average sediment yield. Theinfiltration, runoff, sediment yield and sediment content of colluvial deposits can be wellforecasted by using rainfall intensity and slope. The runoff and sediment shows thesecharacteristics under different crust conditions: The presence of crusts can slow erosion, butwith the increase of the crust, the ability of surface runoff erosion grows, which results inincreased erosion. The runoff and sediment appears the characteristics under repetitiverainfalls: the diversification of slope terrain and erosion patterns lead to different sedimenterosion of various rainfall intensities. Under three times of rainfalls whose intensities are1.00and1.67mm·min~(-1), there is no significant difference, but under2.33mm·min~(-1)rainfallintensity, the sediment erosion increasingly intensifies with the rainfall time increase.
     (5) The characteristics of rill erosion under different conditions. Under the conditions ofdifferent slops and different rainfalls, the time that the erosion happens is shorten as the slopand rainfall intensity increases; when the slop and rainfall intensity increase, the rill density and width increase; when the slop increases, the width-depth ratio decreases; and when theslop and rainfall intensity increases, the main erosion pattern changes from sheet erosion torill erosion. Under the conditions of different crusts, crust delays the happening of rill erosion;the rill density as well as the rill width of crust slop is less than those of the uncrust slop; andthe crust rill is deeper than uncrust. The amount of the erosion generated by crust slop is lessthan uncrust slop. The more crusts are on the surface of the slop, the more serious the rillerosion is. This indicates that the crust to some extent retards the rill erosion. The rill showsmany characteristics under the conditions of different rainfalls: when the rainfall intensityreaches1.00and1.67mm·min~(-1)because of the different ways of erosion, the width-depthratio has decreasing trends with the increasing rainfall times, but it turns out opposite resultwhen the rainfall intensity reaches2.33mm·min~(-1). Moreover, the rill erosion will be muchserious when the rainfall time increases.
     (6) The sorting characteristics and transport mechanism of sediment particle in colluvialdeposits. The sediment particle under different rainfall density and gradient shows manycharacteristics: When the rainfall density and slope increase, both the content and enrichmentratios of coarse particle in sediment increase, and the losing of sediment tends to be coarseparticleing. The sediment particle gradually changes to coarse in the course of the interrillerosion-rill erosion and finally keeps in accordance with the tested soil’s particlecomposition. The saltation plasmid level of sediment particle is high:>0.537mm. During theinterrill erosion, the contents of suspention load and saltation load are between71.26%and97.64%, after the rill erosion occurs, the proportions of bed load rise up to10.93-41.74%. Thesediment particle under different surface crusting shows some characteristics: The crustingslope has the feature of transporting small particles. Runoff transportation of sediment particlealso chooses the coarse particle in the late period of erosion. Moreover, the selectiontransportation of the10min high-degree crusting slope is earlier than that of the5min one.Under the light rainfall density, the transportation of runoff tends to choose coarse particlegradually as the number of precipitation increases, but in strong rainfall density allprecipitation shows the “overall-transportation” feature of the test soil.
     (7) The dynamic mechanism of colluvial deposits under the rainfall conditions. The flowvelocity, the flow depth, the Reynolds number, the Froude number and other dynamic parameters are smaller between rills than those of colluvial deposits, but the resistancecoefficient and the roughness coefficient have the opposite results. The relationships amongthe rate of sediment and flow velocity, rough coefficient and resistance coefficient represent apower function between rills. Only the interrill rate of sediment and the flow velocity have alinear relationship. The mean rate of sediment with flow velocity, resistance coefficient androughness coefficient have a power relationship, but the mean rate of sediment with flowdepth, Reynolds number and Froude number are shown by a linear relationship. The sedimentrate has linear relationships with five dynamic parameters. The unit stream power,energyconsumption per unit width and specific energy in sections can be the primary choices to bethe dynamic parameters of colluvial deposits' sediment transportation under rainfallconditions.
引文
Abrahams, A.D., Li, G., Parson, A.J. Rill hydraulics on a semiarid hillslope southern Arizona [J].Earth Surface Processes and Landforms,1996,21:35-47.
    Abrahams, A.D., Parsons, A.J., Luk, S.H. Field measurement of the velocity of overland flowusing dye tracing [J]. Earth Surface Processes and Landforms,1985,11(3):653-657.
    Abrahams, A.D., Parsons, A.J., Luk, S.H. Resistance to overland flow on desert hillslopes [J].Journal of Hydrology,1986,88:343-363.
    Abu-Awwad, A.M. Water infiltration and redistribution within soils by a surface crust [J].Journal ofArid Environments,1997,37:231-242.
    Aken, A.O., Yen, B.C. Effect of rainfall intensity on infiltration and surface runoff rate [J].Journal of Hydraulic Research,1984,21(2):324-331.
    Arasan, S., Akbulut, S., Hasiloglu, A.S. The relationship between the fractal dimension andshape properties of particles[J].Journal of Civil Engineering,2011,15(7):1219-1225.
    Asadi, H, Moussavi, A., Ghadiri, H., et al. Flow-driven soil erosion processes and the sizeselectivity of sediment [J]. Journal of Hydrology,2011,406,73-81.
    Asadi, H., Ghadiri, H., Rose C.W., et al. An investigation of flow-driven soil erosion processes atlow stream powers [J]. Journal of Hydrology,342,2007b,134-142.
