用户名: 密码: 验证码:
基于遥感与GIS的中国水土流失定量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域土壤侵蚀与环境研究是土壤侵蚀学科的前沿研究领域之一,主要包括区域土壤侵蚀因子研究、区域土壤侵蚀定量评价和土壤侵蚀及其治理的区域环境效应等三个方面,其中区域土壤侵蚀因子研究是认识土壤侵蚀环境特征和进行土壤侵蚀定量评价的基础,也是土壤侵蚀与环境研究中一个重要的方向。
     土壤侵蚀是自然因素和人为因素共同综合作用的结果。自然因素是土壤侵蚀发生、发展的潜在条件,主要包括降雨、地形地貌、植被、土壤等,这些自然因素对土壤侵蚀的影响各不相同,但又相互影响、相互制约。本研究以通用土壤流失方程系列模型(USLE、RUSLE、CSLE)为基础,利用RS、GIS、统计学等分析技术,分析提取了影响中国土壤侵蚀的各个自然因子,即降雨侵蚀力因子、土壤可蚀性因子、地形因子(如地形起伏度、地面粗糙度等)、植被覆盖度因子,并对动态因子进行时空动态分析,生成了自然因子系列栅格数据库,编制了中国土壤侵蚀因子图(降雨侵蚀力因子图、土壤可蚀性因子图、地形起伏度图、地面粗糙度图、植被覆盖度图等),在此基础上利用坡度和植被覆盖度(1998—2007年)两个指标对土壤侵蚀的分布做了初步分析,然后将USLE与GIS集成,完成中国水土流失定量评价,编制中国1998年和2007年两个时期的土壤侵蚀强度分级图,根据评价结果图进行土壤侵蚀的时空动态分析,以期为进一步开展区域土壤侵蚀综合治理工作奠定基础。
     本研究取得的主要成果如下:
     1.利用1998—2011年的日降雨资料,对中国680多个地面气象站的逐月、月平均、逐年和多年平均降雨侵蚀力进行估算。采用Kriging内插法进行空间插值,采用线性倾向估计、滑动平均、累积距平、变异系数(CV)、趋势系数(r)等方法对降雨侵蚀力的时间变化特征进行分析,并采用相关系数统计检验法对长时间序列的降雨侵蚀力总体变化趋势进行显著性检验,同时对降雨量、降雨侵蚀力的空间分布特征进行比较与分析。中国降雨侵蚀力年内年际变化与降雨量、侵蚀性降雨量年内年际变化趋势一致,年内分布均呈单峰型,集中分布在4~10月;1998—2011年年降雨侵蚀力R值的全距为22249.32MJ·mm/(ha·h·a),年降雨侵蚀力呈波动下降的趋势,倾向率为-278.29MJ·mm/(ha·h·10a),且逐年降雨侵蚀力总体变化趋势未通过90%的信度检验水平,其年际间的变化并不显著。1998—2011年间,春、夏、冬三季的降雨侵蚀力均呈下降趋势,而秋季的降雨侵蚀力呈上升趋势;1~12月的趋势系数在-0.213~0.338,各月降雨侵蚀力的变异系数均大于0.1,各季变异程度依次为:夏季>春季>秋季>冬季。降雨量与降雨侵蚀力的空间分布具有从东南向西北梯度递减的特点,南方地区则以高值区为中心向外扩展,呈梯度递减分布。
     2.依据中国1:100万土壤图,分析土壤理化性质的空间分布特征,利用EPIC模型估算中国土壤可蚀性K值并用张科利的修正公式进行修正,得到中国土壤可蚀性空间分布图。我国土壤可蚀性K值的空间分布变异不大,且具有明显的区域特性,中国土壤可蚀性K值的范围为0.0018—0.089t·ha·h/(ha·MJ·mm),平均值约为0.0363t·ha·h/(ha·MJ·mm),中国土壤可蚀性K值主要集中在0.030—0.045t·ha·h/(ha·MJ·mm)之间,其面积占研究区1/2之余。土壤可蚀性高值区主要分布在新疆维吾尔自治区的部分地区、内蒙古高原南部、黄土高原北部、青藏高原北部等地区,而南方地区的K值一般低于均值,只有个别地方稍高。
     3.选用90m×90m SRTM DEM数据,利用邻域窗口分析法(矩形邻域和圆形邻域)提取中国地形起伏度,对邻域面积与平均地形起伏度进行对数方程拟合,通过统计学检验;运用均值变点分析法计算得出基于90m×90m SRTM DEM数据提取中国地形起伏度的最佳统计单元大小为11×11和R=6两个尺度;完成了中国水土流失地形起伏度分级图的绘制并对地形起伏度特征作了初步分析。中国局部的地形起伏度较大,总体上地形较平缓,以中小起伏度为主,微起伏次之。空间上东西、南北差异明显,大、极大起伏明显集中于西部,而平坦、微小起伏及中起伏明显集中于东部;中大起伏多集中分布于南部,而北部的大部分地区平坦,地形起伏较缓和,以微小起伏为主。均值变点分析法很好地克服了主观因素的影响,是确定最佳统计单元的一种较为理想的方法。
     4.选用90m×90m SRTM DEM数据,利用三角函数中坡度余弦的倒数对中国地面粗糙度进行了计算,全国地面粗糙度的范围为1—31.4296,平均值约为1.035。东西、南北差异明显,西部天山山脉、青藏高原边缘一带的地面粗糙度较大,明显大于东部地区,而北部大部分地区的地面粗糙度都较小,明显小于南部地区。在盆地、平原地区,地面粗糙度较小,而在天山山脉、横断山脉、秦巴山地等地形较复杂的区域,地面粗糙度较大,这种趋势与地形起伏度特征较相似。
     5.对11×11窗口的地形起伏度、R=6窗口的地形起伏度和地面粗糙度进行了相关分析,三者之间的相关性都较好,但圆形邻域优于矩形邻域,所以在全国尺度上选择最佳统计单元(R=6)地形起伏度来折算坡度,并在此基础上计算了坡度因子值,最大坡度因子值为20.95,平均坡度因子值为7.80。中国坡度因子的空间分布特征与地形起伏度、地面粗糙度基本一致,东西、南北差异较明显。
     6.选用1998年4月至2008年7月372景逐旬的SPOT-4/VEGETATION数据(S10),利用MVC法、一元线性回归分析法和差值法分析陕西省和中国近10a来植被的整体变化趋势、年内年际间的变化幅度及其空间分布情况等。陕西省和中国植被覆盖度整体都呈波动上升的趋势,其年际变化趋势大致相同,年内变化呈很强的季节性,春、夏季植被覆盖度呈增加趋势,秋、冬季植被覆盖度呈减少趋势。陕西各地区植被覆盖度变化明显,陕北北部地区植被覆盖度显著增加,特别是在榆林市的东南部和延安市北部地区;桥山、黄龙山林区和秦巴山地林区高度植被覆盖度(>60%)增加10%~20%。我国植被覆盖空间分布呈现出东北–西南向延伸、东南–西北向更替的规律,东半部地区植被覆盖状况较好;而在半干旱和半湿润区域分界线以西,植被覆盖度较低,尤其在荒漠地带,基本无植被覆盖。
     7.依据水利部标准(SL190—2007),利用坡度和植被覆盖度两个指标对中国水土流失进行定性评价,编制1998—2007年中国土壤侵蚀强度图。1998—2007年不同土壤侵蚀强度的空间分布与变化趋势大体一致,空间上东西差异明显;土壤侵蚀强度以微度侵蚀为主,轻度侵蚀、中度侵蚀次之。依据USLE模型和土壤侵蚀因子栅格图集,利用ArcGIS软件的栅格计算器计算中国1998年和2007年两个时期的土壤侵蚀模数,得到两个时期的土壤侵蚀强度分级图,对1998年和2007年不同侵蚀类型区土壤侵蚀强度的动态变化进行了分析。1998年和2007年两个时期各侵蚀类型区的最大侵蚀模数和平均侵蚀模数相差都很大,从1998年到2007年土壤侵蚀程度在减弱,2007年北方土石山区的最大侵蚀模数和西北黄土高原区的平均侵蚀模数较1998年有所增加,而其他各侵蚀类型区的年总侵蚀量是减少的。
Research on soil erosion and environment at regional scale is one of the frontier researchfield of soil erosion science, which mainly includes regional soil erosion factors research,regional soil erosion quantitative assessment, soil erosion and impacts of soil conservation onregional environment and so on. Research on regional soil erosion factors is the basis forunderstanding the characteristics of eroded soil environment and provides parameters for soilerosion quantitative assessment, and is also an important direction of soil erosion andenvironment research.
     Soil erosion was caused by both natural factors and human factors. Natural factors arethe potential conditions in the development of soil erosion, mainly including rainfall,landform, vegetation, soil and so on, which affect soil erosion in different ways.This studyanalyzed the natural factors including rainfall, soil erodibility, terrain (relief amplitude andground roughness) and vegetation coverage that affected soil erosion in China using remotesensing(RS), geographic information system(GIS) and statistics based on Universal Soil LossEquation(USLE) model, and dynamically analyzed these dynamic factors. Raster database ofnatural factors was created and maps of China's soil erosion factors (Rainfall erosivity map,soil erodibility map, relief amplitude map, ground roughness map and vegetation coveragemap) were made. The distribution of soil erosion in China was analyzed using slope factorand vegetation coverage (1998-2007) factor, and then the USLE was combined with GIS toquantificationally evaluate the soil and water loss in China and maps of China’s soil erosionclassification map in1998and2007were made. The temporal and spatial dynamic analysis ofsoil erosion were made on the basis of the evaluation maps, which would provide some basicinformation for the comprehensive control of regional soil erosion.
     The main achievements of this study are as follows:
     1. The monthly and yearly rainfall erosivity was calculated based on the daily rainfalldata from680ground weather stations in China. The temporal variation characteristics ofrainfall erosivity was analyzed using spatial interpolation by Kriging method, linear tendencyestimation, moving average, accumulated deviation, coefficient of variation (CV), and trendcoefficient (r). Then the overall trend of rainfall erosivity in a long sequence was tested forsignificance using statistical correlation coefficient test, while the spatial distribution features of rainfall and rainfall erosivity were compared and analyzed. The interannual variation ofrainfall erosivity was consistent with the interannual trend of annual rainfall and erosiverainfall, which was unimodal distribution and mainly distributed between April and October.The range of the R of annual rainfall erosivity between1998and2011was22249.32MJ mm/(ha h a), which was decreasing fluctuatingly, and the tendency rate was-278.29MJ mm/(ha h10a). The overall trend of rainfall erosivity did not pass the significanttest with the level of90%, which meant the interannual variation was not significant. From1998to2011, the rainfall erosivity decreased in spring, summer and winter, while the trendwent up in autumn. The tendency rate was between-0.213and0.338from January toDecember and the coefficient of variation of rainfall erosivity in each month was above0.1.The degree of variation of each season in a descending order was as: summer, spring, autumnand winter. The spatial distribution of rainfall and rainfall erosivity gradiently decreased fromsoutheast to northwest. In southern China, it gradiently decreased from the center where thevalue was high to outside.
     2. The spatial distribution of the chemical and physical properties of soil was analyzedbased on the soil map of China (1:1,000,000). The K value of China’s soil erodibility wascalculated using EPIC model and revised using Zhang Keli’s revised formula and the map ofChina’s soil erodibility was made. The spatial variation of the K value of China’s soilerodibility was small and had significant regional characteristics. The range of the K value ofChina’s soil erodibility was between0.0018and0.089t ha h/(ha MJ mm) and the mean was0.0363t ha h/(ha MJ mm). The K value focused between0.030and0.045t ha h/(ha MJ mm),and the land area with such K value took over half of the study area. The high value of soilerodibility was mainly distributed in parts of the Xinjiang Uygur Autonomous Region, southof Inner Mongolia Plateau, north of Loess Plateau and north of the Qinghai-Tibet Plateau. Insouthern China, the K value was usually lower than average.
     3. Based on90m×90m SRTM DEM, the relief amplitude of China was extracted usingthe neighborhood statistics analysis method (rectangular neighborhood and circularneighborhood), the neighborhood area and average relief amplitude were carriedlogarithmically fitting and passed statistical tests; the best statistical unit of90m×90m SRTMDEM was calculated by using the mean change-point analysis method, which was the11×11and R=6. Finally, the map of China’s relief amplitude grade was made and the features ofrelief amplitude were analyzed. The relief amplitude in parts of China was large, the wholerelief amplitude was relatively flat, which was mainly medium-sized, followed by micro-sized.The relief amplitude had significant differences in space on the east-west and north-southdirection, the big and great relief amplitudes were clearly concentrated in the west, while the flat, slight and medium relief amplitudes were mainly distributed in the east, and the mediumand big relief amplitude in the south area, and the relief amplitude of the northern part wassmall. The mean change-point analysis method could overcome the subjective factors, whichwas an ideal method to determine the best statistical unit.
     4. Based on90m×90m SRTM DEM, China’s ground roughness was calculated by theinverse of the cosine of slope. The national ground roughness was between1and31.4296,and the mean value was1.035. Ground roughness had significant differences in the east-westand north-south direction. In western China, along the edge of the Qinghai-Tibet Plateau andTianshan Mountains, ground roughness was great and significantly greater than that of theeastern region, and the ground roughness in north region was mainly small and significantlysmaller than that of the southern region. In the basins and plains region, the ground roughnesswas small, and in the complex terrain such as Tianshan Mountains, Hengduan Mountains andthe Qinling Mountain area, ground roughness was great, this trend was similar to thecharacteristics of the relief amplitude.