    Asadi, H., Ghadiri, H., Rose, C.W., et al. Interrill soil erosion processes and their interaction onlow slopes [J]. Earth Surface Processes and Landforms,32,2007a,711-724.
    Assouline, S., Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dynamics ofinterrill erosion during soil surface sealing [J]. Catena,2006,66,211-220.
    Assouline, S., Mualem, Y. Modeling the dynamics of seal formation and its effect on infiltrationas related to soil and rainfall characteristics [J]. Water Resources Research,1997,33:1527-1536.
    Bartoil, F., Philippy, R., et al. Structure and self-similarity in sedimenty and sandy soils: thefractal approach [J]. Soil Science,1991,42:167-185.
    Bryan, R.B. Soil erodibility and processes of water erosion on hillslope [J]. Geomorphology,2000,32:385-415.
    Cao, L.X., Zhang, K.L., Zhang, W. Detachment of road surface by flowing water [J]. Catena,2009,76:155-162.
    Chaplot, V.A.M., Le Bissonnais, Y. Field measurements of interrill erosion under different slopesand plot sizes [J]. Earth Surface Process and landforms,2000,25:145-153.
    Chaplot, V.A.M., Le Bissonnais, Y. Runoff features for inter-rill erosion at different rainfallintensities, slope lengths, and gradients in an agricultural loessial hillslope [J]. Soil ScienceSociety ofAmerica Journal,2003,67,844-851.
    De Roo, A.J., Weaseling, C.G., Ritsma, C.G. Asingle-event, physical based hydrological and soilerosion model for drainage basin [J].Hydrological Processes,1996,10(7):1107-1117.
    Dong, J.Z., Zhang, K.L., Guo, Z.L. Runoff and soil erosion from highway construction spoildeposits:Arainfall simulation study [J]. Transportation Research Part D-TRE.2012,17:8-14.
    Eshel, G., Levy, G.J., Mingelgrin, U. et al. Critical evaluation of the use of laser diffractionforparticle size distribution analysis [J]. Soil Science Society of America Journal,2004,68:736-743.
    Foster, G.R., Huggins, L.F., Meyer, L.D. A laboratory study of rill hydraulics Ⅰ: velocityrelationships [J]. Transactions of the American Society of Agricultural Engineering,1984a,27(8):790-796.
    Foster, G.R., Huggins, L.F., Meyer, L.D. A laboratory study of rill hydraulics II. Shear stressrelationships [J]. Transactions of the American Society of Agricultural Engineering,1984b,27(3):797-807.
    Fox, D.M., Bryan, R.B. The relationship of soil loss by interrill erosion to slope gradient[J].Catena,1999,38:211-222.
    Fu, S.H., Liu, B.Y., Liu, H.P., et al. The effect of slope on interrill erosion at short slopes[J].Catena,2011,84:29-34.
    Gabet, E.J., Dunne, T. Sediment detachment by rain power [J]. Water Resources Research,2003,1002, http://dx. doi:10.1029/2001WR000656.
    Gilley, J.E., Kottwitz, E.R., Simanton, J.R. Hydraulic characteristics of rills [J]. Transactions ofthe American Society ofAgricultural Engineering,1990,33(6):1900-1906.
    Govers, G. Relationships between discharge, velocity, and flow area for rills eroding loose,non-layered materials [J].Earth Surface Processes Landforms,1992,17:515-528.
    Govers, G., Poesen, J. Assessment of the interrill and rill contributions to total soil loss from anupland field plot [J].Geomorphology,1988,1(4):343-354.
    Guo, T.L., Wang, Q.J., Li, D.Q., et al. Flow hydraulic characteristic effect on sediment and solutetransport on slope erosion [J]. Catena,2013, http://dx.doi.org/10.106/j.catena.2013.03.01.
    Hairsine, P.B., Rose, C.W. Rainfall detachment and deposition: Sediment transport in the absenceof flow-driven processes [J]. Soil Science Society ofAmerica Journal,1991,55:320–324
    Hamed, Y., Jean. A., Yannice, P., et al. Comparison between rainfall simulator erosion andobserved reservoir sedimentation in an erosion-sensitive semiarid catchment [J]. Catena,2002,50(1):1-16.
    Huang, C., Bradford, J.M., Laflen, J.M. Evaluation of the detachment-transport coupling conceptin the WEPP rill erosion equation [J]. Soil Science Society of America Journal,1996,60:734-739.
    Huang, C.H. Sediment regimes under different slope and surface hydrologic conditions [J]. SoilScience Society ofAmerica Journal,1998,62,423-430.
    Janeau, J. L., Bricquet, J. P., Planchon, O., Valentin, C. Soil crusting and infiltration on steepslopes in northern Thailand [J]. European Journal of Soil science,2003,54,543-553.
    Kinnell, P.I.A. The effect of slope length on sediment concentrations associated with side-slopeerosion [J]. Soil Science Society ofAmerica Journal,2000,64:1004-1008.
    Kinnell, P.L.A. Raindrop impact induced erosion processes and prediction: a review [J].Hydrological Process,2005,19:2815-2844.
    Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I.Theoryand methodology [J]. European Journal of Soil Science,1996,47:425-437.