     5. The correlation analysis was made between the relief amplitude (11×11grid unit ofrectangular neighborhood and R=6grid unit of circular neighborhood) and ground roughness.The results showed good correlation, and the circular neighborhood was better thanrectangular neighborhood, so in the national scale, slope and slope factor value was calculatedby the best statistical unit(R=6)of the relief amplitude, the maximum value was20.95, andthe mean value was7.80. The spatial distribution characteristics of slope, relief amplitude andground roughness were basically consistent, and there were significant differences in theeast-west and north-south direction.
     6. This study applied maximum value composites (MVC), one-dimensional linearregression and differential methods to analyze spatial distribution and inter-annual and annualchanging patterns of vegetation coverage in the whole China and Shaanxi Province based on372images of SPOT-4/VEGETATION (S10) data recorded from April1998to July2008.The vegetation coverage both in the whole China and Shaanxi Province generally raised withfluctuations and its inter-annual variation was basically the same. However, there was obviousseasonal variation within a year that vegetation coverage increased from spring to summerand then decreased from autumn to winter. Vegetation coverage changed significantly invarious regions of Shaanxi. It increased dramatically in Northern Shaanxi, especially in thesoutheast of Yulin city and in the north of Yan’an city. The high vegetation coverage(>60%) inQiaoshan, forest area of Huanglong Mountain and Qinba Mountain increased by10%~20%during the past10years. Vegetation coverage in whole China spatially extended from thenortheast to the southwest and decreased from the southeast to the northwest. Vegetation coverage was high in eastern China and low in the west of the boundary between the semiaridarea and sub-humid area especially and the lowest (about zero value) in the desert zone.
     7. According to the criteria for soil erosion made by the Ministry of Water Resources(SL190—2007), the datasets of slope and vegetation coverage were used to conduct qualitativeassessment of soil and water erosion in China and make soil erosion intensity maps(1998-2007). The results showed the spatial distribution patterns and changing trends of soilerosion intensity were generally consistent from1998to2007. Spatially, there weresignificantly differences between eastern China and western China. Among soil erosionintensity types, micro erosion type occupied first place, slight erosion type came second, andmiddle erosion type was the third. Furthermore, this study used USLE model and atlas of soilerosion factors, by means of the raster calculation module of ArcGIS (version9.3), tocalculate soil erosion modulus in1998and2007to obtain the soil erosion intensity gradingmaps of the two years so as to analyze the dynamic changes of soil erosion intensity indifferent erosion areas. There were significantly differences in terms of the largest erosionmodulus and average erosion modulus in each erosion areas. Comparing with the relatedresults in1998, soil erosion intensity generally weakened and the total erosion amountdecreased in2007, except that the largest erosion modulus of mountainous regions in northernChina and average erosion modulus of loess plateau in northwestern China increased.
引文
毕晓丽,王辉,葛剑平.2005.植被归一化指数(NDVI)及气候因子相关起伏型时间序列变化分析.应用生态学报,16(2):284-288
    卜兆宏,董勤瑞,周伏建,张立文.1992a.降雨侵蚀力因子新算法的的初步研究.土壤学报,29(4):408-417
    卜兆宏,宫世俊,阮伏水,蔡士强.1992b.降雨侵蚀力因子的算法及其在土壤流失量监测中的选用.遥感技术与应用,7(3):1-10
    卜兆宏,李全英.1994.土壤可蚀性(K)值图编制方法的初步研究.遥感技术与应用,9(4):22-27