    Liu, H., Lei, T.W., Zhao, J., et al. Effects of rainfall intensity and antecedent soil water contenton soil infiltrability under rainfall conditions using the run off-on-out method[J]. Journal ofHydrology,2011,396:24-32.
    Loch, R.J., Donnollan, T.E. Field rainfall simulator studies on two clay soils of the Darlingdowns, Queensland II. Aggregate breakdown, sediment properties and soil erodibility [J].Australian Journal of Soil Research,1983,21,47-58.
    Luk, S.H., Yao, Q.Y., Gao, J.Q., et al. Environmental analysis of soil erosion in GuangdongProvince: a Deqing case study [J]. Catena,1997a,29:97-113.
    Luk, S.H., Peter D., Liu, X.Z. Water and sediment yield from a small catchment in the hillygranitic region, South China [J]. Catena,1997b,29:177-189.
    Mah, M.G.C., Douglas, L.A., Ringrose-Voase, A.J. Effcets of crust development and surfaceslope on erosion by rainfall [J]. Soil Science,1992,154:37-43.
    Mclsaac, G.F., Mitchell, J.M., Hummel, J.W., et a1.An evaluation of unit stream power theory forestimating soil detachment and sediment discharge from tilled soils [J]. Transactions of theAmerican Society ofAgricultural Engineering,1992,35(2):535-544.
    Mengistu, B.D., Melesse, A.M. Effect of rainfall intensity, slope and antecedent moisture contenton sediment concentration and sediment enrichment ratio [J]. Catena,2012,99:47-52.
    Meyer, L., Harmon, W. How row-sideslope length and steepness affect sideslope erosion[J].Transactions of theAmerican Society ofAgricultural Engineering.1989,32,639-644.
    Meyer, L.D., Wischmeier, W.H. Mathematical simulation of the process of soil erosion by water[J]. Transactions of the American Society of Agricultural Engineering,1969,(12):754-758,762.
    Misra, R.K. Rose, C.W. Application and sensitivity analysis of process based erosion modelGuest [J]. European of Soil Science,1996,4(7):593-604.
    Moore. Effect of surface sealing on infiltration [J]. Transactions of the American Society ofAgricultural Engineering,1984(24):201-205.
    Morgan, R.P.C., Quinton, J.N., Smith, R.E., et al. The European soil erosion model: aprocess-based approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms,1998,23:527-544.
    Moss, A.J. The effects of flow-velocity variations on rain-driven transportation and the role ofrain experimental study [J]. Sediment Geology,1988,22:165-184.
    Nadal-Romero, E., Regues, D., Latron, J. Relationships among rainfall runoff and suspentionsediment in a small catchment with badlands [J]. CATENA,2008,74:127-136.
    Nash, J.E., Sutcliffe, J.V. River flow forecasting through conceptual models part1: A discussionof principles [J]. Journal of Hydrology,1970,10:282-290.
    Nassif, S.H. The influence of slope and rain intensity on runoff and infiltration [J]. HydrologicalScience Bulletin,1975,20(4):539-552.
    Nearing, M.A., Bradford, J.M., Parker, S.C. Soil detachment by shallow flow at low slopes [J].Soil Science Society ofAmerica Journal,1991,55(2):339-344.
    Nearing, M.A., Norton, L.D., Bulgakov, D.A., et al. Hydraulics and erosion in eroding rills,Water Resource Research,1997,33:865-876.
    Nearing, M.A., Simanton, J.R., Norton, L.D., et al. Soil erosion by surface water flow on a stony,semiarid hillslope [J].Earth Surf. Process. Landforms,1999,24:677-686.
    Owoputi, L.O., Stolte, W.J. Soil detachment in the physically based soil erosion process: areview. Transactions of the American Society of Agricultural Engineering,1995,38(4):1099-1110.
    Pan, C.Z., Shangguan, Z.P. Runoff hydraulic characteristics and sediment generation in slopedgrassplots under simulated rainfall conditions [J]. Journal of Hydrology,2006,331:178-185.
    Parsons, A.J., Abrahams, A.D., Luk, S.H. Size characteristics of sediment in interrill overlandflow on a semiarid hillslope, southern Arizona [J]. Earth Surface Processes and Landforms,1991,16:143-152.
    Peter, D., Luk, S.H. Gully erosion and sediment transport in a small subtropical catchment, SouthChina [J]. Catena,1997,29:161-176.
    Proffitt, A.P.B., Rose, C.W. Soil erosion processes: II. Settling velocity characteristics of erodedsediment [J].Australian Journal of Soil Research,1991,29:685-695.
    Ran, Q.H., Su, D.Y., Li, P., et al. Experimental study of the impact of rainfall characteristics onrunoff generation and soil erosion [J]. Journal of Hydrology.2012,(424-425):99-111.
    Romkens, M.J.M., Helming, K., Prased, S.N. Soil erosion under different rainfall intensities,surface roughness and soil water regimes [J]. Hydrological Science Bulletin,2002,25:269-282.
    Rubin, J. Theory of rain fall uptake by soil initially driver than their field capacity and itsapplication [J]. Water Resources Research,1996,2(4):739-749.
    Savat, J. Resistance to flow in rough supercritical sheet flow[J].Earth Surface Processes andLandforms,1980,5:103-122.
    Scott, M.D., Huang, L.J. Rainfall, evaporation and runoff responses to hill slope aspect in theShenchong Basin [J]. Catena,29:131-144.
    Sheng, J.A., Liao, A.Z. Erosion control in South China [J]. Catena,1997,29:211-221.
    Shi, Z.H., Yan, F.L., Li., L., et al. Interrill erosion from disturbed and undisturbed samples inrelation to topsoil aggregate stability in red soils from subtropical China[J]. Catena,2010,81:240-248.
    Shi, Z.H., Yue, B.J., Wang, L., et al. Effects of mulch cover rate on interrill erosion processes andthe size selectivity of eroded sediment on steep slopes[J].Soil Science Society of AmericaJournal,2013,77(1),257-267.
    Shi, Z.H., Fang, N.F., Wu, F.Z., et al. Soil erosion process and sediment sorting associated withtransport mechanisms on steep slopes[J]. Journal of Hydrology,2012,454-455:123-130.
    Singer, M.J., Blackard, J. Slope angle interrill soil loss relationships for slopes up to50%[J]. SoilScience Society ofAmerica Journal,1982,46(6):1270-1273.
    Singer, M.J., Blackard, J. Importance of surface sealing in the erosion of some soils from aMediterranean climate [J].Geomorphology.1998,24(1):79-85.
    Slattery, M.C., Burt, T.P. Particle size characteristics of suspention sediment in hillslope runoffand stream flow [J]. Earth Surface Processes and Landforms,1997,22:705-719.
    Somchai, D., Chaiyuth, C. Effects of rainfall intensity and slope gradient on the application ofvetiver grass mulch in soil and water conservation [J]. International Journal of SedimentResearch,2012,27,168-177.
    Tang, K.L., Zhang, K.L., Lei, A.L Critical slope gradient for compulsory abandonment offarmland on the hilly Loess plateau [J]. Chinese Science Bulletin,1998,43,409-412.
    Tripathi, S.K., Kushwaha, C.P., Basu, S.K. Application of fractal theory in assessing soilaggregates in Indian tropical ecosystems[J].Journal of Forestry Research,2012,23(3):355-364
    Woo, M.K., Fang, G.X., Peter D. The role of vegetation in the retardation of rill erosion[J].Catena,1997,29:145-159.
    Woo, M.K., Huang, L.J., Zhang, S.X., et al. Rainfall in Guangdong province, South China[J].Catena,1997,29:115-129.
    Xu, J.X. Benggang erosion: the influencing factors [J]. Catena,1996,27:249-263.
    Yakov, M.A. Influence of physical properties on deformation characteristics of collapsible soil[J]. Engineering Geology,2007,(9):227-237.
    Young, R.A., Wiersma, J.L. The role of rainfall impact in soil detachment and transport[J].Water Resources Reasearch,1973,9(6):1629-1636.
    Zhang, G.H., Liu, B.Y., Nearing, M.A., et al. Soil detachment by shallow flow [J]. Transactionsof theAmerican Society ofAgricultural Engineering,2002,45(2):351-357.
    Zhang, G.H., Liu, B.Y., He. G.B., et al. Detachment of undisturbed soil by shallow flow[J].SoilScience Society ofAmerica Journal,2003,67:713-719.
    Zhong, B.L., Peng, S.Y., Zhang, Q. et al. Using an ecological economics approach to support therestoration of collapsing gullies in southern China. Land Use Policy,2013,32:119-124
    蔡强国,陈浩,陆兆雄.表土结皮在溅蚀和坡面侵蚀过程中的作用[A].黄河粗泥沙来源及侵蚀产沙机理研究[C].1985,57-64.
    蔡强国,陆兆熊.黄土发育表土结皮过程和微结构分析的试验研究[J].应用基础与工程科学学报,1996,4(4):363-370.
    蔡强国,朱远达,王石英.几种土壤的细沟侵蚀过程及其影响因素[J].水科学进展,2004,15(1):12-18.
    曾宪勤,刘和平,路炳军,等.北京山区土壤粒径分布分形维数特征[J].山地学报,2008,26(1):65-70.
    曾新雄,王万华.低台地花岗岩残积土表层硬壳层的评价与利用[J].地下空间与工程学报,2007,3(2):378-381.
    曾昭璇,黄少敏.中国东南部花岗岩地貌与水土流失问题[J].广东师范学报,1977,46-58.
    曾昭璇.中国东部花岗岩地貌与水土流失问题[J].热带地貌,1993,(增刊):102-112.
    陈浩,王占礼,刘俊娥,等.黄土坡面细沟水流含沙量变化过程试验研究[J].水土保持学报,2011,25(5):8-11.
    陈浩.黄土坡面细沟水流分离动力学过程试验研究[D].杨凌:西北农林科技大学,2012.
    陈俊杰.不同土壤坡面细沟侵蚀影响试验研究[D].武汉:华中农业大学,2012.
    陈起军.应用复合指纹法研究崩岗泥沙来源[D].福州:福建农林大学,2011.
    陈正发,夏清,史东梅,等.基于模拟降雨的土壤表土结皮特征及坡面侵蚀效应[J].水土保持学报,2011,25(4):6-11.
    陈志明,许永明,李翠玲.安溪县崩岗治理模式及实施效果[J].中国水土保持.2007,(3):15-17.