    卜兆宏,李全英.1995.土壤可蚀性(K)值图编制方法的初步研究.农业生态环境(学报),11(1):5-9
    卜兆宏,孙金庄,周伏建,唐万龙,席承藩.1997.水土流失定量遥感方法及其应用的研究.土壤学报,34(3):235-245
    卜兆宏,孙金庄,周伏建.1995.水土流失的定量遥感及其应用研究进展.农村生态环境,11(4):35-39
    卜兆宏,唐万龙,杨林章,席承藩,刘复新,吴嘉裕,唐合年.2003.水土流失定量遥感方法新进展及其在太湖流域的应用.土壤学报,40(1):1-9
    卜兆宏,杨林章,卜宇行,吴嘉裕.2002.太湖流域苏皖汇流区土壤可蚀性K值及其应用的研究.土壤学报,39(3):296-300
    卜兆宏,赵宏夫,刘绍清,陈明华.1993.用于土壤流失量遥感监测的植被因子算式的初步研究.遥感技术与应用,8(4):16-22
    蔡崇法,丁树文,史志华,黄丽,张光远.2000.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,14(2):19-24
    蔡强国,陆兆熊,王贵平.1996.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报,51(2):108-117
    曹伟超,陶和平,孔博,刘斌涛,孙玉莲.2011.基于DEM数据分割的西南地区地貌形态自动识别研究.中国水土保持,(3):38-41
    岑奕,丁文峰,张平仓.2011.华中地区土壤可蚀性因子研究.长江科学院院报,28(10):65-68,74
    陈军,黄光庆,周阳品.2008.基于GIS的区域水土流失评价研究.贵州大学学报(自然科学版),25(2):201-205
    陈雷.2002.中国的水土保持.中国水土保持,(7):4-6
    陈克平,宁大同.1997.基于GIS非点源污染模型的地形因子分析.北京师范大学学报(自然科学版),33(2):281-284
    陈明华,周伏建,黄炎和,卢程隆,林福兴.1995.土壤可蚀性因子的研究.水土保持学报,9(1):19-24
    陈述彭,鲁学军,周成虎.1999.地理信息系统导论.北京:科学出版社,15-75
    程琳,杨勤科,谢红霞,王春梅,郭伟玲.2009.基于GIS和CSLE的陕西省土壤侵蚀定量评价方法研究,水土保持学报,23(5):61-66
    程琳.2010.基于GIS和经验模型的中尺度流域土壤侵蚀时空动态分析—以孤山川流域为例.[硕士学位论文].陕西杨凌:西北农林科技大学
    程红芳,章文波,陈锋.2008.植被覆盖度遥感估算方法研究进展.国土资源遥感,(1):13-18
    邓良基,侯大斌,王昌全,张世熔,夏建国.2003.四川自然土壤和旱耕地土壤可蚀性特征研究.中国水土保持,(7):23-25
    邓玉娇,薛重生,林锦祥.2006.基于3S技术实现湖北房县土壤侵蚀定量研究.水土保持研究,13(6):208-209,212
    董婷婷,张增祥,左利君.2008.基于GIS和RS的辽西地区土壤侵蚀的定量研究.水土保持研究,15(4):48-52
    杜军,边多,胡军,廖健,周明君.2007.西藏近35年日照时数的变化特征及其影响因素.地理学报,62(5):492-500
    凡非得,王克林,熊鹰,宣勇,张伟,岳跃民.2011.西南喀斯特区域水土流失敏感性评价及其空间分异特征.生态学报,31(21):6353-6362
    方纲清,阮伏水,吴雄海,郭志明.1997.福建省主要土壤可蚀性特征初探.福建水土保持,(2):19-23
    封志明,唐焰,杨艳昭,张丹.2007.中国地形起伏度及其与人口分布的相关性.地理学报,62(10):1073-1082
    封志明,张丹,杨艳昭.2011.中国分县地形起伏度及其与人口分布和经济发展的相关性.吉林大学社会科学学报,51(1):146-151
    冯绳武.1989.中国自然地理.北京:高等教育出版社
    符思涛,周云.2010.基于遥感影像的归一化植被指数算法研究.江西测绘,(3):31-32,15
    高德武.1993.黑龙江土壤流失方程中土壤可蚀性因子(K)的研究.国土与自然资源研究,(3):40-43
    高守英,吴泉源,安国强.2003.基于GIS的龙口市泳汶河流域地貌形态定量分析.遥感技术与应用,18(2):87-90
    高维森,王佑民.1992.土壤抗蚀抗冲性研究综述.水土保持通报,12(5):59-63
    顾祝军,曾志远.2005.遥感植被盖度研究.水土保持研究,12(2):18-21
    郭铌.2003.植被指数及其研究进展.干旱气象,21(4):71-75
    郭建坤,黄国满.2005.1998年~2003年内蒙古地区土地覆被动态变化分析.资源科学,27(6):84-89
    洪伟,吴承祯.1997.Krige方法在我国降雨侵蚀力地理分布规律研究中的应用.土壤侵蚀与水土保持学报,3(1):91-96
    胡良军,李锐,杨勤科.2000.基于RS和GIS的区域水土流失快速定量评价方法,水土保持通报,20(6):42-44
    胡良军,李锐,杨勤科.2001.基于GIS的区域水土流失评价研究.土壤学报,38(2):167-175
    胡良军,杨勤科.2002.基于RS和GIS的区域水土流失快速定量评价方法.中国水土保持,(1):39-40
    胡良军.1998.基于GIS的区域水土流失定量评价指标研究.水土保持通报,18(5):24-27
    胡续礼,姜小三,杨树江,张成军,潘剑君.2006a.降雨侵蚀力简易算法地区适用性的初步探讨.中国水土保持科学,4(5):44-49
    胡续礼,潘剑君,杨树江,姜小三,高太成.2006b.几种降雨侵蚀力模型的比较研究.水土保持通报,26(1):68-70
    胡续礼.2006.水土流失定量监测中降雨侵蚀力因子的研究.[硕士学位论文].南京:南京农业大学
    黄秉维.1955.编制黄河中游流域土壤侵蚀分区图的经验教训.科学通报,(12):15-21
    黄金良,洪华生,张珞平,杜鹏飞.2004.基于GIS和USLE的九龙江流域土壤侵蚀量预测研究,水土保持学报,18(5):75-79
    黄炎和,卢程隆,郑添发,付勤,许建金.1992.闽东南降雨侵蚀力指标R值的研究.水土保持学报,6(4):1-5
    黄义端.1980.我国几类主要地面物质抗侵蚀性能初步研究.中国水土保持,(1):41-43
    江忠善,郑粉莉,武敏.2005.中国坡面水蚀预报模型研究.泥沙研究,(4):1-6
    江忠善,郑粉莉.2004.坡面水蚀预报模型研究.水土保持学报,18(1):66-69
    姜小三,潘剑君,杨林章,卜兆宏.2004.土壤可蚀性K值的计算和K值图的制作方法研究—以南京市方便水库小流域为例.土壤,36(2):177-180
    蒋定生,李新华,范兴科,王继军,张汉雄.1995.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置.水土保持学报,9(1):1-7
    蒋定生.1978.黄土抗蚀性的研究.土壤通报,(4):20-23
    蒋定生.1997.黄土高原水土流失与治理模式.北京:中国水利水电出版社
    金争平,史培军,侯福昌.1992.黄河黄甫川流域土壤侵蚀系统模型和治理模式.北京:海洋出版社
    井光花,于兴修,李振炜.2011.土壤可蚀性研究进展综述.中国水土保持,(10):44-47
    景可,王万忠,郑粉莉.2005.中国水土保持与环境.北京:科学出版社:84-91
    景可.1999.土地退化、荒漠化及土壤侵蚀的辨识与关系.中国水土保持,(2):29-30
    郎玲玲,程维明,朱启疆,龙恩.2007.多尺度DEM提取地势起伏度的对比分析—以福建低山丘陵区为例.地球信息科学,9(6):1-6
    雷俊山,杨勤科,郑粉莉.2004.黄土坡面细沟侵蚀试验研究及土壤抗冲性评价.水土保持通报,24(2):1-4
    雷俊山,杨勤科.2004a.坡面薄层水流侵蚀试验研究及土壤抗冲性评价.泥沙研究,(6):22-26
    雷俊山,杨勤科.2004b.土壤因子研究综述.水土保持研究,11(2):156-159
    冷疏影,冯仁国,李锐,刘宝元,郑粉莉,刘国彬,王占礼,杨勤科,傅伯杰,宋长青.2004.土壤侵蚀与水土保持科学重点研究领域与问题.水土保持学报,18(1):2-6,26