    程琴娟,蔡强国,李家永.表土结皮发育过程及其侵蚀响应研究进展[J].地理科学进展.2005,(04):114-122
    丁文峰,李亚龙,王一峰,等.人工模拟降雨条件下紫色土坡面流水动力学参数特征[J].水土保持学报,2010,02:66-69.
    丁文峰,李占斌,丁登山.坡面细沟侵蚀过程的水动力学特征试验研究[J].水土保持学报,2002,16(3):72-75.
    丁文峰,张平仓,王一峰.紫色土坡面壤中流形成与坡面侵蚀产沙关系试验研究[J].长江科学院院报,2008,3(6):22-24.
    董莉丽,郑粉莉.陕北黄土丘陵沟壑区土壤粒径分形特征[J].中国水土保持科学,2009,7(2):35-41.
    窦葆璋,周佩华.雨滴的观测和计算方法[J].水土保持通报,1982,2(1):44-47.
    杜俊,侯克鹏,杨帆都,等.龙锡矿排土场松散岩土体原位直剪试验研究[J].现代矿业,2009,(10),58-60.
    方华荣,郭廷辅.封山治水改造低产田[J].农田水利与水土保持.1965,(1):6.
    冯明汉,廖纯艳,李双喜,等.我国南方崩岗侵蚀现状调查[J].人民长江,2009,40(8):66-68,75.
    高鹏,穆兴民,刘普灵,等.降雨强度对黄土区不同土地利用类型入渗影响的试验研究[J].水土保持通报,2006,26(3):1-4.
    葛宏力,黄炎和,蒋芳市.福建省崩岗发生的地质和地貌条件分析[J].水土保持通报,2007,27(2):128-132.
    葛宏力,黄炎和,林敬兰,等.区域水系与崩岗空间分布的关系[J].福建农林大学学报:自然科学版,2011,40(2):187-188.
    葛宏力,黄炎和,蒋芳市,等.崩岗发生区岩土类型分析[J].亚热带水土保持,2012,24(1):13-19.
    耿晓东.主要水蚀区坡面土壤侵蚀过程与机理对比研究[D].杨凌:中国科学院研究生院,2010.
    龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15.
    何凡,尹婧,陈宗伟,等.青海省公路弃土场土壤侵蚀规律天然降雨试验研究[J].水土保持通报,2008,28,(2):131-134.
    何腾兵.贵州山区土壤物理性质对土壤侵蚀影响的研究[J].土壤侵蚀与水土保持学报,1995,1(1):85-95.
    何小武,张光辉,刘宝元.坡面薄层水流的土壤分离实验研究[J].农业工程学报,2003,19(6):52-55.
    洪思泽,陈志明,许永明.利用崩岗侵蚀劣地建设生态茶园的主要技术探讨[J].中国水土保持.2006(2):26-27.
    胡建忠,范小玲.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):25-30.
    胡明鉴,汪稔,孟庆山,等.坡面松散砾石土侵蚀过程及其特征研究[J].岩土力学,2005,26(11):1722-1726.
    胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报,1999,54(4):347-356.
    胡霞,蔡强国,刘连友,等.人工降雨条件下几种土壤结皮发育特征[J].土壤学报,2005,(03):504-507.
    胡霞,刘连友,蔡强国,等.土壤结皮的研究进展及其评述[J].干旱区资源与环境,2005,19(3):145-149.
    黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    黄炎和,林敬兰,蔡志发,等.影响福建省水土流失主导因子的研究[J].水土保持学报,2000,14(2):36-40.
    黄炎和,卢程隆,郑添发,等.闽东南降雨侵蚀力指标R值的研究[J].水土保持学报,1992,6(4):1-5.
    黄于同.崩岗侵蚀咨询信息系统的设计与开发[D].武汉:华中农业大学,2008.
    江忠善,宋文经.坡面流速的试验[A].西北水土保持研究所集刊第7集[C].西安:陕西科学技术出版社,1988,46-52.
    蒋定生,范兴科,李新华,等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):1-8.
    蒋定生,黄国俊.地面坡度对降雨入渗影响的模拟试验[J].水土保持通报,1984,4(4):10-13.
    解文艳,樊贵盛.土壤质地对土壤入渗能力的影响[J].太原理工大学学报,2004,35(5):537-540.
    雷阿林,唐克丽.黄土坡面细沟侵蚀的动力条件[J].土壤侵蚀与水土保持学报,1998,(3)4:39-43.
    雷廷武,刘汗,潘英华,等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国科学D辑:地球科学,2005,35(12):1180-1186.
    雷廷武,张晴雯,闫丽娟.细沟侵蚀物理模型[M].北京:科学出版社,2009:102-112.
    黎原.黄山市土壤颗粒分形特征研究[D].芜湖:安徽师范大学,2012.
    李保国.分形理论在土壤科学中的应用及其模型[J].土壤学进展,1994,22(1):1-10.
    李宏伟,王文龙,王贞,等.神东煤田原地面侵蚀产沙规律野外降雨试验[J].中国农业大学学报,2013,18(2):195-201.
    李思平.广东省崩岗侵蚀规律和防治的研究[J].自然灾害学报,1992,1(3):68-74.
    李小昱,王为,沈逸,等.基于虚拟仪器技术的光电式坡面径流流速测量系统[J].农业工程学报,2006,22(6):87-90.
    李永祥,苑明顺.热膜技术在水流测速中的应用研究[J].流体力学实验与测量,1997,11(4):45-50.
    李占斌,鲁克新,丁文峰.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报,2002,16(2):5-7.
    梁音,宁堆虎,潘贤章,等.南方红壤区崩岗侵蚀的特点与治理[J].中国水土保持,2009,(01):31-34.
    林金石,黄炎和,张旭斌,等.南方花岗岩区典型崩岗侵蚀产沙来源分析[J].水土保持学报,2012,26(3):53-57.
    林敬兰,黄炎和,张德斌,等.水分对崩岗土体抗剪切特性的影响[J].水土保持学报,2013,27(3):55-58.
    林敬兰.南方花岗岩地区崩岗侵蚀成因机理研究[D].福州:福建农林大学,2012.
    林秋月.花岗岩区土壤抗蚀性评价因子体系研究[D].福州:福建农林大学,2006.
    刘力.紫色土和黄土坡耕地土壤侵蚀过程对比研究[J].杨凌:西北农林科技大学,2006.
    刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350.
    刘洪鹄,刘宪春,张平仓,等.南方崩岗发育特征及其监测技术探讨[J].中国水土保持科学,2011,9(2):19-23.
    刘俊体,蔡强国,孙莉英,等.黄土坡面细沟流速随细沟发育的特征[J].水土保持学报,2012,26(3):44-48.
    刘美龄,叶勇,曹长青,等.海南东寨港红树林土壤粒径分布的分形特征及其影响因素[J].生态学杂志,2008,27(9):1557-1561.
    刘目兴,聂艳,于婧.不同初始含水率下粘质土壤的入渗过程[J].生态学报,2012,32(3):871-878.
    柳玉梅,张光辉,韩艳峰.坡面流土壤分离速率与输沙率耦合关系研究[J].水土保持学报,2008,22(3):24-28.
    柳玉梅,张光辉,李丽娟,等.坡面流水动力学参数对土壤分离能力的定量影响[J].农业工程学报,2009,25(6):96-99.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:12-196.
    陆继龙.我国黑土的退化问题及可持续农业[J].水土保持学报,2001,15(2):53-67.
    罗斌,陈强,黄少强.南方花岗岩地区坡面侵蚀临界坡度探讨[J].土壤侵蚀与水土保持学报,1999,5(6):67-70.
    吕殿青,邵明安,刘春平.容重对土壤饱和水分运动参数的影响[J].水土保持学报,2006,20(3):154-157.
    缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,18(9):1987-1993.
    牛德奎,郭晓敏,左长清,等.我国南方红壤丘陵区崩岗侵蚀的分布及其环境背景分析[J].江西农业大学学报,2000,22(2):204-208.
    牛德奎.赣南山地丘陵区崩岗侵蚀阶段发育的研究[J].江西农业大学学报,1990,12(1):29-36.
    牛德奎.华南红壤丘陵区崩岗发育的环境背景与侵蚀机理研究[D].南京:南京林业大学,2009.
    秦耀东.土壤物理学.北京:高等教育出版社[M],2003:97-100.
    丘世钧.红土坡地崩岗侵蚀过程与机理[J].水土保持通报,1994,14(6):31-40.
    任改,张洪江,白芝兵.重庆四面山水源涵养林土壤抗冲性及影响因素[J].中国水土保持科学,2013,11(1):1-7.
    任熠,王先拓,王玉宽,等.紫色土坡面细沟流的水动力学特征试验研究[J].水土保持学报,2007,21(06):39-42,46.
    阮伏水.福建崩岗沟侵蚀机理探讨[J].福建师范大学学报(自然科学版),1996(增刊):24-31.
    阮伏水.福建省崩岗侵蚀与治理模式探讨[J].山地学报,2003,21(6):675-680.
    阮伏水.花岗岩风化壳与土壤侵蚀关系的研究[J].中国水土保持,1989,(12):53-56.
    沙际德,白清俊.黄土坡面细沟流流态的试验研究[J].水土保持学报,2001,15(5):26-28.
    沙际德,蒋允静.试论初生态侵蚀性坡面薄层水流的基本动力特性[J].水土保持学报,1995,9(4):29-35.
    石风善.多年生混播草坪土壤物理性质的研究[J].草原与草坪,2004,(2):3l-33.
    史德明.我国热带亚热带地区崩岗侵蚀的剖析[J].水土保持通报,1984,(3):32-36.
    史德明.中国红壤[M].北京:科学出版社,1983:237-253.
    史晓楠,雷廷武,夏卫生.电解质示踪测量坡面薄层水流流速的改进方法[J].农业工程学报,2010,26(5):65-70.
    水利部,中国科学院,中国工程院.中国水土流失防治与生态安全(总卷)[M].北京:科学出版社,2011:924-925.
    水利部批复《南方崩岗防治规划》,长江水土保持网http://www.cjstbc.com/business/IMPORTANT/200904/254.html
    孙妍.鄂东南崩岗侵蚀特征及其监测数据管理系统的研究[D].武汉:华中农业大学,2012.
    唐科明,张光辉,任宗萍,等.坡面薄层水流分离土壤的动力学机理[J].水土保持学报,2011,25(4):46-49.
    唐克丽.中国水土保持[M].北京:科学出版社,2004,80-82.