    李璐,姜小三,孙永远.2011.基于地统计学的降雨侵蚀力插值方法研究—以江苏省为例.生态与农业环境学报,27(1):88-92
    李锐,杨勤科,赵永安.1999.水土流失动态监测与评价研究现状与问题.中国水土保持,(11):31-33
    李锐,杨勤科.2000.区域水土流失快速调查与管理信息系统研究.郑州:黄河水利出版社
    李勇,吴钦孝,朱显谟,田积莹.1990.黄土高原植物根系提高土壤抗冲性能的研究—Ⅰ.油松人工林根系对土壤抗冲性的增强效应.水土保持学报,4(1):1-16
    李纯利,李瑞凤,姜蕊云.2001.水土流失的危害及其防治.水利科技与经济,7(3):139-140
    李登科.2007.陕西吴旗植被动态及其与气候变化的关系.生态学杂志,26(11):1811-1816
    李景刚,何春阳,史培军,陈晋,辜智慧,徐伟.2004.近20年中国北方13省的耕地变化与驱动力.地理学报,59(2):274-282
    李良冬,高鹏,穆兴民,莫莉.2009.辽河流域降雨侵蚀力的时空变化分析.中国水土保持科学,7(2):69-73
    李运学,邓吉华,黄建胜.2002.水土流失是我国的头号环境问题.水土保持学报,16(5):105-107
    李占斌.2005.第三章土壤侵蚀与水土保持.中国土壤科学的现状与展望
    李忠峰,李雪梅,蔡运龙,汪涌.2007.基于SPOT VEGETATION数据的榆林地区土地覆盖变化研究.干旱区资源与环境,21(2):56-59
    梁音,史学正.1999.长江以南东部丘陵山区土壤可蚀性K值研究.水土保持研究,6(2):47-52
    林素兰,黄毅,聂振刚,孙景华.1997.辽北低山丘陵区坡耕地土壤流失方程的建立.土壤通报,28(6):251-253
    刘平,吴志峰,匡耀球,王继增,程炯,陈汉先.2005.基于日降雨数据的广东省降雨侵蚀力初步分析.热带气象学报,21(5):555-560
    刘爱霞,王长耀,刘正军,牛铮.2004.基于NOAA时间序列数据分析的中国西部荒漠化监测.武汉大学学报·信息科学版,29(10):924-927
    刘宝元,张科利,焦菊英.1999.土壤可蚀性及其在侵蚀预报中的应用.自然资源学报,14(4):345-350
    刘昌明,岳天祥,周成虎.2000.地理学的数学模型与应用.北京:科学出版社
    刘春利,杨勤科,谢红霞.2010.延河流域降雨侵蚀力时空分布特征.环境科学,31(4):850-857
    刘吉峰,李世杰,秦宁生,于守兵.2006.青海湖流域土壤可蚀性K值研究.干旱区地理,29(3):321-326
    刘新华,杨勤科,汤国安.2001.中国地形起伏度的提取及在水土流失定量评价中的应用.水土保持通报,21(1):57-59,62
    刘新华,张晓萍,杨勤科,李锐.2004.不同尺度下影响水土流失地形因子指标的分析与选取.西北农林科技大学学报(自然科学版),32(6):107-111
    刘新华.2001.区域水土流失地形因子分析与提取研究.[硕士学位论文].陕西杨凌:西北农林科技大学
    刘亚玲,潘志华,范锦龙,郑大玮.2005.阴山北麓地区植被覆盖动态时空分析.资源科学,27(4):168-174
    刘振东,涂汉明.1989.中国地势起伏度统计单元的初步研究.热带地理,9(1):31-38
    刘志红.2007.基于遥感与GIS的全国水蚀区水土流失评价.[博士学位论文].陕西杨凌:中国科学院研究生院
    吕喜玺,沈荣明.1992.土壤可蚀性因子K值的初步研究.水土保持学报,6(1):63-70
    罗来兴,朱震达.1965.编制黄土高原水土流失与水土保持图的说明与体会.见:中国地理学会地貌专业委员会编.中国地理学会1965年地貌学术讨论会文集.北京:科学出版社
    罗志军,赵小敏,刘耀林.2008.基于遥感的三峡库区植被覆盖度动态监测.农业工程学报,24(增刊1):57-60
    马良,左长清,尹忠东,邱国玉.2010.山东省降雨侵蚀力多年变化特征分析.中国水土保持科学,8(4):79-85
    马蔼乃.1993.中国水土流失灾害的分类分级和危险度评价方法研究(第六章).见:王劲峰等著.中国自然灾害影响评价方法研究.北京:中国科学技术出版社
    马晓微,杨勤科.2001.基于GIS的中国潜在水土流失评价指标研究.水土保持通报,21(2):41-44
    马志尊.1989.应用卫星影象估算通用土壤流失方程各因子值方法的探讨.中国水土保持,(3):24-27
    门明新,宇振荣,许皞.2006.基于地统计学的河北省降雨侵蚀力空间格局研究.中国农业科学,39(11):2270-2277
    门明新,赵同科,彭正萍,宇振荣.2004.基于土壤粒径分布模型的河北省土壤可蚀性研究.中国农业科学,37(11):1647-1653
    蒙海花,王腊春.2006.中国水土流失及其防治对策.中国水土保持学会第三次全国会员代表大会
    缪驰远,何丙辉,陈晓燕,魏朝富.2004.USLE与WEPP土壤可蚀性因子的关联性分析.中国水土保持,(6):23-25
    牛宝茹,刘俊蓉,王政伟.2005.干旱半干旱地区植被覆盖度遥感信息提取研究.武汉大学学报·信息科学版,30(1):27-30
    彭珂珊.2000a.中国土壤侵蚀影响因素及其危害分析.首都师范大学学报(自然科学版),21(2):88-94
    彭珂珊.2000b.中国土壤侵蚀影响因素及其危害分析.水利水电科技进展,20(4):15-18,64
    彭珂珊.2001.水土流失是生态环境恶化的根源.地质灾害与环境保护,12(2):25-31
    祁元,刘勇,杨正华,徐瑱,方苗.2012.基于GIS的兰州滑坡与泥石流灾害危险性分析.冰川冻土,34(1):96-104
    秦天枝.2009.我国水土流失的原因、危害及对策.生态经济,(10):163-169
    任朝霞,杨达源.2007.西北干旱区近50年气候变化特征与趋势.地球科学与环境学报,29(1):99-102
    任国玉,吴虹,陈正洪.2000.我国降水变化趋势的空间特征.应用气象学报,11(3):322-330
    阮伏水,吴雄海.1996.关于土壤可蚀性指标的讨论.水土保持通报,16(6):68-72
    施能,陈家其,屠其璞.1995.中国近100年来4个年代际的气候变化特征.气象学报,53(4):431-439
    史东梅,陈正发,蒋光毅,江东.2012.紫色丘陵区几种土壤可蚀性K值估算方法的比较.北京林业大学学报,34(1):32-38
    史更申.1994.水土流失及其防治对策.中国人口·资源与环境,4(3):88-89
    史学正,于东升,吕喜玺.1995.用人工模拟降雨仪研究我国亚热带土壤的可蚀性.水土保持学报,9(3):38-42
    史学正,于东升,邢廷炎,J.Breburda.1997.用田间实测法研究我国亚热带土壤的可蚀性K值.土壤学报,34(4):399-405
    史志华,郭国先,曾之俊,陈锦春,王天巍,蔡崇法.2006.武汉降雨侵蚀力特征与日降雨侵蚀力模型研究.中国水土保持,(1):22-24
    宋怡,马明国.2007.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析.中国沙漠,27(1):89-93
    宋春风,陶和平,刘斌涛,史展,郭兵,华娟.2012.长江上游地区土壤可蚀性空间分异特征.长江流域资源与环境,21(9):1123-1130
    宋富强,邢开雄,刘阳,刘志超,康慕谊.2011.基于MODIS/NDVI的陕北地区植被动态监测与评价.生态学报,31(2):354-363
    孙华,白红英,张清雨,雒新萍,张善红.2010.基于SPOT VEGETATION的秦岭南坡近10年来植被覆盖变化及其对温度的响应.环境科学学报,30(3):649-654
    唐飞,陈曦,程维明,周可法.2006.基于DEM的准格尔盆地及其西北山区地势起伏度研究.干旱区地理,29(3):388-392
    唐克丽.2004.中国水土保持.北京:科学出版社
    唐克丽主编.1991.黄土高原地区土壤侵蚀区域特征及其治理途径.北京:中国科学技术出版社
    田积莹,黄义端.1964.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究.土壤学报,12(3):278-296