    王彬.土壤可蚀性动态变化机制与土壤可蚀性估算模型[D].杨凌:西北农林科技大学,2012.
    王彬.东北典型薄层黑土区土壤可蚀性关节因子分析与土壤可蚀性计算(D).杨凌:西北农林科技大学,2009.
    王伟,张洪江,李猛,等.重庆市四面山林地土壤水分入渗特性研究与评价[J].水土保持学报,2008,22(4):95-99.
    王丹丹;张建军;茹豪,等.晋西黄土高原不同地类土壤抗冲性研究[J].水土保持学报,2013,27(03):28-32,38.
    王贵平,曾伯庆,蔡强国,等.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究——第二部分:细沟侵蚀[J].中国水土保持,1992(11):22-24.
    王浩.黄土高塬沟壑区沟坡道路侵蚀特征及植物路防蚀机理研究[D].杨凌:中国科学院研究生院,2010.
    王辉,王全九,邵明安,李裕元.表土结皮影响坡地产流产沙及养分流失的试验研究[J].水土保持学报,2008,22(4):35-38.
    王瑄,李占斌.坡面水蚀输沙动力过程试验研究[M].北京:科学出版社,2010,76-93.
    王军光,李朝霞,蔡崇法,等.坡面冲刷过程中红壤分离速率定量研究[J].长江流域资源与环境,2011:20(1):96-100.
    王全九,王辉,郭太龙.黄土坡面土壤溶质随地表径流迁移特征与数学模型[M].北京:科学出版社,2010:202.
    王万忠.黄土地区降雨特性与土壤流失关系的研究[J].水土保持通报,1984,4(2):58-62.
    王维明,林敬兰,陈文祥,等.福建省山地水土流失现状及其防治对策[J].中国水土保持,2005,(7):28-29.
    王先拓,王玉宽,傅斌,等.川中丘陵区紫色土坡耕地产流特征试验研究[J].水土保持学报,2006,20(5):9-12.
    王秀英,曹文洪,陈东.土壤侵蚀与地表坡度关系研究[J].泥沙研究,1998,(2):36-41.
    王彦华,谢先德.风化花岗岩崩岗灾害的成因机理[J].山地学报,2000,18(6):496-501.
    吴发启,范文波.土壤结皮对降雨入渗和产流产沙的影响[J].中国水土保持科学[J],2005,3(2):97-101.
    吴凤至.坡面侵蚀过程中泥沙颗粒特性研究[D].武汉:华中农业大学,2012.
    吴丽珍.南方崩岗侵蚀的岩土特性研究[D].福州:福建农林大学,2006.
    吴普特,周佩华.坡面薄层水流流动型态与侵蚀搬运方式的研究[J].水土保持学报,1992,6(1):19-24.
    吴普特,周佩华.雨滴击溅在薄层水流侵蚀中的作用[J].水土保持通报,1992,9(2):19-26.
    吴淑芳,吴普特,原立峰.坡面径流调控薄层水流水力学特性试验[J].农业工程学报,2010,26(3):14-19.
    吴志峰,王继增.华南花岗岩风化壳岩土特性与崩岗侵蚀关系[J].水土保持学报,2000,14
    (2):31-35.
    吴志峰,钟伟青.崩岗灾害地貌及其环境效应[J].生态科学,1997,16(2):91-96.
    武敏,冯绍元,孙春燕,等.北京市大兴区典型土壤水分入渗规律田间试验研究[J].中国农业大学学报,2009,14(4):98-102.
    夏卫生.电解质脉冲法测量坡面薄层恒定水流速度的研究及其初步应用[D].杨凌:西北农林科技大学,2003.
    徐泉斌,傅瓦利,孙璐,等.三峡库区消落带土壤抗蚀性研究[J].水土保持研究,2009,16(5):l3-l8.
    许明祥,刘国彬.圆盘入渗仪法测定不同利用方式土壤渗透性试验研究[J].农业工程学报.2002,(4):54-58.
    许永霞,廖超英,孙长忠,等.黄土高原丘陵沟壑区放牧林草地土壤团聚体性质研究[J].干旱地区农业研究.2011,29(5):186-191.
    许中立,张志平,张志豪,等.高速公路关庙休息站边坡保护工程之效果[J].水土保持研
    究,2003,10(4):220-224.
    杨金玲,李德成,张甘霖,等.土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J].土壤学报,2008,45(3):413-419.
    杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    杨文娜.南平地区林地水分调蓄功能的模糊综合评判[J].福建水土保持,1996,(2):37-42.
    姚军,吴发启,宋娟丽,等.黄土高原沟壑区坡耕地表层土壤抗剪强度影响因素分析[J].干旱地区农业研究2010,28(3):236-239.
    姚庆元,钟五常.江西赣南花岗岩地区的崩岗及其治理[J].江西师范学院学报,1966,(1):62-75.
    姚文艺,汤立群.水力侵蚀产沙过程及模拟[J].郑州:黄河水利出版社,2001:10.
    于国强,李占斌,张霞,等.野外模拟降雨条件下径流侵蚀产沙试验研究[J].水土保持学报.2009,23(4):10-14.
    袁立敏,高永,虞毅,等.PLA沙障对土壤硬度的影响[J].中国水土保持科学,2010,8(4):90-94.