    田庆久,闵祥军.1998.植被指数研究进展.地球科学进展,13(4):327-333
    涂汉明,刘振东.1990.中国地势起伏度最佳统计单元的求证.湖北大学学报(自然科学版),12(3):266-271
    汪邦稳,杨勤科,刘志红,赵心畅.2007.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取.中国水土保持科学,5(2):18-23
    汪邦稳.2007.基于GIS的黄土高原延河流域土壤侵蚀时空动态评价.[硕士学位论文].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心
    王峰,石辉,周立江,黄林.2010.土壤抗冲性研究进展.山地农业生物学报,29(6):528-537
    王雷,朱杰勇,周燕.2007.基于1:25万DEM昆明地区地貌形态特征分析.昆明理工大学学报(理工版),32(1):6-9,14
    王玲,吕新.2009.基于DEM的新疆地势起伏度分析.测绘科学,34(1):113-116
    王岩,刘少峰.2008.基于DEM的青海贵德地区地形起伏度的研究.地质通报,27(12):2117-2121
    王礼先,张有实,李锐,崔鹏,余新晓,蔡强国.2005.关于我国水土保持科学技术的重点研究领域.中国水土保持科学,3(1):1-6
    王天巍,史志华,李朝霞,蔡崇法.2007.基于多源数据的三峡库区乐天溪流域林地植被覆盖动态监测.应用生态学报,18(11):2533-2539
    王万中,焦菊英,郝小品,张宪奎,卢秀琴,陈法扬,吴素业.1995.中国降雨侵蚀力R值的计算与分布(I).水土保持学报,9(4):5-18
    王万中,焦菊英,郝小品,张宪奎,卢秀琴,陈法扬,吴素业.1996.中国降雨侵蚀力R值的计算与分布(II).土壤侵蚀与水土保持学报,2(1):29-39
    王万忠,焦菊英.1996.中国的土壤侵蚀因子定量评价研究.水土保持通报,16(5):1-20
    王文娟,张树文,李颖,卜坤.2008.基于GIS和USLE的三江平原土壤侵蚀定量评价.干旱区资源与环境,22(9):112-117
    王晓峰,任志远.2008.基于RS和GIS的榆林市植被覆盖度动态变化研究.陕西师范大学学报(自然科学版),36(3):101-104
    王占礼.2000a.中国土壤侵蚀影响因素及其危害分析.农业工程学报,16(4):32-36
    王占礼.2000b.中国土壤侵蚀影响因素及其危害分析.山西水土保持科技,(2):14-16
    吴昌广,林德生,肖文发,王鹏程,马浩,周志翔.2011.三峡库区降雨侵蚀力时空分布特征.应用生态学报,22(1):151-158
    吴昌广,曾毅,周志翔,王鹏程,肖文发,罗翀.2010.三峡库区土壤可蚀性K值研究.中国水土保持科学,8(3):8-12
    吴普特,周佩华,郑世清.1993.黄土沟壑区土壤抗冲性的研究,水土保持学报,7(3):19-36
    吴素业.1994.安徽大别山区降雨侵蚀力简易算法与时空分布规律.中国水土保持,(4):12-13
    伍育鹏,谢云,章文波.2001.国内外降雨侵蚀力简易计算方法的比较.水土保持学报,15(3):31-34
    谢云,刘宝元,章文波.2000.侵蚀性降雨标准研究.水土保持学报,14(4):6-11
    谢云,章文波,刘宝元.2001.用日雨量和雨强计算降雨侵蚀力.水土保持通报,21(6):53-56
    谢春燕,陈晓燕,何炳辉,魏朝富.2003.土壤可蚀性在WEPP模型中的应用.水土保持科技情报,(4):6-8
    谢红霞.2008.延河流域土壤侵蚀时空变化及水土保持环境效应评价研究.[博士学位论文].西安:陕西师范大学
    邢廷炎,史学正,于东升.1998.我国亚热带土壤可蚀性的对比研究.土壤学报,35(3):296-302
    徐天献,王玉宽,傅斌.2011.汶川地震重灾区土壤侵蚀敏感性评价.中国水土保持,(1):39-42
    许峰,郭索彦,张增祥.2003.20世纪末中国土壤侵蚀的空间分布特征.地理学报,58(1):139-146
    闫满存,李华梅,王光谦.2000.广东沿海陆地地质环境质量定量评价研究.工程地质学报,8(2):416-425
    杨娟,葛剑平,李庆斌.2006.基于GIS和USLE的卧龙地区小流域土壤侵蚀预报,46(9):1526-1529
    杨萍,胡续礼,姜小三,何旭东,潘剑君.2006.小流域尺度土壤可蚀性(K值)的变异及不同采样密度对其估算精度的影响.水土保持通报,26(6):35-39
    杨开宝,郭培才.1994.陕北丘陵沟壑区降雨侵蚀力指标研究.水土保持通报,14(5):31-35
    杨勤科,李锐,曹明明.2006.区域土壤侵蚀定量研究的国内外进展.地球科学进展,21(8):849-856
    杨勤科,李锐.1998.中国水土流失和水土保持定量研究进展.水土保持通报,18(5):13-18
    杨勤科,罗万勤,马宏斌,梁伟.2006.区域水土流失植被因子的遥感提取.水土保持研究,13(5):267-268,271
    杨勤科等.1994.我国土壤侵蚀的主要类型与区域特征.见:现代土壤学研究.北京:中国农业出版社,21-35
    杨艳生,史德明.1982.关于土壤流失方程中K因子的探讨.中国水土保持,(4):39-42
    杨子生.1999.滇东北山区坡耕地土壤可蚀性因子.山地学报,17(增刊):10-15
    杨子生.2001.论水土流失与土壤侵蚀及其有关概念的界定.山地学报,19(5):436-445
    游松财,李文卿.1999.GIS支持下的土壤侵蚀量估算—以江西省泰和县灌溪乡为例.自然资源学报,14(1):62-68
    于东升,史学正,梁音,邢廷炎.1997.应用不同人工模拟降雨方式对土壤可蚀性K值的研究.土壤侵蚀与水土保持学报,3(2):53-57
    翟伟峰,许林书.2011.东北典型黑土区土壤可蚀性K值研究.土壤通报,42(5):1209-1213
    张兵,蒋光毅,陈正发,史东梅.2010.紫色丘陵区土壤可蚀性因子研究.土壤学报,47(2):354-358
    张军,李晓东,陈春艳,刘俊燕.2008.新疆地势起伏度的分析研究.兰州大学学报(自然科学版),44:10-13,19
    张坤,洪伟,吴承祯,丁新新.2008.福建省降雨侵蚀力R值预测预报方法研究.水土保持研究,15(3):23-25,48
    张坤,洪伟,吴承祯,丁新新.2009.基于地统计学和GIS的福建省降雨侵蚀力空间格局.山地学报,27(5):538-544
    张磊.2009.基于地形起伏度的地貌形态划分研究—以京津冀地区为例.[硕士学位论文].河北:河北师范大学
    张岩,袁建平,刘宝元.2002.土壤侵蚀预报模型中的植被覆盖与管理因子研究进展.应用生态学报,13(8):1033-1036
    张艺,任志远.2010.基于SPOT VEGETATION数据的关中地区近10年来植被覆盖变化分析.农业系统科学与综合研究,26(4):425-430
    张爱国,张平仓,杨勤科.2003.区域水土流失土壤因子研究.北京:地质出版社
    张国平,张增祥,刘纪远.2001.中国土壤风力侵蚀空间格局及驱动因子分析.地理学报,56(2):146-158
    张俊飚.2001.中国土壤侵蚀影响因素及其危害分析.云南环境科学,20(2):4-7,29
    张科利,蔡永明,刘宝元,江忠善.2001a.黄土高原地区土壤可蚀性及其应用研究.生态学报,21(10):1687-1695
    张科利,蔡永明,刘宝元,彭文英.2001b.土壤可蚀性动态变化规律研究.地理学报,56(6):673-681
    张科利,彭文英,杨红丽.2007.中国土壤可蚀性值及其估算.土壤学报,44(1):7-13
    张清春,刘宝元,翟刚.2002.植被与水土流失研究综述.水土保持研究,9(4):96-101
    张文太,于东升,史学正,张向炎,王洪杰,顾祝军.2009.中国亚热带土壤可蚀性K值预测的不确定性研究.土壤学报,46(2):185-191
    张宪奎,许靖华,卢秀琴,邓育江,高德武.1992.黑龙江省土壤流失方程的研究.水土保持通报,12(4):1-9,18
    章文波,付金生.2003.不同类型雨量资料估算降雨侵蚀力.资源科学,25(1):35-41
    章文波,谢云,刘宝元.2002a.降雨侵蚀力研究进展.水土保持学报,16(5):43-46
    章文波,谢云,刘宝元.2002b.利用日雨量计算降雨侵蚀力的方法研究.地理科学,22(6):705-711
    章文波,谢云,刘宝元.2002c.用雨量和雨强计算次降雨侵蚀力.地理研究,21(3):384-390
    章文波,谢云,刘宝元.2003.中国降雨侵蚀力空间变化特征.山地学报,21(1):33-40
    章文波.2003.北方农牧交错带降雨侵蚀力的时空分布.自然科学进展,13(6):651-654
    赵辉,郝志敏,齐实,王文中,罗建民.2006.南方丘陵紫色页岩地区土壤可蚀性因子K值的确定.水土保持研究,13(6):41-43
    赵汉青.2010.基于SPOT-4/VEGETATION数据的中国植被覆盖动态变化研究.测绘与空间地理信息,33(1):164-166
    赵文武,徐海燕,解纯营.2008.黄土丘陵沟壑区延河流域降雨侵蚀力的估算.农业工程学报,24(S1):38-42
    赵晓丽,张增祥,周全斌,刘斌,谭文彬,王长有.2002.中国土壤侵蚀现状及综合防治对策研究.水土保持学报,16(1):40-43,46
    郑粉莉,唐克丽,白红英,史瑞芸.1994.子午岭林区不同地形部位开垦裸露地降雨侵蚀力的研究.水土保持学报,8(1):26-32
    郑海金,杨洁,喻荣岗,张华明,张龙.2010.红壤坡地土壤可蚀性K值研究.土壤通报,41(2):425-428
    中国科学院地理科学与资源研究所.2005.中华人民共和国1:100万数字地貌制作规范
    中华人民共和国水利部.1997.土壤侵蚀分类分级标准SL190—96.北京:中国水利水电出版社
    中华人民共和国水利部.全国水土流失公告.北京:2002.
    中华人民共和国水利部.2008.土壤侵蚀分类分级标准SL190—2007(SL190—2007替代SL190—96).北京:中国水利水电出版社
    周斌.2000.浅谈水土流失遥感定量模型及其因子算法.地质地球化学,28(1):72-77
    周伏建,陈明华,林福兴,黄炎和,卢程隆.1995.福建省降雨侵蚀力指标R值.水土保持学报,9(1):13-18
    周佩华,武春龙.1993.黄土高原土壤抗冲性的实验研究方法探讨.水土保持学报,7(1):29-34
    周佩华.1988.2000年中国水土流失趋势预测与防治对策.中国科学院水土保持研究所集刊,7:57-71
    周为峰,吴炳方.2005.土壤侵蚀调查中的遥感应用综述.遥感技术与应用,20(5):537-542
    周正朝,上官周平.2004,土壤侵蚀模型研究综述.中国水土保持科学,2(1):52-55
    朱红春,陈楠,刘海英,汤国安.2005.自1:10000比例尺DEM提取地形起伏度—以陕北黄土高原的实验为例.测绘科学,30(4):86-88
    朱立安,李定强,魏秀国,张会化.2007.广东省土壤可蚀性现状及影响因素分析.亚热带水土保持,19(4):4-7,16
    朱显谟,陈代中,杨勤科等.1999.1:1500万中国土壤侵蚀图.见:《中华人民共和国自然地图集》编辑委员会.中华人民共和国自然地图集(第二版).北京:中国地图出版社
    朱显谟,张相麟,雷文进.1954.泾河流域土壤侵蚀现象及其演变.土壤学报,2(4):209-222
    朱显谟.1947.江西土壤之侵蚀及其防治.土壤特刊,6(3):87-94
    朱显谟.1956.黄土区土壤侵蚀的分类.土壤学报,4(2):99-115
    朱显谟.1958.有关黄河中游土壤侵蚀区划问题.土壤通报,(1):1-6
    朱显谟.1960.黄土地区植被因素对水土流失的影响.土壤学报,8(2):110-121
    朱显谟.1965.1:1500万中国土壤侵蚀图.见:《中华人民共和国自然地图集》编辑委员会.中华人民共和国自然地图集.北京:科学出版社
    朱显谟.2005.黄土高原土壤水蚀的主要类型及其有关因素.见:土壤学与水土保持编辑委员会.土壤学与水土保持:朱显谟院士论文选集.西安:陕西人民出版社:350-356
    邹亚荣,张增祥,杨存建,张宗科.2001.中国土地资源的土壤侵蚀状况分析.水土保持学报,15(3):44-47
    Arhonditsis G, Giourga C, Loumou A, Koulouri M.2002. Quantitative assessment of agriculturalrunoff and soil erosion using mathematical modeling: applications in the Mediterranean region.Environmental Management,30(3):434-453
    Batjes N H.1996. Global assessment of land vulnerability to water erosion on a one half degree byone half degree grid. Land Degradation&Development,7(4):353-365
    Bennett H H.1926. Some comparisons of the properties of humid-tropical and humid-temperateAmerican soils; with special reference to indicated relations between chemical composition and physicalproperties. Soil Science,21(5):349-376
    Blaszczynski J.1992. Regional Soil loss prediction utilizing the RUSLE/GIS interface. In: Johnson AI,Pettersson C B, Fulton J L. Geographic Information Systems (GIS) and mapping-practices andstandards(STP1126).Philadelphia: American Society for Testing and Materials:122-131
    Bouyoucos G J.1935. The clay ratio as a criterion of susceptibility of soils to erosion. Journal of theAmerican Society of Agronomy,27:738-741
    Brazier R E, Rowan J S, Anthony S G, Quinn P F.2001."MIRSED" towards an MIR approach tomodelling hillslope soil erosion at the national scale. Catena,42(1):59-79
    De Jong S M, Paracchini M L, Bertolo F, Folving S, Megier J, De Roo A P J.1999. Regionalassessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena,37(3-4):291-308
    De Roo A P J, Wesseling C G, Ritsema C J.1996. LISEM: A single-event physically basedhydrological and soil erosion model for drainage basins. I: theory, input and output. Hydrological Processes,10(8):1107-1118
    Demek J, Embleton C.1978. Guide to medium-scale geomorphological mapping. InternationalGeographical Union. Commission on Geomorphological Survey and Mapping, E. Schweizerbart’scheVerlagsbuchhandlung, Stuttgart, Germany.