    张杰,高鹏,孙会敏.鲁中南山地典型植被土壤颗粒与土壤水分特征曲线的分形学特征[J].中国水土保持科学,2013,11(1):76-81.
    张爱国,李锐,杨勤科.中国水蚀土壤抗剪强度研究[J].水土保持通报,20012,1(3):5-9.
    张光辉,刘宝元,张科利.坡面径流分离土壤的水动力学实验研究[J].土壤学报,2002a,39(6):882-886.
    张光辉,刘宝元.黄土区原状土壤分离过程的水动力学机理研究[J].水土保持学
    报,2005,19(4):48-52.
    张光辉.冲刷时间对土壤分离速率定量影响的实验模拟[J].水土保持学报,2002b,l6(2):l-4.
    张光辉.坡面薄层流水动力学特性的实验研究[J].水科学进展,2002c,13(2):159-165.
    张光辉.坡面水蚀过程水动力学研究进展[J].水科学进展,2001,12(3):395-402.
    张国彪.小型冲蚀槽设计中水力学参数获取及冲蚀试验效果[D].武汉:华中农业大学,2012.
    张会茹,郑粉莉.不同降雨强度下地面坡度对红壤坡面土壤侵蚀过程的影响[J].水土保持学报,2011,25(3):40-43.
    张科利.黄土坡面发育的细沟水动力学特性的研究[J].泥沙研究,1999,9(1):56-61.
    张科利.黄土坡面侵蚀产沙分配及其与降雨特征关系的研究[J].泥沙研究,1991,(4):39-45.
    张宽地.坡面径流水动力学特性及挟沙机理研究[D].杨凌:西北农林科技大学,2011.
    张木匋.一年来河田土壤保肥试验工作.1942(长汀县水土保持事业局提供).
    张启昌,李德志,宋广智.土壤地表径流与土壤渗透拟合方程的研究[J].吉林林学院学报,1993,9(3):1-5.
    张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-225.
    张淑光,钟朝章.广东省崩岗形成机理与类型[J].水土保持通报,1990,10(3):8-16.
    张晓明,丁树文,蔡崇法.干湿效应下崩岗区岩土抗剪强度衰减非线性分析[J].农业工程学报,2012,28(5):241-245.
    张新和.黄土坡面片蚀-细沟侵蚀-切沟侵蚀[D].杨凌:西北农林科技大学,2007.
    张信宝.崩岗边坡失稳的岩石风华膨胀机理探讨[J].中国水土保持,2005(7):10-11.
    张旭斌.南方花岗岩区典型崩岗侵蚀泥沙来源研究[D].福州:福建农林大学,2012.
    张学俭,沈雪建.治理与开发相结合——实现生态与经济效益双赢[J].中国水土保持.2004,(9):1-2.
    张以森,郭相平,吴玉柏,等.扰动高沙土侵蚀规律的试验研究[J].河海大学学报(自然科学版),2010,38(5):522-526.
    赵辉,罗建民.湖南崩岗侵蚀成因及综合防治体系探讨[J].中国水土保持,2006(5):1-4.
    赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    赵晓光,吴发启,刘秉正,等.再论土壤侵蚀的坡度界限[J].水土保持研究,1999,6(2):42—46.
    赵晓光.黄土塬区坡面水蚀作用过程[J].水土保持学报,2000,14(03):122-124.
    赵筱青,和春兰,许新惠.云南山地尾叶桉类林引种对土壤物理性质的影响[J].生态环境学报,2012,21(11):1810-1816.
    赵昭昞,吴幼恭,蔡文焰,等.福建省河田花岗岩水土流失区沟谷的研究[J].地理学报,1965,31(3):253-263.
    郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀的发生、发展和防治途径的探讨[J].水土保持学报,1987,1(01):36-48.
    郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持,1989,8:23-24.
    郑粉莉.黄土区坡面细沟间侵蚀和细沟侵蚀的研究[J].土壤学报,1998,35(1):95-101.
    郑粉莉.坡面土壤侵蚀过程研究进展[J].地理科学,2003,23(2):230-235.
    郑良勇,李占斌,李鹏.黄土区陡坡径流水动力学特性试验研究[J].水利学报,2004,5:46-51.
    中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978:140-148.
    中华人民共和国水利部.土壤侵蚀分类分级标准SL190-2007.2008.
    钟继洪,唐淑英,谭军.南方山区花岗岩风化壳崩岗侵蚀及其防治对策[J].水土保持通报,1991,11(4):27-28.
    钟壬琳,张平仓.紫色土坡面径流与侵蚀特征模拟试验研究[J].长江科学学院院报,2011,28(11):22-28.
    朱鹤健,福建东南山地丘陵土壤的基本特征[J].土壤学报,1983,20(3):225-237.
    朱良君,张光辉,胡国芳,等.坡面流超声波水深测量系统研究[J].水土保持学报,2013,27(1):235-239.
    朱显漠,田积莹.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(3):1-10.
    朱晓华,查勇.江苏淤泥质海岸海岸线分形机理研究[J].海洋科学,2002,26(9):70-73.
    朱远达,蔡强国,胡霞,等.土壤理化性质对结皮形成的影响[J].土壤学报,2004,41(1):13-19.
    庄淑莺.耕层土壤颗粒表面的分形特征研究[J].土壤通报,2007,38(3):439-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700