    Ferro V, Porto P, Yu B.1999. A comparative study of rainfall erosivity estimation for southern Italyand southeastern Australia. Hydrological Sciences Journal,44(1):3-24
    Flanagan D C, Nearing M A.1995. USDA-Water erosion prediction project: hillslope profile andwatershed model documentation. NSERL Report No.10USDA-ARS-NSERL, West Lafayette, IN
    Fu B J, Zhao W W, Chen L D, Zhang Q J, Lu Y H, Gulinck H, Poesen J.2005. Assessment of soilerosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. LandDegradation and Development,16(1):73-85
    Gitelson A A, Kaufman Y J, Stark R, Rundquist D.2002. Novel algorithms for remote estimation ofvegetation fraction. Remote Sensing of Environment,80(1):76-87
    Haith D A, Merrill D E.1987. Evaluation of a daily rainfall erosivity model. Transactions of theASAE,30(1):90-93
    Jiao J Y, Zou H Y, Jia Y F, Wang N.2009. Research progress on the effects of soil erosion onvegetation. Acta Ecologica Sinica,29(2):85-91
    Kinnell P I A.1998. Converting USLE soil erodibilities for use with the QREI30index. Soil and TillageResearch,45(3-4):349-357
    Kirkby M J, Abrahart R, McMahon M D, Shao J, Thornes J B.1998. MEDALUS soil erosion modelsfor global change. Geomorphology,24(1):35-49
    Le Bissonnais Y, Montier C, Jamagne M, Daroussin J, King D.2002. Mapping erosion risk forcultivated soil in France. Catena,46(2-3):207-220
    Liu B Y, Nearing M A, Shi P J, Jia Z W.2000. Slope length effects on soil loss for steep slopes. SoilScience Society of American,64(5):1759-1763
    Liu B Y, Zhang K L, Xie Y.2002. An empirical soil loss equation. In: Proc of21th ISCO. Beijing:Tsinghua Press:143-149
    Lu Hua, Gallant J, Prosser I P, Moran C, Priestley G.2001. Prediction of sheet and rill erosion over theAustralian continent, Incorporating monthly soil loss distribution, CSIRO Land and Water Technical Report13/01, Canberra: CSIRO Land and Water
    Middleton H E.1930. Properties of soils which influence erosion. U S Dept Agriculture Tech,178
    Morgan R P C, Quinton J N, Smith R E, Govers G, Poesen J W A, Auerswald K, Chisci G, Torri D,Styczen M E, Folly A J V.1998. The European soil erosion model (EUROSEM): documentation and userguide. Silsoe College, Cranfield University.
    Nearing M A, Foster G R, Lane L J, Finkner S C.1989. A process-based soil erosion model forUSDA-water erosion prediction project technology. Transactions of the ASAE,32(5):1587-1593
    Oldeman L R, Hakkeling R T A, Sombroek W G.1991. World map of the status of human-induced soildegradation: An explanatory note:2nd revised edn. Nairobi, Wageningen: ISRIC&UNEP
    Oldeman L R.1994. The global extent of soil degradation. In: Greenland D J, Szabolcs I, Soilresilience and sustainable land use. Wallingford, UK: CAB International,99-118
    Olson T C, Wischmeier W H.1963. Soil erodibility evaluation for soils on the runoff and erosionstations. Soil Science. Society of American Proceedings,27(5):590-592
    Reich P, Eswaran H, Beinroth F.1999. Global dimensions of vulnerability to wind and water erosion.In: Stott D E, Mohtar R H, Steinhardt G C. Sustaining the Global farm. The10th international soilconservation organization meeting, Purdue University: USDA-ARS National Soil Erosion ResearchLaboratory
    Renard K G, Foster G R, Weesies G A, McCool D K, Yoder D C.1997. Predicting soil erosion bywater: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA,Agriculture Handbook, NO.703
    Renard K G, Freimund J R.1994. Using monthly precipitation data to estimate the R-factor in therevised USLE. Journal of Hydrology,157(1-4):287-306
    Richardson C W, Foster G R, Wright D A.1983. Estimation of erosion index from daily rainfallamount. Transactions of the ASAE,26(1):153-156
    Selker J S, Haith D A, Reynolds J E.1990. Calibration and testing of a daily erosivity model.Transactions of the ASAE,3(2):1612-1618
    Shirazi M A, Boersma L.1984. A unifying quantitative analysis of soil texture. Soil Science Societyof America Journal,48(1):142-147
    Singh G, Babu R, Narain P, Bhushan L S, Abrol I P.1992. Soil erosion rates in India. Journal of Soiland Water Conservation,47(1):97-99
    Starr G C, Lal R, Malone R, Hothem D, Owens L, Kimble J.2000. Modeling soil carbon transportedby water erosion processes. Land Degradation&Development,11(1):83-91
    Suzuki R, Kobayashi H, Delbart N, Asanuma J, Hiyama T.2011. NDVI responses to the forest canopyand floor from spring to summer observed by airborne spectrometer in eastern Siberia. Remote Sensing ofEnvironment,115(12):3615-3624
    Valentin C, Boardman J, Favis-Mortlock D, Ingram J, Kirkby M, Nearing M, Poesen J, Zobeck T.2002. The GCTE Soil Erosion Network. In: Juren J.12th International Soil Conservation OrganizationConference, vol. II. Proceedings of the ISCO meeting. Beijing: Tsinghua University Press,299-305
    Williams J R, Renard K G, Dyke P T.1983. EPIC:A new method for assessing erosion’s effect on soilproductivity. Journal of soil and water conservation,38(5):381-383
    Wischmeier W H, Smith D D.1958. Rainfall energy and its relationship to soil loss. Transactions,American Geophysical Union,39(2):285-291
    Wischmeier W H, Smith D D.1965. Predicting rainfall erosion1osses from cropland east of theRocky Mountains:a guide for selection of practices for soi1and water conservation: Agriculture Handbook,NO.282. Washington: United States Department of Agriculture
    Wischmeier W H, Smith D D.1978. Predicting rainfall eosion losses from cropland east of the RockyMountains: a guide for soil and water conservation planning: Agriculture Handbook, No.537. Washington:United States Department of Agriculture
    Yu B, Rosewell C J.1996. A robust estimators of the R-reaction for the Universal Soil Loss Equation.Transactions of the ASAE,39(2):559-561
    Zheng F L.2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere,16(4):420-427
    Zhou Z C, Shangguan Z P, Zhao D.2006. Modeling vegetation coverage and soil erosion in the LoessPlateau area of China. Ecological Modelling,198(1-2):263-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700